TOWARD MACHINE LEARNING BASED ACCESS CONTROL

Ram Krishnan

Microsoft President's Endowed Professor Department of Electrical and Computer Engineering UTSA

Introduction

- Access Control
 - The decision to permit or deny a user access to a resource
 - User: a human user, a process, an application, etc.
 - Resource: network, data, application, service, etc.
- There are many mainstream classical approaches for access control
 - Access Control Lists (ACLs), Role Based Access Control (RBAC), Attribute Based Access Control (ABAC), Relationship Based Access Control (ReBAC), etc.
- These approaches have their benefits

NIST ABAC

Issues in Classical Approaches

Attribute Engineering

- An expert designs attributes based on the metadata
- E.g., 'status' attribute is engineered from 'spending' and 'credit' history

Policy Engineering (Policy Mining)

- To design policy through a manual or automated process
- E.g., <status = 'platinum', type='secured'> <access = 'read, write'>

Generalization

- Focus on capturing given access control state
- E.g., Knowing Alice's access, is it possible to determine Bob's access?

Attribute and Policy Update (administration)

- Revoke existing access or introduce a new access to existing users
- Depends on human, error-prone

Machine Learning in Access Control

- Could it learn from existing access control state of the system?
- Could it learn directly from the "metadata"?
- Could it make access control decisions that are accurate and generalize better?

- Obviates the need for related procedures
 - Attribute Engineering and Assignments
 - Policy Engineering
- Ease of policy updates (Administration)

Timeline of ML in Access Control

Taxonomy of ML in Access Control

Roadmap

Machine Learning Based Access Control (MLBAC)

Section-2

Machine Learning Based Access Control (MLBAC)

Operational Model of Machine Learning Based Access Control

Authorization Tuple <Alice, projectA, {read, write}>

Candidate MLBAC Models

$DLBAC_{\alpha}$ Dataset

User/Resource metadata

A dataset for DLBAC α is the collection of such authorization tuples (samples)

List of Datasets

#	Dataset	Туре	Users	User	Resources	Resour	rceAuthorization
				Metada	ata	Metada	ataTuples
1	amazon-kaggle	Real-world	9560	8	7517	0	32769
2	amazon-uci	Real-world	4224	11	7	0	4224
3	u4k- $r4k$ - $auth11k$	Synthetic	4500	8	4500	8	10964
4	u5k- $r5k$ - $auth12k$	Synthetic	5250	8	5250	8	12690
5	u5k- $r5k$ - $auth19k$	Synthetic	5250	10	5250	10	19535
6	u4k- $r4k$ - $auth21k$	Synthetic	4500	11	4500	11	20979
7	u4k- $r7k$ - $auth20k$	Synthetic	4500	11	7194	11	20033
8	u4k- $r4k$ - $auth22k$	Synthetic	4500	13	4500	13	22583
9	u4k- $r6k$ - $auth28k$	Synthetic	4500	13	6738	13	28751
10	u6k- $r6k$ - $auth32k$	Synthetic	6000	10	6000	10	32557

t-SNE visualizations

a	b	C	d	е
f	g	h	i	

Preparing Training Data for DLBACa

The data type in our datasets are **nominal-categorical**

Decision Making Process in DLBACα

Evaluation Methodology

[1] Xu et al. 2014. "Mining attribute-based access control policies." IEEE TDSC

[2] Cotrini et al. 2018. Mining ABAC rules from sparse logs. In IEEE Euro S&P.

[3] Liu et al. 2021. Efficient Access Control Permission Decision Engine Based on Machine Learning. Security & Communication Networks.

Evaluation Metrics

80% samples for the training, and 20% testing

A higher F1 score: better generalization A higher TPR: accurate and efficient in granting access

A lower FPR: efficient in denying access

Comparison with ML Algorithms and State-of-the-art Policy Mining

make accurate access decisions and generalize better

Comparison with Policy Mining Algorithms

Efficient in permitting desired accesses and denying unwanted accesses

Understanding DLBAC Decisions

Why has Bob's 'op2' access been denied for projectB resource?

Which metadata are important/influential for this decision?

- Two approaches
 - Integrated Gradients
 - Knowledge Transfer

Integrated Gradients

Local Interpretation

Integrated Gradients

Global Interpretation

Application of Integrated Gradientbased Understanding

- Strengthen the effect of "influential metadata"
- Can be utilized in future access modification

Is there any relation among metadata?

