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Measuring Anonymity of Pseudonymized Data
After Probabilistic Background Attacks
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Abstract— There is clear demand among organizations for
sharing their data for mining and other purposes without com-
promising the privacy of individual objects contained in the data.
Pseudonymization is a simple, yet widely employed technique for
sanitizing such data prior to its release; it replaces identifying
names in the data by pseudonyms. Well-known metrics already
exist in the literature for measuring the amount of anonymity
still contained in some pseudonymized data in the aftermath of
an infeasibility background attack. While the need for a metric
for the much wider and more realistic class of probabilistic
background attacks has also been well identified, currently
no such metric exists. We fulfill that long identified need by
presenting two metrics, an approximate and a more exact one,
for measuring anonymity in pseudonymized data in the wake
of a probabilistic attack. These metrics are rather intractable,
thus impractical to employ in real-life situations. Therefore, we
also develop an efficient heuristic for our superior metric, and
show the remarkable accuracy of our heuristic. Our metrics and
heuristic assist a data owner in evaluating the safety level of
pseudonymized data against probabilistic attacks before making
a decision on its release.

Index Terms— Pseudonymization, degree of anonymity, infeasi-
bility attacks, probabilistic attacks, combinatorial matrix theory,
forecasting errors.

I. INTRODUCTION

THE conflict between reaping the benefits of sharing an
organization’s data to a data miner or the public, and

protecting the privacy or confidentiality of sensitive parts of
the data, are all too well recognized. Data owners, such as
retail stores, hospitals, and other businesses or government
agencies, often have an urge or obligation to release data for
reasons such as learning about consumer purchasing trends,
compliance with transparency regulations, or even just for the
public good. Such data usually contains sensitive information,
such as salaries or medical conditions, and a straightforward
release of data is not appropriate.

A number of sophisticated techniques have been proposed,
over the years, for sanitizing such data prior to releasing, with
the aim of hiding sensitive correlations contained in it, while
still maintaining its underlying characteristics that are of inter-
est to the release recipients. Among the well known techniques
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are those that achieve k-anonymity of Sweeney [1], l-diversity
of Machanavajjhala et al. [2], t-closeness of Li et al. [3], and
their numerous variants. By generalization and suppression of
some data values, these methods lessen the visible correlation
between identifying attribute values in the data and confi-
dential information corresponding to those values. Another
technique, randomization of Agrawal and Srikant [4], and
its extensions, work by adding sufficiently large noise to the
data by perturbing some of its values. Many other approaches
exist, and all are well explained in several works, such as in
Chen et al. [5] and Fung et al. [6]. Also, Aggarwal and Yu [7]
is a collection of several surveys on relevant issues in the
area, like k-anonymous data mining, randomization methods,
and anonymity measures.

Our focus in this paper is on the relatively simpler technique
of substitution of identity revealing items in the data, like
social security numbers of people, URLs of websites visited,
names of products purchased, etc., by fictitious values, even
as simple as positive integers. In contrast to the approaches
mentioned above, this data sanitization technique does not
perturb data, thereby resulting in higher utility of its sanitized
version. Often called pseudonymization [8], this technique
is, in spirit, akin to substitution ciphers, that map original
alphabet symbols to new ones, in a one-to-one fashion, and
have been well studied and adopted in secure communication.
Konheim [9] contains a detailed explanation and analysis of
substitution ciphers.

We are not advocating here for pseudonymization to be
preferred over the more sophisticated techniques mentioned
above. Rather, our work is motivated by the following obser-
vations:

1) This data sanitization technique is simple to understand
and carry out.

2) It complies with most privacy standards, such as those
laid out by the U.S. Health Insurance Portability and
Accountability Act, and the European Union’s Data
Protection Directive. Neubauer and Kolb [10] is a
methodical evaluation of its compliancy.

3) Pseudonymization-like techniques are already employed
in a variety of domains, in which a secret linkage
between members of two sets is attempted to be
revealed. Some examples are Abouakil [11] for privacy
of images in medical healthcare, Beresford and Sta-
jano [12] for location privacy, Giannotti et al. [13]
for privacy-preserving mining of association rules from
transaction databases, Kerschbaum [14] for collabora-
tive intrusion detection, Danezis and Troncoso [15] for
anonymous communications, and Rottondi et al. [16] for
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securing data collected by smart grid meters. Although
presented here in the setting of an organization’s
database, our results are thus applicable to all such
domains.

4) High-profile blunders have been committed by orga-
nizations relying on it naïvely, without an adequate
understanding of its risky interplay with background
knowledge. In 2006, AOL released its pseudonymized
user search query log for research purposes, which
resulted in several instances of privacy breaches, a
lawsuit, and the resignation of AOL’s Chief Technology
Officer [17]. Around the same time, Netflix released a
pseudonymized user movie rating data for improving its
rating predictions. Major security holes in the data were
exposed in Narayanan and Shmatikov [18], leading to
another lawsuit [19].

The main aspect of pseudonymization we study in this paper is
the safety level it provides, or the anonymity level that remains
in any pseudonymized data, in the aftermath of a background
attack, specifically, a probabilistic attack, as defined below.

If t sensitive data items are pseudonymized using an equal
number of pseudonyms, in a one-to-one fashion, then there
are t ! possible associations (or one-to-one perfect matchings)
between these objects. The data owner employs exactly one
of these matchings to achieve the pseudonymization, and
intends to keep that matching hidden from any adversary
among all other possible matchings. For large values of t , by
itself, this provides an acceptable amount of anonymity. An
attacker, often armed with some background knowledge of the
domain, is capable of making inroads towards uncovering the
all important matching employed by the data owner. Two kinds
of background attacks are well known in this context:

• Infeasibility Attacks: These attacks determine infeasi-
bility of some of the possible matchings of being the one
employed by the data owner.

• Probabilistic Attacks: These attacks arrive at a probabil-
ity for each possible matching of being the one employed
by the data owner.

As shown later in the paper, the class of infeasibility attacks
is a finite subclass of the uncountably infinite class of proba-
bilistic attacks.

Two metrics exist in the literature for measuring the
anonymity remaining in the pseudonymized data upon con-
clusion of an infeasibility attack. Edman et al. [20] proposed
a metric based upon the number of matchings that are still
deemed feasible by the attacker, after the attack. The metric of
Lakshmanan et al. [21] is an improvement, in that it considers
not just the raw number of matchings that still appear feasible
to the attacker but, in a sense, the average “correctness” of
those seemingly feasible matchings.

While Lakshmanan et al. [21] identified a need for arriving
at a metric for measuring anonymity after a probabilistic
attack, they left development of such a metric as an important
future work.

In this paper, we undertake that task of developing such a
metric. As a first step, we present a rough metric, �, based
on Shannon-entropy [22], and show that this metric is in fact

a generalization, for probabilistic attacks, of the metric of
Edman et al. [20]. The measurement technique underlying this
metric was introduced earlier in our preliminary work [23], for
measuring anonymity in communication systems.

Our main contribution in the current paper, however, is
a more accurate metric, � , which we show to be a gen-
eralization, for probabilistic attacks, of the improved metric
of Lakshmanan et al. [21]. Both of our metrics, � and
� , are unified, in that they work for infeasibility as well
as probabilistic attacks, and both are likely not computable
accurately in polynomial-time (in terms of the dataset size t),
as their values depend upon permanent values of certain real
matrices underlying the model, and computation of permanents
is known to be #P-complete [24]. We therefore develop an
efficient heuristic for � , and show that although our heuristic
can be computed in just linear-time, it is a fairly accurate
approximation of our metric � .

The rest of this paper is organized as follows. In Section II,
we give an overview of the existing methods for measuring
anonymity after an infeasibility attack, and a comparison of
those approaches. In Section III, we generalize our attack
model into one that results in a possibly uneven probability
distribution on the set of all matchings. Section IV develops
our two metrics, � and � , and shows that they are proba-
bilistic generalizations of the existing metrics for infeasibility
attacks. In Section V, we present our heuristic and demonstrate
it to be an acceptably close approximation of our metric � .
Section VI contains a brief comparison of pseudonymization
with other well-known privacy techniques, and outlines the
overall scope of our metrics. Finally, Section VII concludes
our work and gives some directions for future work.

