Leveraging Large Language Models for Addressing Evolving Cyber Security Issues

Cyber Warriors June 24th, 2024

Nishant Vishwamitra

Assistant Professor, Department of Information Systems and Cyber Security

Agenda

- Introduction
- Motivation
- Background: Leveraging LLMs
- LLM-based Reasoning for Evolving Cyber Security Issues
- Paper: Moderating New Waves of Online Hate with Chain-of-Thought Reasoning in Large Language Models
- Discussion
- Q & A

 Large Language Models have recently garnered significant attention

GPT-4o just Released!

• State-of-the-art performance

User Can you explain this meme?

Sometimes I just look at pictures of the earth from space and I marvel at how beautiful it all is.

GPT-4 This meme is a joke that combines two unrelated things: pictures of the earth from space and chicken nuggets.

The text of the meme suggests that the image below is a beautiful picture of the earth from space. However, the image is actually of chicken nuggets arranged to vaguely resemble a map of the world.

The humor in this meme comes from the unexpected juxtaposition of the text and the image. The text sets up an expectation of a majestic image of the earth, but the image is actually something mundane and silly.

Simulated exams	GPT-4 estimated percentile
Uniform Bar Exam (MBE+MEE+MPT) ¹	298/400 ~90th
LSAT	163 ~88th
SAT Evidence-Based Reading & Writing	710/800 ~93rd
SAT Math	700/800 ~89th
Graduate Record Examination (GRE) Quantitative	163/170 ~80th
Graduate Record Examination (GRE) Verbal	169/170 ~99th
Graduate Record Examination (GRE) Writing	4/6 ~54th
USABO Semifinal Exam 2020	87/150 99th-100th
USNCO Local Section Exam 2022	36/60
Medical Knowledge Self-Assessment Program	75%
Codeforces Rating	392 below 5th
AP Art History	5 86th-100th
AP Biology	5 85th-100th
AP Calculus BC	4 43rd-59th

Source: https://openai.com/research/gpt-4

• Model size is increasing exponentially

https://huggingface.co/blog/large-language-models

Introduction Three approaches for language modeling

$$\hat{x_i} = p(\hat{x_i}|x_1, x_2, ..., x_n)$$
 .

Sentence correction (denoising)

$$\hat{x}_{n+1} = p(\hat{x}_{n+1} | x_1, x_2, ..., x_n)$$
 Text completion

$$\hat{x}_{n+1} = p(\hat{x}_{n+1} | x_1, x_2, ..., x_n, D)$$
 . Text translation

Introduction Parametric architectures for sentence denoising: Encoder

 Parametric architectures for text completion: Decoder

Introduction Parametric architectures for text translation: Encoder-Decoder

• Training LLMs

- -Pre-training
- -Supervised Training

-Reinforcement Learning

- "Pure" Reinforcement Learning (cherry)
 - The machine predicts a scalar reward given once in a while.
 - A few bits for some samples

Supervised Learning (icing)

- The machine predicts a category or a few numbers for each input
- Predicting human-supplied data
- ► 10→10,000 bits per sample

Unsupervised/Predictive Learning (cake)

- The machine predicts any part of its input for any observed part.
- Predicts future frames in videos
- Millions of bits per sample

Introduction Several applications!

- Education
- Customer service / advisor
- Knowledge Management
- Recommendation
- Virtual Assistant

• LLMs for cybersecurity

Give security teams an edge with Microsoft Security Copilot

Powerful new capabilities, new integrations, and industry-leading generative Al-now available in early access.

Read the announcement

Watch the announcement

Supercharge security with generative Al

Google Cloud

Palo Alto Networks teases plans for generative AI across security services

The security vendor is taking a restrained approach to deploying generative AI products, but the company's leaders still believe the technology will herald a major shift for cybersecurity.

Published May 31, 2023

• LLMs have a significant number of cyber security applications

Background Emerging capabilities –ICL / CoT / MM reasoning...