Knowledge Transferring

- Rule: local interpretation
- DT: global interpretation

Section-3

Machine Learning Based Access Control (MLBAC)

Administration in Machine Learning Based Access Control

MLBAC Administration Overview

Administration Process Flow

Weights/Parameters Update

18 random Tasks with different Criteria

Performance Evaluation

- RF-MLBAC Add additional estimators
- ResNet-MLBAC: Fine-tuning

• How well can it preserve existing access states for all other users/resources (OATs)

Unable to accommodate new changes with good accuracy.

Performance Evaluation (cont'd) (ResNet-MLBAC)

Section-4 (Part-A)

Machine Learning Based Access Control (MLBAC)

Adversarial Attack in MLBAC

Adversarial Attack Problem

$$f(x) = y \neq f(x + x_p) = t \longleftarrow \text{Target decision}$$

$$f(x) = y \neq f(x + x_p) = t \longleftarrow \text{Target decision}$$

$$perturbation \quad g(x_p) = \mathcal{L}(x + x_p, t) + \bigcup \|x_p\|$$

$$\frac{\text{Access}}{\text{Restriction}} \quad g(x_p) = \mathcal{L}(x + x_p, t) + \omega \|x_p \circ c\|$$

$$\frac{\text{Accessibility}}{\text{Constraint}}$$

Mitigation Approach

Continuous and Categorical 'age,' 'salary', 'security_level,' 'designation'

Evaluation

Success Rate = Successfully crafted adversarial examples Samples attempted for the adversarial example creation

Section-4 (Part-B)

Machine Learning Based Access Control (MLBAC)

DLBAC Assisted Permission **Recommendation for Mobile Devices**

to

:e's

to

:e's

OK

Allow

Ask-On-Install (AOI)

Ask-On-First-Use (AOFU)

Could DLBAC automate this permission decision?

... abundant permission requests

COP-MODE Dataset

- Developed by Mendes et al. [4], 65K permission requests
- At each permission request:
 - Requesting application: name and play store category
 - **Permission:** name (CONTACTS, STORAGE, etc.) and grant result (allow/deny)
 - Phone state: geolocation, plug, call state, network connection, etc.
 - User context: time, semantic location, in event or not, etc.

[4] . Mendes, R., Brandão, A., Vilela, J. P., and Beresford, A. R.. Effect of User Expectancy on Mobile App Privacy: A Field Study. In 2022 IEEE PerCom.

Evaluation

• Three DLBAC instances with: ResNet, DenseNet, and Xception

Accuracy: 74.02%

Cluster like-minded users, Liu et al. [6]

^{[5].} Brandão, A. et al. Prediction of Mobile App Privacy Preferences with User Profiles via Federated Learning. In 2022 ACM CODASPY.[6]. Liu et al. Follow My Recommendations: A Personalized Privacy Assistant for Mobile App Permissions. In SOUPS 2016.

Future Research Directions

Selected Publications

Closest

- (ACM CODASPY 2022) Nobi, Mohammad Nur, Ram Krishnan, Yufei Huang, Mehrnoosh Shakarami, and Ravi Sandhu. "Toward Deep Learning Based Access Control."
- (ESORICS 2022) Mohammad Nur Nobi, Ram Krishnan, Yufei Huang, and Ravi Sandhu. "Administration of Machine Learning Based Access Control".
- (itaDATA 2022) Mohammad Nur Nobi, Ram Krishnan, and Ravi Sandhu. "Adversarial Attacks in Machine Learning Based Access Control".
- (ACM Computing Surveys, *under review*) Mohammad Nur Nobi, Maanak Gupta, Lopamudra Praharaj, Mahmoud Abdelsalam, Ram Krishnan, and Ravi Sandhu. "Machine Learning in Access Control: A Taxonomy and Survey".
- Relevant
 - (ACM CCS 2013) Philip Fong, Pooya Mehregan and Ram Krishnan, Relational Abstraction in Community-Based Secure Collaboration
 - (ACM TOPS) Ram Krishnan, Jianwei Niu, Ravi Sandhu and William H. Winsborough, Group-Centric Secure Information Sharing Models for Isolated Groups

Source code and datasets URL:

<u>https://github.com/dlbac/DlbacAlpha</u> <u>https://github.com/mlxac/MLBAC-Admin</u> <u>https://github.com/mlxac/MLBAC-AdversarialAttack</u>

THANK YOU! Q&A