II. MEASURING ANONYMITY AFTER

INFEASIBILITY ATTACKS

In this section we give a brief overview of the methods
proposed by Edman et al. [20] and Lakshmanan et al. [21] to
determine the safety level of some pseudonymized data, after
some partial information about the data somehow gets leaked
to an attacker, leading to an infeasibility attack. Their methods
give different measures of the level of anonymity remaining
in the data in the aftermath of the attack, and help the data
owner to answer the all important question of whether or not
the pseudonymized data is still safe to be released.

A. The Attack Model

Let X be a nonempty universe of t sensitive data items that
need to be pseudonymized, such as social security numbers
of people, IP addresses of machines, or web URLs visited.
Let Y be a set of pseudonyms for items in X , such that each
data item in X corresponds to a unique pseudonym in Y , and
vice versa. Thus, |X | = |Y | = t , and preferably, X ∩ Y = ∅.
While the attacker is assumed to know both X and Y , the
data owner attempts to keep secret the exact correspondence
between elements of X and Y . The maximum anonymity that
the owner can strive to achieve is when for any particular item
x ∈ X , each member of Y appears to be a feasible candidate
for being the pseudonym of x . This situation is depicted by
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Fig. 1. (a) Complete anonymity; (b) An instance of no anonymity.

the complete bipartite graph Kt,t between X and Y , as shown
in Fig. 1(a) for t = 4. Any edge 〈xi , y j 〉 in this graph indicates
that the original data item xi is possibly being pseudonymized
by the pseudonym y j .

The attacker, on the other hand, carries out an attack based
on some background knowledge of the application domain,
which results in determining the infeasibility of some edges in
the complete bipartite graph of Fig. 1(a). These edges are then
removed by the attacker from the graph. After a completely
successful attack, for each pseudonym y ∈ Y , the attacker
would have identified exactly one original item x ∈ X that
could have been pseudonymized by y. In other words, the
attacker would have obtained a perfect matching (or just
matching) between X and Y . In this case, the data is thus
considered to have been left with no anonymity. There are
t ! possible matchings between X and Y , an arbitrary one of
which is shown in Fig. 1(b).

B. Some Attack Examples

Figs. 1(a) and 1(b) correspond to the two extreme situa-
tions, namely complete anonymity and no anonymity at all.
In general, after having detected some edges as infeasible, an
attack would result in a bipartite graph that lies somewhere
between these two extreme ends. Exactly which edges of the
complete bipartite graph are missing from the graph resulting
from the attack will depend upon how much and what kind
of information is available to that attack.

As a simple example, let X = {Bread, Eggs, Milk,
Sausages} be the universe of items of a grocery store, and
Y = {a, b, c, d}. Suppose the store releases its database of 10
anonymized transactions, as shown in Fig. 2(a), where each of
these transactions is the set of pseudonyms of items purchased
in a single order. Now suppose the attacker has background
knowledge that Bread is bought in 50% to 80% of all orders.
This is shown as the attacker’s expected frequency range of
this item in Fig. 2(b), along with ranges of all other items in
X . As only two of the 10 released transactions contain the
pseudonym a, the attacker’s observed frequency of a is 20%,
also shown in Fig. 2(b), along with the observed frequencies
of all other pseudonyms in Y .

From the above, it can be concluded that the item Bread
must have been anonymized as either c or d , because the
observed frequencies of others, namely a and b, are outside
the expected frequency range of Bread. Similar reasoning can
be performed on all other items in X to arrive at the reduced
graph produced by this attack, also shown in the figure. Note
that in this graph edges such as 〈Bread, a〉 and 〈Bread, b〉 are
missing as they were determined by the attacker as infeasible.
Fig. 2(c) shows the biadjacency matrix of this graph.

Fig. 2. (a) Anonymized transactions released by owner; (b) Graph resulting
from attack by removing edges determined to be infeasible; (c) Biadjacency
matrix of this graph.

Fig. 3. (a) Graph and (b) biadjacency matrix resulting from an infeasibility
attack on the employee database.

As another example, consider the employee database of
an organization, containing an identifying attribute Employee
Name, along with some quasi-identifier attributes, like
Zip Code, Age, Marital Status, etc. Suppose this data is
released to public, after substituting all employee names
in it by unique pseudonyms. An adversary with access to
the usually publicly available names of employees on the
organization’s roll and other public databases, such as the
census database or voter registration list, can exploit common
quasi-identifier information across datasets to narrow down
the feasible employee name and pseudonym combinations.
Such an infeasibility attack can result in a bipartite graph and
biadjacency matrix, as shown in Fig. 3, which are similar to
those in Fig. 2.

All graphs mentioned in the rest of this paper are bipartite.
Recall that any matching, an example of which appeared
earlier in Fig. 1(b), is essentially a graph, in which each vertex
has exactly one edge connected to it.

C. Existing Anonymity Metrics, d and E
To decide whether or not to release the pseudonymized data,

the data owner needs to assess the risk of disclosure. In this
section, we summarize two existing proposals in the literature
for helping the data owner make this assessment. The metric d
of Section II-C1 was proposed by Edman et al. [20]. The
metric E of Section II-C2, is a more accurate one for the same
task, and was constructed by Lakshmanan et al. [21]. It also
appeared earlier in their preliminary work [25].
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1) The Metric d of Edman et al. [20]: For any matching
M and graph G, we say M is contained in G, if all edges
of M are also in G. It is well known (see, for example,
Asratian et al. [26]) that the number of matchings contained in
G is the same as the permanent of the 0-1 biadjacency matrix
of G. The permanent of any t × t matrix A of real numbers
is defined as:

per(A) =
∑

φ∈�t
A1φ(1) A2φ(2) · · · Atφ(t),

where �t is the set of all bijections φ : {1, 2, . . . , t} →
{1, 2, . . . , t}, i.e. permutations of the first t positive integers.
It is also known that if A is a 0-1 matrix, then per(A) is an
integer between 0 and t !. We let M(G) denote the set of all
matchings contained in G.

Let MO denote the matching employed by the data owner
to pseudonymize items in X by pseudonyms in Y . If G is
a graph resulting from an attack, then M(G) is the set of
all matchings that still seem feasible to the attacker. Under
the assumption that the attacker does not incorrectly label any
edge of Kt,t as infeasible, it follows that MO ∈ M(G), thus
|M(G)| ≥ 1.

The size of M(G), as proposed by Edman et al. [20], is
a crude measure of the level of data anonymity remaining
after the attack, as that is the extent to which MO is hidden
among all matchings that still seem feasible to the attacker.
They proposed the following as the anonymity metric:

d(G) =
⎧
⎨

⎩

0 if t = 1,
log(|M(G)|)

log(t !) otherwise.

If the value of the above metric is above some acceptable
threshold, the sanitized data may be considered safe for release
by the data owner. The metric d(G) is reasonable as it
compares the number of matchings deemed feasible by the
attacker with the number of all possible matchings. Note that
0 ≤ d(G) ≤ 1. Also, d(G) = 0 iff M(G) has just one
matching, i.e. there remains no anonymity, and d(A) = 1 iff
t > 1 and M(G) has t ! matchings, i.e. full anonymity.

The example graph of Fig. 3(a) contains 5 matchings out of
the 24 maximum possible. By the above metric, the degree
of data anonymity after the attack resulting in that graph is
log(5) / log(24) ≈ 0.506.

2) The Metric E of Lakshmanan et al. [21]: A more
accurate anonymity measure can be arrived at by taking into
account the collective “correctness” of matchings in M(G).
Let any edge e of an arbitrary matching M , be called a
crack, if e is also in MO . The number of cracks in M ,
denoted by C(M), gives a measure of the “correctness” of
M . Clearly, C(MO ) = t , and for any other matching M ,
0 ≤ C(M) < t . Different matchings in M(G) have, in
general, different numbers of cracks. The expected number
of cracks in a randomly chosen matching from M(G) gives
a better measure of the extent to which the attacker has
succeeded in breaking anonymity. If this expected value is
below some acceptable threshold, the sanitized data may be
considered safe for release by the data owner.

