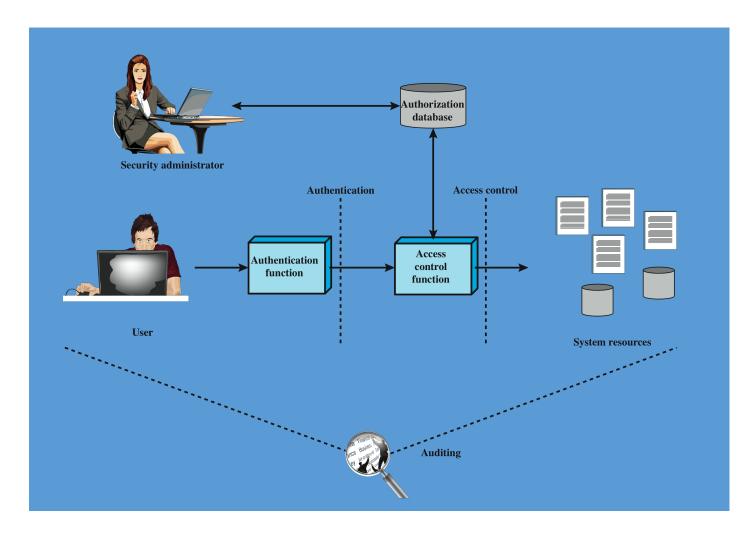
Cyber Warriors: A Comprehensive Introduction to Cybersecurity Tools and Techniques

June 24-28, 2024

Murtuza Jadliwala

murtuza.jadliwala@utsa.edu



Introduction to Access Control

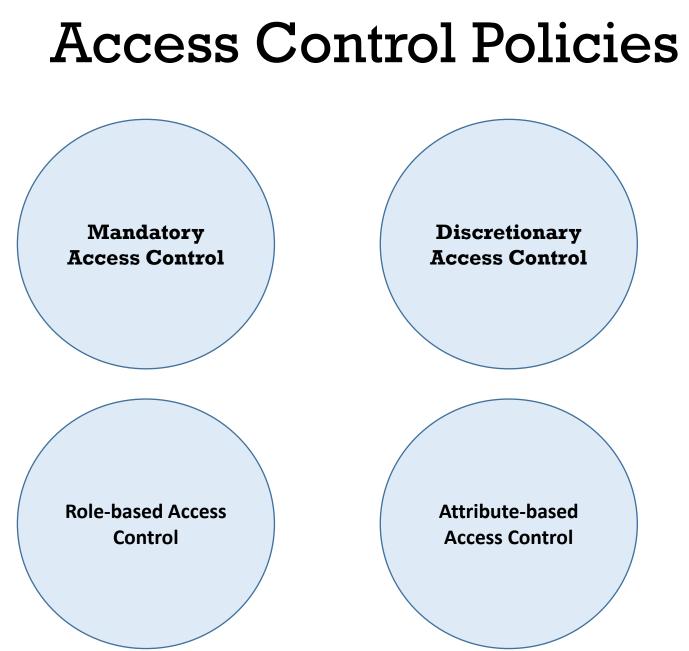
Access Control

"The prevention of unauthorized use of a resource, including the prevention of use of a resource in an unauthorized manner."

How Does Access Control Work?

Access Control Elements

Subject


- Entity capable of accessing objects equates with process
- Accountable for the actions they initiate
- Three classes: owner, group, world

Object

- Resource to which access is controlled entity that contains and/or receive information
- Protection depends on the environment in which access control operates

Access right

- Describes the way in which a subject may access an object
- e.g., read, write, execute, delete, create, search

Discretionary Access Control (DAC)

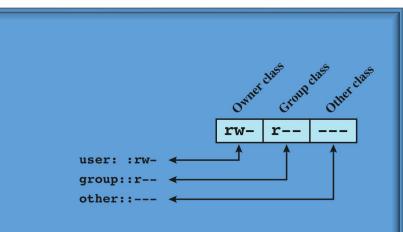
- Scheme in which an entity may enable another entity to access some resource
- Often provided using an access matrix
 - One dimension consists of identified subjects that may attempt data access to the resources
 - Other dimension lists the objects that may be accessed
- Each entry in the matrix indicates the access rights of a particular subject for a particular object

Access Matrix

			OBJ	ECTS		
		File 1	File 2	File 3	File 4	
	User A	Own Read Write		Own Read Write		
SUBJECTS	User B	Read	Own Read Write	Write	Read	
	User C	Read Write	Read		Own Read Write	
	(a) Access matrix					

UNIX File Access Control

UNIX files are administered using inodes (index nodes)


- Control structures with key information needed for a particular file
- Several file names may be associated with a single inode
- An active inode is associated with exactly one file
- File attributes, permissions and control information are sorted in the inode
- On the disk there is an inode table, or inode list, that contains the inodes of all the files in the file system
- When a file is opened its inode is brought into main memory and stored in a memory resident inode table

Directories are structured in a hierarchical tree

- May contain files and/or other directories
- Contains file names plus pointers to associated inodes

UNIX File Access Control

- Unique user identification number (user ID)
- Member of a primary group identified by a group ID
- Belongs to a specific group
- 12 protection bits
 - Specify read, write, and execute permission for the owner of the file, members of the group and all other users
- The owner ID, group ID, and protection bits are part of the file's inode

(a) Traditional UNIX approach (minimal access control list)

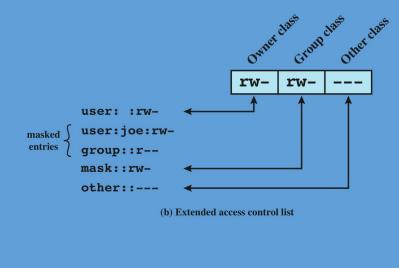


Figure 4.6 UNIX File Access Control

UNIX File Permissions – Decimal to Binary

Decimal	Read	Write	Execute
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1

Traditional UNIX File Access Control

- "set user ID" (SetUID)
- "set group ID" (SetGID)
 - System temporarily uses rights of the file owner / group in addition to the real user's rights when making access control decisions
 - Enables privileged programs to access files / resources not generally accessible
- Sticky bit
 - When applied to a directory it specifies that only the owner of any file in the directory can rename, move, or delete that file
- Superuser (root)
 - Exempt from usual access control restrictions
 - Has system-wide access