Circulation revenue has increased by 5% in Finland. // Positive

Panostaja did not disclose the purchase price. // Neutral

Paying off the national debt will be extremely painful. // Negative

The company anticipated its operating profit to improve. //

Circulation revenue has increased by 5% in Finland. // Finance

They defeated ... in the NFC Championship Game. // Sports

Apple ... development of in-house chips. // Tech

The company anticipated its operating profit to improve. // _____

Chain-of-Thought Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

https://arxiv.org/pdf/2201.11903.pdf http://ai.stanford.edu/blog/understanding-incontext/

LLM-based Reasoning LLMs can be used as reasoners for evolving cybersecurity issues

Moderating New Waves of Online Hate with Chain-of-Thought Reasoning in Large Language Models

IEEE S&P 2024 ("Oakland"), San Francisco, CA

<u>Nishant Vishwamitra</u>^{*}, Keyan Guo[†], Farhan Tajwar Romit^{*}, Isabelle Ondracek[†], Long Cheng[‡], Ziming Zhao[†], **Hongxin Hu**[†]

New Waves of Online Hate

- We live in a world with rapidly evolving events
- These rapidly evolving events consequently affect the global digital landscape
 - COVID-19 pandemic
 - 2021 insurrection of the US Capitol
 - 2022 Russian invasion of Ukraine
- Emotions of anger and anxiety, and rhetoric from these events also spill over into our global digital landscape

New Waves of Online Hate

New waves of online hate

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9168424/

UN News Nations Global perspective Human stories

AUDIO HUB

Violence, rhetoric, hate speech, drive atrocity crimes in Ukraine and beyond, Security Council hears

https://news.un.org/en/story/2022/06/1120972

Facebook bungled efforts to curb explosion of hate speech ahead of Capitol attack

Pressure on social network increases as internal documents reveal it fell short in implementing content safeguards

https://www.ft.com/content/abaf9ea7-c5dc-4ba7-8f80-48b488aee5ae

Dataset

• X (Twitter) dataset (31,549 tweets)

New Wave Type	Number of hateful tweets	Number of non hateful tweets			
COVID-19 tweets	1,096	1,600			
US Capitol Insurrection tweets	314	390			
Russian Invasion of Ukraine tweets	237	363			
Total tweets	1,647	2,353			

Annotated new wave datasets with 4,000 tweets

Motivation

• Temporal patterns in usage of hateful hashtags

As current events evolve, new waves of online hate occur in the global digital landscape

Motivation

Using Existing Tools Against New Waves of Online Hate

Precision	Recall	F1-score
0.69	0.16	0.27
0.49	0.31	0.38
0.54	0.21	0.31
	Precision 0.69 0.49 0.54	Precision Recall 0.69 0.16 0.49 0.31 0.54 0.21

Zero-shot (or few-shot) learning to adapt to rapid changes in concept?

HateGuard Design

Reasoning-based decision-making for detection:

- Learning non-no or lew new samples
 - Updated with *no samples* or *only a few* samples
 - Automatic policy update and zero-shot learning by updating

HateGuard Overview

- Identity-based hate: targets are based on several *identities*, such as race, nationality, political affiliation, religion, etc
- Hate against individuals: *name* or *username* of the individual is mentioned

Evaluation

Deploying HateGuard in the period of 2020 (COVID-19), 2021 (US Capitol insurrection), and 2022 (Russian invasion) shows that new wave peaks are significantly reduced (green line)

HateCoT for new waves decision-making (3) compared to traditional RoBERTa hate speech detection model (1) and general prompting (2)