Lakshmanan et al. [21] formulated an expression for the
expected number of cracks in a randomly chosen matching

from M(G), under the important assumption that all match-
ings in M(G) are equally likely. Let AG be the t × t biad-
jacency matrix of G. As stated earlier, |M(G)| = per(AG).
We first compute the number of matchings in M(G) that have
exactly c cracks. Let Xc = {S ⊆ X : |S| = c} be the set of all
subsets of X of size c. For any S ∈ Xc, let G(S) = 〈X ′, Y ′, E ′〉
be the graph obtained from G = 〈X, Y, E〉 after removing
some of its vertices and edges as follows:

1) X ′ = X \ S, i.e. all vertices in S are removed from X ;
2) Y ′ = Y \ Y ′′, where Y ′′ = {y : x ∈ S and 〈x, y〉 ∈

MO }, i.e. all such vertices are removed from Y that are
counterparts in MO of vertices in S;

3) E ′ = E \ E ′′, where E ′′ = {〈x, y〉 : x ∈ S or y ∈
Y ′′ or (x ∈ X ′ and 〈x, y〉 ∈ MO )}, i.e. all such edges
are removed from E that are either incident to vertices
removed from X or Y , or are counterparts in MO of
vertices remaining in X ′.

Now, per(AG(S)) is the number of matchings in M(G) whose
cracks are incident to the c vertices in S. The total number of
matchings in M(G) that have exactly c cracks is therefore:

∑
S∈Xc

per(AG(S)).

The expected number of cracks in a randomly chosen matching
from M(G) is thus given by:

E(G) = 1

per(AG)

[∑t

c=0

{
c
∑

S∈Xc
per(AG(S))

}]
.

As an example, suppose

MO = {〈Brad, d〉, 〈Claudia, b〉, 〈Mike, c〉, 〈Susan, a〉}
was the actual matching employed by the owner for
pseudonymization of the database upon which the attack of
Fig. 3 was conducted. The 5 matchings contained in the graph
of Fig. 3(a) can then be seen to have 1, 2, 2, 2, and 4 cracks,
respectively. The expected number of cracks in a matching
chosen randomly from these is thus (1+2+2+2+4)/5 = 2.2.

D. An Analysis of Existing Metrics

A closer inspection of the existing anonymity metrics sum-
marized in Section II-C reveals that while these metrics often
agree with each other, there are numerous situations in which
their results lead to different decisions. This is due to the fact
that the metric d(G) depends only on the permanent of the
underlying biadjacency matrix, i.e. the number of matchings
that appear feasible to the attacker, whereas the metric E(G)
looks at the “correctness” of each of those matchings, thereby
resulting in a more accurate measure of anonymity.

To illustrate their different behaviors on our attack example
of Fig. 3, let us again assume that

MO = {〈Brad, d〉, 〈Claudia, b〉, 〈Mike, c〉, 〈Susan, a〉}
was the matching adopted by the data owner to arrive at the
released pseudonymized database. Consider now the set of all
4×4 possible biadjacency matrices corresponding to all attack
graphs that contain MO . Fig. 4(a) plots the permanents of all
such matrices, along with the expected crack values of their
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Fig. 4. (a) Permanents versus expected crack values for all possible 4 × 4
attack graphs; (b) An example matrix with permanent 4 and expected crack
value 1.5; (c) An example matrix with permanent 6 and expected crack
value 2.

underlying attack graphs. Although there are 212 = 4096 dis-
tinct such matrices, many of them possess the same permanent
and expected crack value, leading to far fewer distinct points
on this plot.

From the decreasing trend of the data points in Fig. 4(a),
it is evident that, in general, both metrics agree, as the
higher the remaining anonymity after an attack, the higher
the permanent value, and the lower the expected crack value.
However, sometimes these metrics disagree. Observe that,
for most permanent values, several different expected crack
values exist. For example, several matrices exist, all with
the permanent value 4, with expected crack values ranging
from 1.5 to 2.5. Thus, while the metric d(G) evaluates the
underlying anonymity of all these matrices to be the same, the
metric E(G) results in different anonymity levels for them.

A more interesting phenomenon is depicted by the points
〈4, 1.5〉 and 〈6, 2〉. Fig. 4(b) shows a representative matrix for
〈4, 1.5〉, as its permanent is 4 and the expected crack value
can be shown to be (0 + 1 + 1 + 4)/4 = 1.5. Similarly,
Fig. 4(c) shows a representative matrix for 〈6, 2〉. According
to the d(G) metric, the former matrix corresponds to lower
anonymity, as it hides MO among just 4 matchings, while
the latter hides it among 6 matchings. However, according
to the E(G) metric, the former matrix corresponds to higher
anonymity, as its expected crack value of 1.5 is lower than
that of the latter matrix, namely 2. Thus, in this case, the two
metrics completely disagree with each other.

III. UNEVEN PROBABILITY DISTRIBUTIONS

ON MATCHINGS

An important assumption underlying the metric E(G) of
Lakshmanan et al. [21] is that all matchings in M(G) seem
equally likely to the attacker. While they recognized the need

Fig. 5. An example probability matrix, resulting from a probabilistic attack
on the employee database of Section II-A.

for a metric for the general case, where this assumption does
not necessarily hold, they left the development of such a metric
as beyond the scope of their work.

In this section, we generalize the attack model outlined in
Section II for the general scenario in which, due to additional
knowledge available to the attacker, the attack results in a
possibly uneven probability distribution on the set of all
matchings. Later, in Section IV, we will develop metrics for
attacks in our new model.

A. Probabilities on Graph Edges

The attacks considered in Section II resulted in rendering
some of the edges in the complete graph Kt,t between X
and Y as infeasible, i.e. determined with full certainty as not
being in the matching MO employed by the data owner to
pseudonymize items in X by those in Y . This enabled the
attacker to arrive at a subgraph G that has the same vertices
as in Kt,t , but just its feasible edges, usually fewer than the
t2 edges of Kt,t . The subgraph G was represented by a t × t
0-1 biadjacency matrix AG that contains the value 1 for every
feasible edge and the value 0 for every edge ruled out by the
attacker as infeasible.

Often, the attacker is not able to completely rule out, with
absolute certainty, the possibility of some edge of Kt,t being
in MO , but is only able to assign some real-valued probability
to this event. Such probabilistic attacks too undermine privacy,
and have already been recognized in many domains other than
data privacy, such as for privacy in social networks data pub-
lishing [27], [28], location privacy [12], [29], trajectory privacy
[30], [31], and anonymity in persistent communications [15].
These domains do not contain any data pseudonymization per
se, but still contain some secret linkage between members of
two sets that an attacker usually attempts to reveal. Although
our results are applicable to all such domains, here we develop
them solely in the context of data pseudonymization.

Unlike an infeasibility attack that results essentially in a
0 or 1 label on each edge of Kt,t , indicating whether or not
it is possible for that edge to be in MO , a probabilistic attack
assigns a real value between 0 and 1 as label to each edge of
Kt,t . The label assigned to an edge is the probability of that
edge, according to the attacker, of belonging to MO . These
values can be arranged as a probability matrix, an example
of which is shown in Fig. 5. In this example attack, on the
employee database mentioned in Section II-A, the attacker
has completely ruled out the possibility of pseudonym a of
representing either Brad or Claudia, but has assigned each of
Mike and Susan a probability of 1/2 of being pseudonymized
by that pseudonym. Similarly, the pseudonym b is considered
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to be representing Brad and Claudia, each with a probability
of 1/3, and Mike and Susan with 1/6.

B. Probability Distribution on Matchings

An important characteristic of a probability matrix produced
by such an attack is that it is doubly-stochastic, i.e. the sum
of all values in any of its rows or columns is 1. This follows
from the fact that MO is essentially a bijection between
X = {x1, x2, . . . , xt } and Y = {y1, y2, . . . , yt }. We now show
that such a matrix induces a probability distribution on the set
M(Kt,t ) of all possible matchings.

Let a slice of a t × t matrix P be any subset of its cells
that contains exactly one cell from each row of P . Each slice
therefore has exactly t cells. Additionally, a slice of P is a
diagonal if no two of its cells lie in the same column of P .
Let S(P) and D(P) denote, respectively, the sets of all slices
and diagonals of P . Note that, if P is a probability matrix,
a cell in P corresponds to an edge of the system’s complete
bipartite graph Kt,t between X and Y , a slice corresponds to
a subgraph of that graph obtained by removing all but one
edge connected to each x ∈ X (i.e. a function from X to Y ),
and a diagonal corresponds to a matching between X and Y .
Clearly, P has t t slices, of which t ! are diagonals.

Let the weight of any slice s of P , denoted ω(s), be the
product of values in all cells of s. The following proposition
is straightforward.

Proposition 1: For any probability matrix P ,

(a)
∑

s∈S(P) ω(s) = 1, and
(b)

∑
d∈D(P) ω(d) = per(P).

Proof: (a) Recall that P is t × t . By definitions and
algebraic rearrangement we have,

∑
s∈S(P)

ω(s) =
∑t

j1=1

t∑

j2=1

· · ·
∑t

jt=1
P1 j1 P2 j2 · · · Pt jt

=
∏t

i=1
(Pi1 + Pi2 + · · · + Pit ) = 1.

The last equality follows from the fact that the sum of each
row of P is 1.

(b) Follows immediately from the definition of per(P).
In other words, per(P) is the sum of weights of all diagonals

of P . As D(P) ⊆ S(P), a corollary of the above proposition is
that per(P) ≤ 1. The equality holds when P contains exactly
one 1 in each of its rows and columns. The minimum possible
value of per(P) is well known to be t !/t t , when all entries in
P are 1/t (see, for example, Egorychev [32]).

We let W(d) = ω(d)/per(P) be the normalized weight of
any diagonal d ∈ D(P). The following proposition follows
from Proposition 1(b).

Proposition 2: For any probability matrix P ,
∑

d∈D(P)
W(d) = 1.

As the values contained in the matrix P are probabilities,
and the sum of values in each row of P is 1, each row is
essentially a probability distribution on the set Y. The values
contained in any particular row i are the probabilities for each
y j ∈ Y of being connected with xi in the matching MO

employed by the data owner.

Fig. 6. Sets Y X of all t t functions from X to Y , and M(Kt,t ) of all t !
bijections between X and Y .

Consider now the set Y X , shown in Fig. 6, of all t t functions
f : X → Y , and let some fixed function g ∈ Y X be given.
Suppose a function f from the set Y X is constructed randomly
as follows:

1) We choose some y j ∈ Y , with probability P1 j according
to the distribution contained in the first row of P , and
set that chosen y j to be f (x1).

2) We similarly set f (x2), f (x3), . . . , f (xt ) according to
the distributions contained in rows 2, 3, . . . , t , respec-
tively.

The probability that the function f constructed in this fashion
is identical to the given function g ∈ Y X is

∏{Pij | g(xi) =
y j }, i.e. the weight of the slice of P that corresponds to g.
By Proposition 1(a), these weights add up to 1, i.e. we have
a probability distribution on the entire set Y X . Moreover, by
Proposition 1(b), the probability that our randomly constructed
function f is a bijection, i.e. it represents a matching between
X and Y , is per(P).

Now suppose the given function g is a bijection, i.e. g ∈
M(Kt,t). Then, given the event that the function f constructed
randomly as above is also a bijection, the normalized weight
of the diagonal of P corresponding to g is the probability of
the event: f = g. This yields a probability distribution on the
set M(Kt,t) since, by Proposition 2, these normalized weights
add up to 1.

As the values in P are the probabilities of edges being
in MO (similar to f above), the normalized weights of
the individual diagonals of P (corresponding to all possible
bijections g, as above) are thus the probabilities associated by
P to their corresponding matchings of being MO .

In other words, any probability matrix P resulting from
an attack, such as the one in Fig. 5, induces a probability
distribution over M(Kt,t ). In this distribution, the probability
induced by P on any particular matching M ∈ M(Kt,t ) is the
probability, arrived at by the attack, of the event M = MO .

It is worth noting that, by definition of a probability dis-
tribution, each such induced probability value is some real
number between 0 and 1, and more importantly, the sum of
these probability values, over all M ∈ M(Kt,t ), is 1. Thus
the probability assigned by P to any function in Y X that is
not in M(Kt,t ) is 0. Our mathematical framework thereby
guarantees that two or more different items in X are never
associated with the same item in Y , or vice versa. As an
example, although the matrix P of Fig. 5 explicitly states
that the probabilities of the two events 〈Claudia, b〉 ∈ MO

and 〈Mike, b〉 ∈ MO are 1/3 and 1/6, respectively, the joint
probability of these two events, which associate different items
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Fig. 7. (a) The biadjacency matrix A containing same information as the flat matrix P of Fig. 5; (b) An example probability matrix Q that assigns truly
uneven probabilities to matchings declared feasible by P and A; (c) Matrices P and A assign even probability of 1/12 to all 12 feasible matchings, but Q
assigns uneven probabilities ranging from 5/1398 to 672/1398 to those 12 matchings.

in X with the same item in Y , is guaranteed by our framework
to be 0.

C. Flat and Non-Flat Probability Matrices

The permanent of the matrix P of Fig. 5 can be seen to
be 1/9. The following are two example matchings, of all the
4! = 24 matchings contained in the graph K4,4 corresponding
to this matrix, along with their probabilities of being MO :

M1 = {〈Brad, a〉, 〈Claudia, b〉, 〈Mike, c〉, 〈Susan, d〉},
W(M1) = 1

1/9

(
0 · 1

3
· 1

6
· 1

6

)
= 0;

M2 = {〈Brad, d〉, 〈Claudia, b〉, 〈Mike, c〉, 〈Susan, a〉},
W(M2) = 1

1/9

(
1

3
· 1

3
· 1

6
· 1

2

)
= 1

12
.

A peculiar characteristic of this particular matrix merits a
closer look. The normalized weight of 12 of its 24 diagonals
is 0, and that of each of the other 12 is 1/12. Matchings
M1 and M2 given above belong to those classes, respectively.
In other words, matchings that have a non-zero probability of
being MO are all equally likely to be MO .

Probability matrices with this property are called flat matri-
ces, and they provide no additional probabilistic information to
the attacker than their corresponding 0-1 biadjacency matrices
that possess an identical zero-pattern. The biadjacency matrix
A of Fig. 7(a) has the same zero-pattern as that of the above
probability matrix P , i.e. both matrices contain 0 values in
exactly the same cells, thereby declaring the same 12 match-
ings to be feasible, and all those matchings have, according to
P , an equal probability of 1/12 of being MO . This is depicted
in Fig. 7(c).

On the other hand, the probability matrix Q of Fig. 7(b)
possesses the same zero-pattern, but is not flat. The permanent
of Q is 699/4096. According to Q, the probabilities of those
12 feasible matchings of being MO vary from 5/1398 ≈ 0.004
to 336/699 ≈ 0.481, as shown by the following three example
matchings:

M3 = {〈Brad, b〉, 〈Claudia, c〉, 〈Mike, d〉, 〈Susan, a〉},
W(M3) = 1

699/4096

(
1

8
· 5

16
· 1

16
· 1

4

)
= 5

1398
≈ 0.004;

M4 = {〈Brad, c〉, 〈Claudia, d〉, 〈Mike, a〉, 〈Susan, b〉},
W(M4) = 1

699/4096

(
3

8
· 5

16
· 3

4
· 1

2

)
= 360

1398
≈ 0.258;

M5 = {〈Brad, d〉, 〈Claudia, c〉, 〈Mike, a〉, 〈Susan, b〉},
W(M5) = 1

699/4096

(
1

2
· 7

16
· 3

4
· 1

2

)
= 672

1398
≈ 0.481.

As shown in Fig. 7(c), the matrix Q assigns truly uneven
probabilities to exactly those matchings that are declared
feasible, and are assigned even probabilities, by A and P .