			<u>'O'</u>							0							
	Method —	Qu	Quarter 1 (Jan-Mar)			Quarter 2 (Apr-Jun)			Quarter 3 (Jul-Sep)				Quarter 4 (Oct-Dec)				
Wave Type		# of Tweets	Acc- uracy	Prec- ision	Rec- all	# of Tweets	Acc- uracy	Prec- ision	Rec- all	# of Tweets	Acc- uracy	Prec- ision	Rec- all	# of Tweets	Acc- uracy	Prec- ision	Rec- all
						-	Overall	Results -									
T. (. 1	HATEGUARD		0.95	0.95	0.94		0.94	0.94	0.93		0.94	0.94	0.93		0.94	0.95	0.92
(2020 2022)	BERT-base	928	0.74	0.81	0.34	893	0.82	0.76	0.71	1148	0.84	0.82	0.79	1031	0.83	0.86	0.8
(2020-2022)	Tweet-NLP		0.7	0.73	0.23		0.83	0.79	0.77		0.84	0.83	0.8		0.83	0.84	0.8
						- Ca	tegory-w	ise Resul	ts -								
Ageism (2020)	HATEGUARD		0.94	0.91	0.92		0.95	0.95	0.95		0.95	0.95	0.95		0.95	0.94	0.96
	BERT-base	186	0.82	0.6	0.44	117	0.8	0.68	0.53	114	0.79	0.68	0.6	161	0.74	0.72	0.76
	Tweet-NLP		0.79	0.5	0.15		0.87	0.79	0.72		0.86	0.74	0.83		0.72	0.79	0.57
A	HATEGUARD		0.96	0.96	0.97		0.93	0.93	0.93		0.94	0.95	0.94		0.95	0.94	0.98
Asian (2020)	BERT-base	179	0.68	0.91	0.35	296	0.84	0.79	0.8	331	0.85	0.86	0.87	262	0.87	0.88	0.92
	Tweet-NLP		0.63	0.77	0.29		0.84	0.84	0.72		0.84	0.86	0.84		0.85	0.91	0.86
Mask (2020)	HATEGUARD		0.99	0.99	0.99		0.94	0.96	0.88		0.98	0.95	0.97		0.96	0.97	0.94
	BERT-base	16	0.75	0	0	64	0.79	0.78	0.39	249	0.85	0.75	0.66	199	0.8	0.75	0.86
	Tweet-NLP		0.94	0.67	0.99		0.86	0.85	0.61		0.87	0.75	0.78		0.84	0.8	0.88
Vaccine (2020)	HATEGUARD		0.98	0.99	0.96		0.92	0.9	0.92		0.93	0.93	0.91		0.94	0.95	0.92
	BERT-base	78	0.76	0.92	0.38	114	0.78	0.68	0.7	104	0.85	0.79	0.83	226	0.84	0.75	0.79
	Tweet-NLP		0.72	0.77	0.35		0.75	0.6	0.83		0.8	0.75	0.73		0.88	0.83	0.82
US Capitol (2021)	HATEGUARD		0.91	0.91	0.88		0.99	0.97	0.99		0.9	0.89	0.9		0.9	0.9	0.9
	BERT-base	311	0.68	0.79	0.31	112	0.85	0.85	0.83	158	0.82	0.85	0.76	123	0.84	0.78	0.89
	Tweet-NLP		0.63	0.7	0.16		0.83	0.79	0.87		0.82	0.87	0.72		0.78	0.75	0.79
Russia	HATEGUARD		0.95	0.95	0.93		0.94	0.95	0.92		0.94	0.95	0.93		0.9	0.92	0.9
-Ukraine	BERT-base	158	0.8	0.85	0.37	190	0.8	0.72	0.62	192	0.82	0.82	0.81	60	0.83	0.82	0.87
(2022)	Tweet-NLP		0.77	0.92	0.24		0.84	0.82	0.65		0.86	0.88	0.84		0.85	0.89	0.81

HateGuard Against Evolving Online Hate

Comparing HateGuard against the existing benchmarks

Conclusion and Future Work

- Conclusion
 - A large-scale experiment to study the nature of new waves of online hate
 - Examining the capabilities of the existing moderation tools
 - A novel framework to address the problem of new waves of online hate
- Future work
 - Multilingual new waves of online hate
 - Multimodal scenarios, such as hateful memes
 - Auto-prompting methodologies

Discussion

- LLMs for addressing evolving cyber security issues
 - -Fake news/Disinformation
 - -Zero-day attacks
 - -Phishing attacks
 - -Advanced Persistent Threats

Discussion

Method	Paper	Source
Chain-of-Thought	Chain-of-Thought Prompting Elicits Reasoning in Large Language Models	NeurIPS 2022
Self-consistency	Self-Consistency Improves Chain of Thought Reasoning in Language Models	ICLR 2023
Least-to-Most	Least-to-Most Prompting Enables Complex Reasoning in Large Language Models	ICLR 2023
Tree of Thought	Tree of Thoughts: Deliberate Problem Solving with Large Language Models	ArXiv 2023
In-Context Learning	Teaching Algorithmic Reasoning via In-context Learning	NeurIPS 2022
Analogical Prompting	Large Language Models as Analogical Reasoners	ArXiv 2023
PromptBreeder	Promptbreeder: Self-Referential Self-Improvement Via Prompt Evolution	ArXiv 2023
Autoprompt	AUTOPROMPT: Eliciting Knowledge from Language Models with Automatically Generated Prompts	EMNLP 2020

Thank you !

Nishant Vishwamitra, Assistant Professor

nishant.vishwamitra@utsa.edu

UTSA, San Antonio, TX, United States