For any graph G, let P(G) be the set of all (doubly-
stochastic) probability matrices that assign non-zero probabil-
ities to exactly those matchings that are in M(G). It is easily
seen that as long as M(G) contains at least two matchings,
P(G) is uncountably infinite. Still, exactly one of the matrices
in P(G) is flat, a fact that follows from Corollary 2.6.6 in
Bapat and Raghavan [33], and all other matrices in P(G)
assign truly uneven probabilities to matchings in M(G).

D. Construction of Flat Matrix From Biadjacency Matrix

An interesting aside deserves a brief mention here.
Bagai et al. [23] outlined a method based on matrix scalings
for arriving at this flat matrix in P(G) from the graph’s biad-
jacency matrix AG . Figs. 8(a) and 8(b) show the biadjacency
matrix AG and the flat matrix F ∈ P(G), respectively, for
an example graph G. Note that the zero-pattern of AG is
contained in that of F . In particular, while the edge 〈Mike, d〉
is feasible according to AG , F assigns a zero probability to
that edge. This is due to the fact that that edge does not appear
in any matching in M(G), and is thus superfluous.

Another elegant characterization of F ∈ P(G), as the limit
of an infinite sequence of matrices, appeared much earlier in
Sinkhorn and Knopp [34]. Let f , g and h be functions from
and to t × t real matrices, defined as follows:

f (M)i j = Mij /
∑t

k=1
Mik (row normalization)

g(M)i j = Mij /
∑t

k=1
Mkj (column normalization)

h(M) = g( f (M))

Then, F = limk→∞ hk(AG). In other words, a procedure
that alternately normalizes all rows followed by all columns
of AG , ad infinitum, would converge to F . However, as AG

contains just 0-1 values, intermediate matrices obtained after
any finite number of iterations contain only rational values. As
the example in Fig. 8 shows, the final solution can be irrational,
the limit of an infinite sequence of rational approximations.
So in general, this procedure requires an infinite number of
iterations. A number of efficient algorithms have therefore
been considered, as in Kalantari and Khachiyan [35] and
Linial et al. [36], for producing in a finite number of steps,
approximate solutions that are within acceptable error bounds.
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Fig. 8. (a) The biadjacency matrix AG of an example graph G; (b) The flat
matrix F ∈ P(G).

IV. METRICS FOR PROBABILISTIC ATTACKS

In this section, we develop two metrics for measuring
anonymity in the wake of an attack that results in an arbitrary
probability distribution on the set M(Kt,t) of all matchings.
These metrics are, respectively, generalizations for our proba-
bilistic attack model, of the metrics of Edman et al. [20] and
Lakshmanan et al. [21].

A. A Rough Metric, �

As shown in Section III-B, the normalized weights of the
diagonals of a probability matrix P are the probabilities associ-
ated by P to their corresponding matchings of being MO . The
uncertainty contained in this probability distribution induced
by P on the set D(P) of all its diagonals (or, alternatively,
all matchings between X and Y ) is a reasonable measure of
the anonymity remaining in the system in the aftermath of an
attack resulting in P . Ever since the works of Serjantov and
Danezis [37] and Diaz et al. [38], Shannon-entropy [22] of
such a probability distribution is a well accepted measure of
remaining anonymity. In a preliminary work, Bagai et al. [23]
employed that technique to arrive at a metric in the context of
anonymity in communication systems. Here we show that the
metric of Bagai et al. [23] is in fact a generalization of the
metric of Edman et al. [20] for our probabilistic attack model.

Let P be any t×t biadjacency or probability matrix resulting
from an attack. We define the underlying system’s degree of
anonymity after this attack as:

�(P) =
⎧
⎨

⎩

0 if t = 1,
− ∑

d∈D(P) W(d) · log(W(d))

log(t !) otherwise.

In the above summation, a subexpression 0 · log(0) is inter-
preted as 0.

Observe that the above metric � is a unified metric, as it
is for biadjacency as well as probability matrices, whereas
the metric d of Edman et al. [20], given in Section II-C1, was
essentially only for biadjacency matrices as one such is unique
for every graph. We first establish that � is a generalization
of d , by showing that for biadjacency matrices, both of these
metrics coincide.

Theorem 1: Let G be any graph with biadjacency matrix
AG , and let F ∈ P(G) be flat. Then, d(G) = �(AG) = �(F).

Proof: To show the first equality, we recall that the
normalized weight of exactly per(AG) diagonals of AG is
1/per(AG), and that of its remaining diagonals is 0. The
numerator of �(AG) thus becomes:

−per(AG)

[
1

per(AG)
· log

(
1

per(AG)

)]
,

which is log(per(AG)) = log(|M(G)|), the numerator of d(G)
given in Section II-C1.

The second equality follows from the fact that the normal-
ized weight of any diagonal of AG is the same as that of the
corresponding diagonal of F .

Clearly, adding probabilistic information to the edges of any
graph should result in a strengthening of the attack, thereby
lowering the resulting anonymity. The following result shows
that � possesses this intuitive property.

Theorem 2: Let G be any graph, and let P ∈ P(G) be not
flat. Then, �(P) < �(AG).

Proof: As P ∈ P(G), the normalized weight of any
of its diagonals is 0 iff that of the corresponding diagonal
of AG is 0. Let per(AG) = k > 0. Then, the normalized
weights of exactly k diagonals of AG is 1/k (and that of
its remaining diagonals is 0). Let w1, w2, . . . , wk be the
normalized weights of corresponding diagonals of P . As these
are the only diagonals of P that may have nonzero weights,
their sum is 1. We need to show that:

−
∑k

i=1
wi · log(wi ) < −

∑k

i=1
(1/k) · log(1/k).

Although this property of Shannon-entropy is well known in
information theory (see, for example, Kapur [39] for a proof
based on Jensen’s inequality), here we give a shorter proof.

We first establish the above inequality when all logarithms
are natural, i.e. to the base e that has several equivalent char-
acterizations, such as

∑∞
n=0 1/n! and limn→∞(1+1/n)n , and

then generalize the inequality for logarithms to any arbitrary
base. It is easily seen that, for all x , ex ≤ ex , with equality iff
x = 1. Taking natural logarithms, we have that 1 + ln(x) ≤ x .
By substituting x = (1/k)/wi , and simplifying, we get that
for all i , wi −wi · ln(wi ) ≤ (1/k)−wi · ln(1/k), with equality
iff wi = 1/k. Summation over all i gives:

−
∑k

i=1
wi · ln(wi ) ≤ ln(k) = −

∑k

i=1
(1/k) · ln(1/k).

As P is not flat, and normalized weights of at least one pair
of corresponding diagonals of any distinct doubly-stochastic
matrices must be different from each other, we have that for
some i , wi �= 1/k, leading to a strict inequality.

To generalize the inequality for logarithms to any arbitrary
base b > 0, since ln(x)/ ln(b) = logb(x), for all x , we simply
divide both sides of the inequality by ln(b).

As an example, consider the graph G whose biadjacency
matrix is the matrix A of Fig. 7(a). We already saw that the
matrices P of Fig. 5 and Q of Fig. 7(b) are both in P(G). P
is flat, but Q is not. It is easily verified that d(G) = �(A) =
�(P) = log(12) / log(24) ≈ 0.782. The nondecreasing vector
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of the 12 nonzero normalized weights of diagonals of Q is:

1

1398
〈5, 7, 12, 16, 30, 30, 42, 56, 72, 96, 360, 672〉,

resulting in �(Q) ≈ 0.496. The higher the unevenness in the
probability distribution on the matchings contained in G, the
lower the anonymity measure given by �.

B. An Accurate Metric, �

Just as, by taking MO into account, the metric E(G) of
Lakshmanan et al. [21] gives a more accurate measure of
anonymity than the metric d(G) of Edman et al. [20], we
now develop a metric for probabilistic attacks that is more
accurate than the �(P) metric given in the previous section.

We first note that, given a graph G, the expected crack value
E(G), of Section II-C2, is essentially the average number of
cracks among the matchings contained in M(G), i.e.

E(G) =
∑

M∈M(G) C(M)

|M(G)| .

For probabilistic attacks, the expected crack value is the
weighted average number of cracks among all matchings in
M(Kt,t ), where the weight of any matching is its probability
of being MO . As shown earlier, the normalized weights of
the diagonals of any biadjacency or probability matrix are the
probabilities of their corresponding matchings of being MO ,
leading to the following metric.

Let P be any t×t biadjacency or probability matrix resulting
from an attack. The expected crack value among all matchings
in M(Kt,t) after this attack is:

�(P) =
∑

d∈D(P) W(d) · C(m(d))
∑

d∈D(P)W(d)

=
∑

d∈D(P)

W(d) · C(m(d)),

where m(d) is the matching in M(Kt,t ) that corresponds to
the diagonal d of P .

Like �, the above metric � is also unified, as it is
for biadjacency as well as probability matrices, whereas the
metric E of Lakshmanan et al. [21] was essentially only for
biadjacency matrices as one such is unique for every graph.
The following result is similar in nature to Theorem 1 for �, as
it shows that � is a generalization of E , since for biadjacency
matrices, both of these metrics coincide.

Theorem 3: Let G be any graph with biadjacency matrix
AG , and let F ∈ P(G) be flat. Then, E(G) = �(AG) =
�(F).

Proof: The first equality follows from the fact that for
any d ∈ D(AG), W(d) = 1/per(AG) = 1/|M(G)|, if m(d) ∈
M(G), and 0 otherwise. The second follows from the already
noted fact that the normalized weight of any diagonal of AG

is the same as that of the corresponding diagonal of F .
By depending on MO , the metric � makes a noteworthy

departure from �, in that adding probabilistic information to
the edges of a graph does not always strengthen the underlying
attack. In other words, while the property given by Theorem 2
was intuitive for �, a similar property is not possessed by � .

As an example, let G be the graph whose biadjacency matrix
is the matrix A of Fig. 7(a). Recall that the matrices P of
Fig. 5 and Q of Fig. 7(b) are both in P(G), where P is flat,
but Q is not. It can be seen that E(G) = �(A) = �(P) =
4/3 ≈ 1.333, as stated by Theorem 3 above. However,
�(Q) = 1183/1398 ≈ 0.846 < E(G), i.e. despite assigning
extra probabilistic information to the edges of G, Q represents
a weaker attack than A. This phenomenon is due to the fact
that Q assigns low probabilities to the edges in MO . While �
depends on just the unevenness of the probabilities assigned
by an attack to each matching for being MO , � is sensitive, in
a sense, to the “correctness” of those probabilities, by taking
crack values of matchings into account, thus resulting in a
more accurate anonymity measure.

C. Complexity of Computing � and �

Unfortunately, both metrics, � and � , are hard to compute.
Arriving at the normalized weights, W(d), of the diago-
nals d ∈ D(P) requires computing the permanent of P .
Valiant [24] showed that computing the permanent, even if all
values of the underlying matrix are just 0 or 1, is #P-complete.
A polynomial-time solution for computing the permanent is
thus unlikely, as that would imply P = NP. The fastest known
exact algorithms for computing the permanent of a t × t
real matrix have time complexity �(t2t ). An example is the
method of Ryser that appeared on Page 122 of Minc [40].
Much attention has consequently been given to arriving at
approximations to permanents more efficiently, as in Jerrum
and Vazirani [41] and Chien et al. [42]. However, even
the state-of-the-art polynomial-time approximation method of
Jerrum et al. [43] runs in O(t22), which still renders even
approximating our metrics, � and � , rather infeasible for real-
life situations.

It should be noted that as the existing metrics, d and E ,
summarized in Sections II-C1 and II-C2, respectively, are
also based on permanents of matrices, they are, for the very
same reason, equally hard to compute, despite their limited
capability of measuring anonymity after any of only the
comparatively small and finite subclass of infeasibility attacks.
In the next section, we present a simple, yet efficient and fairly
accurate, heuristic for approximating � .

V. AN EFFICIENT HEURISTIC FOR �

Let for each i , mi be the index of the unique item in Y that
was actually employed by the data owner to pseudonymize the
data item xi ∈ X , i.e.

MO = {〈x1, ym1〉, 〈x2, ym2〉, . . . , 〈xt , ymt 〉}.
Recall that as the sum of values in each row of a given proba-
bility matrix P is 1, each of its rows by itself is a probability
distribution on the set Y. The values 〈Pi1, Pi2, . . . , Pit 〉 making
up any row i are the probabilities for each y j ∈ Y of being
connected with xi ∈ X in the matching MO employed by the
data owner.

Now, Pimi is the probability with which the attacker cor-
rectly associates xi with ymi , i.e. the probability with which the
attacker “cracks” xi . This probability is a reasonable estimate
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of the “contribution” of index i to the overall expected crack
value. �(P), the expected crack value among all matchings in
M(Kt,t ), can thus be estimated by summing this probability
across all i , leading to the following heuristic:

H(P) =
∑t

i=1
Pimi .

This heuristic can be computed in O(t) steps, a vast improve-
ment over �(P), exact computation of which can likely not
be done even in polynomial-time.

A. An Alternative Characterization of H
Later, we show that H(P) is a rather close approximation

of �(P), but for now, we observe that they are not identical.
H(P) is, in fact, the expected crack value among all functions
in Y X , which as shown in Fig. 6, is usually a proper superset of
M(Kt,t ). To establish this, we first give the following stronger
lemma.

Lemma 1: Let for each k ∈ {1, 2, . . . , t}, Fk denote the set
of all tk partial functions f : {x1, x2, . . . , xk} → Y . Then,
given MO and any probability matrix P , we have that for all
k, the expected crack value among all partial functions in Fk

is
∑k

i=1 Pimi .
Proof: (By weak induction on k) For the base case, let

k = 1. F1 contains t partial functions, exactly one of which
has one crack, as it maps x1 to ym1 . The probability of
choosing this function is P1m1 . None of the other (t − 1)
partial functions in F1 has any cracks, and the combined
probability of choosing one of those is (1 − P1m1). The
expected crack value among all partial functions in F1 is thus
1 · P1m1 + 0 · (1 − P1m1) = P1m1 = ∑k

i=1 Pimi .
For the inductive case, let 2 ≤ k ≤ t and, as the inductive

hypothesis, suppose the expected crack value among all of the
tk−1 partial functions in Fk−1 is

∑k−1
i=1 Pimi . Fk has tk partial

functions, exactly tk−1 of which, with a combined probability
of Pkmk , map xk to ymk , thereby adding one crack to each
individual partial function in Fk−1. The expected crack value
among these members of Fk is thus 1 + ∑k−1

i=1 Pimi . The
remaining (tk − tk−1) partial functions in Fk , with a combined
probability of (1 − Pkmk ), map xk to other members of Y .
As xk contributes no crack in these partial functions, their
expected crack value is still

∑k−1
i=1 Pimi . The expected crack

value among all partial functions in Fk is thus
(

1 +
∑k−1

i=1
Pimi

)
· Pkmk +

(∑k−1

i=1
Pimi

)
· (1 − Pkmk ),

which simplifies to
∑k

i=1 Pimi .
The following theorem follows immediately from the case

k = t of the above lemma. The function C in it is extended
from matchings to functions in Y X in a straightforward way.

Theorem 4: Given MO and any probability matrix P ,
H(P) is the expected crack value over all functions in Y X ,
i.e. H(P) = ∑

s∈S(P) ω(s) · C( f (s)), where f (s) is the
function in Y X that corresponds to the slice s of P .

It is interesting to observe that while the expected crack
value over Y X can be computed in just linear-time, that over
M(Kt,t ) can perhaps not be computed in even polynomial-
time. We now show that, fortunately, these values are not too

far apart. H(P) can thus be employed as a reasonable heuristic
for �(P).

B. Accuracy of the Heuristic H
Clearly, the number of cracks contained in any function

f ∈ Y X , namely C( f ), is closely tied to the choice of MO ∈
M(Kt,t) made by the data owner to pseudonymize items in
X by those in Y . There are t ! candidates for MO available to
the data owner and, depending upon the choice made, C( f )
may range from 0 to t . We extend our notation to reflect this
choice. Let μ be any matching in M(Kt,t ). We then let Cμ( f )
denote the number of cracks in f , given that MO = μ. In other
words, Cμ( f ) is the number of edges common to μ and f .
The following proposition will soon be relevant:

Proposition 3: For any function f ∈ Y X ,
∑

μ∈M(Kt,t )
Cμ( f ) = t !.

Proof: Any edge 〈x, f (x)〉 of Kt,t is contained in exactly
1/|Y | = 1/t of all the t ! matchings in the set M(Kt,t ). Thus,∑

μ∈M(Kt,t )
Cμ( f ) = ∑

x∈X (t !/t) = |X |(t !/t) = t !.
For a given probability matrix P , the values �(P) and

H(P) therefore also depend upon the choice of MO , and we
extend these notations to reflect that. For any μ ∈ M(Kt,t),
we let �μ(P) be the expected number of cracks, under the
probabilities contained in P , among all matchings in M(Kt,t),
given that MO = μ. We define Hμ(P) analogously as the
expected number of cracks over all functions in Y X .

For the 4 × 4 matrices Q and F of Figs. 7(b) and 8(b),
respectively, Fig. 9 plots �μ and Hμ, across all possible
4! = 24 matchings μ. For ease of visualization, the 24 match-
ings μ are arranged in each plot in an order that results in
non-decreasing values of �μ. These plots provide an informal
appreciation of the admirable accuracy with which our heuris-
tic approximates the exact metric, despite the fact that each
heuristic value can be computed in just �(t) time, whereas
each exact metric value, as mentioned in Section IV-C, takes
�(t2t ) time, according to the best algorithm currently known.

For low values of the metric �μ, the heuristic Hμ can be
seen in the above plots to be usually overestimating the metric,
while for high values of the metric, the heuristic usually
underestimates the metric. This phenomenon is typical over
all values of t and all t × t probability matrices.

A rather interesting observation is that across all possible
choices of MO , the total amount of overestimates and under-
estimates cancel each other out or, loosely speaking, the areas
under the curves of our heuristic and the exact metric, over
all matchings μ, are identical.

Theorem 5: For any t × t probability matrix P ,
∑

μ∈M(Kt,t )
Hμ(P) = t ! =

∑
μ∈M(Kt,t )

�μ(P).

Proof: The leftmost term, by Theorem 4, is
∑

μ∈M(Kt,t )(∑
s∈S(P) ω(s) · Cμ( f (s))

)
, which by distributive law

becomes
∑

s∈S(P)

(
ω(s) · ∑μ∈M(Kt,t )

Cμ( f (s))
)

.

Proposition 3 simplifies this to t ! ∑s∈S(P) ω(s), which
is further reduced, by Proposition 1(a), to t !. The reduction of
the rightmost term is similar. By definition, it is

∑
μ∈M(Kt,t )(∑

d∈D(P) W(d) · Cμ(m(d))
)

, which can be rearranged
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Fig. 9. For the 4×4 matrices Q and F of Fig. 7(b) and Fig. 8(b), respectively,
the values �μ and Hμ, across all possible 4! = 24 matchings μ.

to
∑

d∈D(P)

(
W(d) · ∑μ∈M(Kt,t )

Cμ(m(d))
)

. Again,

Proposition 3 simplifies this to t ! ∑
d∈D(P) W(d), which

by definition of W is (t !/per(P))
∑

d∈D(P) ω(d). Finally,
Proposition 1(b), reduces this to t !.

The above theorem establishes only that the sum total of
overestimates made by the heuristic, across all matchings
μ, always coincides with the sum total of underestimates.
While that is reassuring, the accuracy of the heuristic depends
entirely on the extent to which the heuristic values, for each μ,
deviate from the corresponding metric values. Such a deviation
is traditionally called error. Much work has been done,
mainly in the area of time-series forecasting, on techniques
for measuring the accuracy of forecasts, such as our heuristic
(see Armstrong [44] for basic principles). Several methods
exist in the literature for such tasks, like the Root Mean
Square Error, Mean Absolute Percentage Error, Geometric
Mean Absolute Relative Error, to name a few, each with its
own strengths and limitations. The choice of a method, for
any particular application, usually depends upon the nature of
the underlying data values. Hyndman and Koehler [45], and
Shcherbakov et al. [46] are some critical surveys on existing
methods.

For our purpose, we chose the Normalized Mean Absolute
Percentage Error (NMAPE), which is already a method of
choice in many other domains, e.g. the wind power forecasting
application of Chen et al. [47]. For a given t × t probability
matrix P , this value is given by:

NMAPE(P) = 1

t ! ×
⎛

⎝
∑

μ∈M(Kt,t )

|Hμ(P) − �μ(P)|
t

⎞

⎠ × 100.

The above employs absolute error values in order to prevent
positive and negative error values from canceling each other
out. As our heuristic as well as the actual metric values always

Fig. 10. NMAPE(P) versus per(P), for 24,000 randomly generated 4 × 4
probability matrices P .

lie between 0 and t , the largest absolute error is t , which is
employed as the normalizing factor to standardize to the scale
of 0 to 1. The summation over all μ and division by t ! result
in averaging these values and, finally, multiplication by 100
expresses this average absolute error on an intuitive percentage
scale. NMAPE(P) thus gives the average-case absolute error
for P as a percentage of the worst-case. Its values close to
0% indicate accurate computation by the heuristic, while those
close to 100% indicate inaccurate computation.

The permanent of a t × t probability matrix P is a real
value in the range [t !/t t , 1] and, it can be easily shown that
in the extreme cases, i.e. when per(P) is either t !/t t or 1,
NMAPE(P) is 0%. To get a better picture of the distribution
of NMAPE(P) values over the uncountably infinite space
of all probability matrices, we randomly generated 24,000
such matrices of size 4 × 4. Fig. 10 plots the NMAPE(P)
versus per(P) values of these random matrices, and shows that
NMAPE(P) is always within 9%, and usually just within 6%,
indicating a fairly high degree of heuristic accuracy. Higher
values of t exhibit a similar degree of accuracy.

Another noteworthy observation from Fig. 10 is that higher
values of NMAPE(P) tend to occur only for relatively lower
values of per(P). These are situations where the values in P
are more uniform, i.e. the underlying attack is weak. Thus,
when our heuristic does err, it errs only on the safer side by
perhaps preventing the data owner from releasing data that is
in fact secure enough for release. Such a conservative nature
makes the heuristic a welcome ally of the data owner.

We end this section with an interesting, far-reaching conse-
quence of Theorem 5.

Corollary 1: A privacy breach in any pseudonymized
dataset is the norm.

Proof: |M(Kt,t)| = t ! and, by Theorem 5, we have that
for any t × t probability matrix P ,

∑
μ∈M(Kt,t )

�μ(P) is also
t !. So the expected value of �μ(P), if μ and P are drawn
randomly from their respective domains, each with uniform
distribution, is t !/t ! = 1, i.e. one crack is the norm.

In other words, even if an attack is picked randomly and not
arrived at by any particularly clever analysis by the attacker,
one privacy breach should be expected. And more breaches
should be expected if the attack is carefully constructed.
Though never perfect, for large values of t , the pseudonymiza-
tion technique may thus be considered acceptable. In any case,
the privacy breaches that occurred in the famous AOL and
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Netflix cases mentioned in Section I, leading to lawsuits and
even resignation, were in fact not surprising.

VI. COMPARISON WITH OTHER PRIVACY TECHNIQUES

In this section, we briefly compare pseudonymization with
other well-known privacy techniques, and elucidate the scope
of our metrics and heuristic.

A. Differential Privacy

One of the most prominent privacy models studied in
recent years is that of differential privacy, proposed initially
by Dwork [48]. On some underlying database, let K be a
statistical query answering mechanism that, in the interest of
preserving privacy of individuals in the database, produces
query answers after adding some randomly-generated noise
to exact answers. The mechanism K is called ε-differentially
private if for any database instances D and D′ that differ on
at most one record,

Pr[K(D) ∈ S] ≤ exp(ε) · Pr[K(D′) ∈ S],
where S is any set of possible output values of K. This
property of the mechanism aims to guarantee each individual
that answers produced for the query will be almost identical,
whether or not that individual participates in the database, such
as in an anonymous survey.

Although surface similarities exist between our work and
differential privacy, in that both deal with privacy and proba-
bilities, there are fundamental differences between their under-
lying scenarios. In pseudonymization, the goal is to release the
sanitized data, regardless of the kinds of analyses performed
or queries executed on that data later. Privacy provided by the
sanitized data is then measured on an attack-by-attack basis.
Differential privacy providing methods can be classified into
one of two broad categories: interactive and non-interactive
(see Dankar and El Emam [49], and Dwork et al. [50]).
In interactive methods, no version of the data is ever released.
Rather, the query needs to be known in advance, and the
extent to which the query is sensitive is measured and used to
configure the mechanism’s noise level, in order to adequately
meet the requirements of the privacy parameter ε. The privacy
level here is associated with the computational mechanism
and, once an appropriate mechanism is created, all that is
released thereon are sanitized statistical answers produced by
it for just that query. In non-interactive methods, although a
differentially private sanitized or synthetic data is released, the
utility of such data is of an acceptable level for only a small
predefined set of queries, with low sensitivities. Releasing data
that is of utility for random queries is still a challenge, as is
the efficiency of the query answering mechanism.

The parameter ε as well as the underlying probability
distribution according to which K randomly chooses its noise
are allowed to be public knowledge, yet such a mechanism
is immune to background knowledge attacks. The differential
privacy model is thus viewed by some as perhaps the only
acceptable definition of privacy. As an example, Narayanan
and Shmatikov [51] argue, in one fell swoop, that none of

the “release-and-forget” approaches, of which pseudonymiza-
tion is one, is capable of providing the privacy level that,
at least in principle, interactive differential privacy makes
possible. They do, however, immediately acknowledge the
impracticality of exclusive usage of interactive differential
privacy, due to its prohibitive costs of designing programming
interface for queries, budgeting for server resources, etc.
Another school of thought, such as Clifton and Tassa [52] and
Mohammed et al. [53], makes a strong case that techniques
for sanitizing data in some way, prior to its release, are here
to stay. The debate on whether to release the entire sanitized
data or just sanitized answers to statistical queries is currently
ongoing.

This paper does not attempt to take any sides in this debate.
As already mentioned in Section I, we are not advocating
pseudonymization over any of the other privacy-enhancing
techniques. Our work stems from the observation that it
is already a widely adopted practice, even legally declared
adequate by some privacy laws, yet an accurate way to
measure the amount of anonymity it actually provides, is still
an unsolved, though already identified, research problem. This
paper plugs that research gap.

B. Data Sanitizing Techniques

Several privacy-protection techniques already exist, such
as k-anonymity, l-diversity, and t-closeness, each of which
attempts to obfuscate, in its own way, the true association
between actual data items and released ones. They typically
sanitize data based on similarity or diversity of data items, and
are thus data-dependent, release-and-forget approaches that do
not take into account any background knowledge available to
an adversary. Although their underlying privacy parameters,
like k, l, and t , are sometimes called “metrics” in the literature,
these metrics are simply a measure of the extent to which
individuals are guaranteed to be hidden among others in the
sanitized data. This guarantee, often achieved by employing
anonymity operations like generalization and suppression, is
invariably provided at the expense of some utility of the
sanitized data.

Pseudonymization, albeit much simpler, is another such
release-and-forget technique that does not take the adversary’s
background knowledge into account. However, by not incor-
porating any operations like generalization or suppression, it
does not suffer from loss of data utility.

C. Scope of Our Metrics

The metrics and heuristic we present in this paper
are for measuring the amount of anonymity that remains
after an attack has been carried out on data sanitized
by the pseudonymization technique. In particular, we con-
sider background knowledge attacks that result in some
doubly-stochastic probability matrix. Although we develop
our metrics and heuristic in the setting of data privacy,
pseudonymization-like techniques and probabilistic attacks
are also well-recognized in several other domains, such as
location privacy [12], [29], trajectory privacy [30], [31], and
anonymous communications [15]. Our results are applicable to
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these domains as well. While the attacks in each such domain
employ domain-specific background knowledge, they lead to,
in all cases, a doubly-stochastic probability matrix. As our
work starts from that point, it is independent of the actual
domain-specific underlying attack method.

As an example of an immediate application, Corollary 1
at the end of Section V-B reveals that a privacy breach in
any pseudonymized dataset is the norm. This shows that the
widely publicized privacy breaches that led to the resignation
of AOL’s Chief Technology Officer and a lawsuit on Netflix,
as mentioned in Section I, would have been expected had our
results been publicly known at that time.

VII. CONCLUSIONS

There is growing demand in modern organizations to release
their data to external parties, for tasks such as mining useful
information from it or complying with governmental data
release regulations, while preserving the privacy of individuals
or other entities contained in the data. Several techniques
for sanitizing such data prior to its release exist, each with
its own strengths and weaknesses. In this paper, we study
the technique of pseudonymization, which is based upon
substituting potentially identifying attribute values in the data,
like social security numbers, by fictitious pseudonyms. Specifi-
cally, we develop a method for measuring the extent to which
the supposedly secret associations, i.e. the perfect matching
employed by the data owner, between the actual attribute
values and their pseudonyms are still hidden in the aftermath
of a probabilistic attack. Our method assists the data owner to
decide whether or not the sanitization level of the data is safe
enough for a release.

Two methods for a similar task already exist in the literature.
However, both of these methods are limited to measuring
anonymity only after infeasibility attacks, which is a finite
subclass of the uncountably infinite class of probabilistic
attacks. Lakshmanan et al. [21] did identify a need for a
method for probabilistic attacks, but left that for future work.

The main contribution of our paper is a method to measure
anonymity in the wake of any probabilistic attack. Thus, the
scope of our work is much wider than of those mentioned
above, and subsumes the scope of these earlier works. We
develop two different metrics for our purpose. Our first metric,
�, is a rough metric that first appeared in a preliminary work
[23] in the setting of anonymous communications. The second
metric, � , is better, as it is more accurate. Both metrics are
hard to compute, likely not even in polynomial-time of the size
of the dataset. We therefore also develop an efficient heuristic,
H, that can be computed in just linear-time, and show that it
produces fairly close approximations to � .

Pseudonymization-like techniques and probabilistic attacks
are not limited to datasets, but occur in several other domains,
such as location privacy [12], [29], trajectory privacy [30],
[31], and anonymous communications [15]. Our results are
applicable to these domains as well.

Our method measures the effectiveness of pseudonymization
in thwarting an attacker’s attempt at pinpointing the unique
matching MO employed by the data owner. It has already

been observed, as in Gierlichs et al. [54], Bagai et al. [55], and
Lakshmanan et al. [21], that sometimes the attacker has a more
modest goal, especially when the same confidential informa-
tion is shared by multiple objects. As an example, suppose the
attacker has determined that patient names Jessica and Steven
in X have been mapped by the data owner, in some order,
to the pseudonyms a and b in Y , and the data already shows
that both a and b suffer from the acquired immunodeficiency
syndrome (AIDS). Then, although the attacker is still unsure of
which individual, Jessica or Steven, has been pseudonymized
as a or b, he has determined with full certainty that they both
have AIDS. Lakshmanan et al. [21] address this by developing
a method for determining anonymity of itemsets, i.e. subsets
of X . Again, their method is limited to infeasibility attacks,
and we leave development of a method for probabilistic attacks
that takes itemsets into account as future work.

Finally, several variants of the one-to-one pseudonymization
technique studied here have already been identified, and some
even employed. Some examples are mentioned in Pfitzmann
and Hansen [8], such as group and transferable pseudonyms.
A group pseudonym in Y can be assigned by the data
owner to several items in X , inducing its own anonymity set.
A transferable pseudonym in Y is not always associated by the
data owner to the same item in X , especially across multiple
releases of the same dataset, thereby affecting anonymity.
Combinations of such variants are possible too. A study of
the anonymity levels provided by such variants is a natural
extension of our work.
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