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Abstract—We propose “Seer Grid”, a novel two-level energy consumption prediction framework for smart grids, aimed to decrease the
trade-off between privacy requirements (of the customer) and data utility requirements (of the energy company (EC)). The first-level
prediction at the household level is performed by each smart meter (SM), and the predicted energy consumption pattern (instead of the
actual energy usage data) is reported to a cluster head (CH). Then, a second-level prediction at the neighborhood level is done by the
CH which predicts the energy spikes in the neighborhood or cluster and shares it with the EC. Our two-level prediction mechanism is
designed such that it preserves the correlation between the predicted and actual energy consumption patterns at the cluster level and
removes this correlation in the predicted data communicated by each SM to the CH. This maintains the usefulness of the cluster-level
energy consumption data communicated to the EC, while preserving the privacy of the household-level energy consumption data
against the CH (and thus the EC). Our evaluation results show that Seer Grid is successful in hiding private consumption patterns at
the household-level while still being able to accurately predict energy consumption at the neighborhood-level.

Index Terms—Smart grid, smart meter, load prediction, privacy, data utility.
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1 INTRODUCTION

A S part of the future smart electricity grid initiative, a
smart grid communication network (SGN) is a large-

scale integration of information and communication tech-
nologies within the electricity generation, transmission, and
distribution systems of the traditional electricity grid. A
combination of various smart technologies at different levels
of the SGN promotes efficiency, reliability and stability in
operations of the smart grid. One indispensable piece of
technology in a SGN is a smart meter (SM) which collects
and periodically reports the energy usage or consumption
information of the customers to the electric (a.k.a. utility)
company (EC), which in turn facilitates highly efficient
energy generation and distribution and helps the EC to
cope with changes in energy demand and supply. The
monetary and natural resource savings due to the improved
efficiency is a major factor in the fast growing adoption
of SMs, with predictions that about 800 million SMs will
be in use globally by 2020 [1]. Despite their tremendous
importance in a SGN, SMs can also be easily exploited by
malicious adversaries (including the EC) who may attempt
to infer private customer information from reported energy
consumption patterns, such as occupancy of the house [2],
specific appliances being used [3], and even daily routine of
the residents [4] [5].

Various techniques for overcoming privacy issues due
to the energy usage information generated and shared by
SMs have been proposed in the research literature, and
these solutions have primarily followed one of the following
two approaches: (i) completely obscure the individual SM
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data from the perceived adversary, or (ii) hide privacy-
sensitive signatures or patterns from the individual SM
data by perturbation or down-sampling. In the first direc-
tion, protocols that take advantage of the homomorphic
properties of public-key cryptographic algorithms to per-
form neighborhood-level aggregation of SM data have been
proposed in the literature [6] [7]. These protocols enable
the EC to learn the actual aggregated energy consumption
information (at a neighborhood level) without leaking in-
dividual customer-specific information to the aggregator. In
the second direction, many approaches have been proposed
to efficiently perturb energy consumption data in order
to meet certain privacy requirements. In-residence storage
batteries have been employed to flatten or mask variances
in the load or electricity usage information [8] [9]. Similarly,
controlled perturbation [10] [11] [12] and down-sampling
[13] [14] of the energy consumption data to mask specific
load signatures of appliances have also been attempted.

However, as pointed out by [12] and [13], the degree
of correlation between the actual energy consumption and
the data output by a privacy-preserving technique typically
characterizes a trade-off between privacy and utility (or
usefulness). Higher correlation with the actual ground-truth
makes the perturbed data more useful but reveals private
information, whereas lower correlation (or increased per-
turbation) is good for privacy but reduces data usefulness
or utility. As protocols following the first approach do not
really perturb the electricity consumption data, the utility of
the data (or any function computed from the data) is high.
Also, as this data is cryptographically obscured from the
aggregator, there is no leakage of private customer infor-
mation. However, protocols using public-key cryptography
are non-trivial to implement in practice and have very high
computation and communication overhead [15]. Perturba-
tion mechanisms, such as the ones using storage batteries
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[8] [9], are effective in masking private usage patterns, but
installing and maintaining large capacity batteries in every
household is shown to be economically non-viable [16].
Similarly, Dong et al. [13] show that performance of smart
grid operations can degrade due to reduction in sampling
frequency. Other perturbation mechanisms, such as [12],
that attempt to strike a good balance between privacy and
data-utility by masking or suppressing specific appliance
signatures assume that individual appliance electricity con-
sumption information is readily available (or can be easily
separated from the overall data) which may not always
be feasible. Given the above state-of-the-art, we feel that
both data hiding and data perturbation approaches have
inherent limitations, which motivates us to explore alternate
paradigms (beyond hiding and perturbation).

Our goal in this work is to explore alternate practical de-
signs for privacy-sensitive generation and sharing of energy
consumption information from the SMs to the EC which
enables effective operation of the EC in terms of accurately
predicting future demand and electricity generation and dis-
tribution. In order to achieve this goal, we move away from
the classical perturbation/data-hiding techniques and use
learning-based prediction mechanisms to generate (or pre-
dict) energy consumption patterns shared by SMs. Our pre-
diction mechanism will replace variances in the individual
household-level actual energy consumption patterns (which
is typically indicative of loads) with relatively smoother
patterns that are free of load signatures but accurate enough
to be useful in predicting energy consumption at the neigh-
borhood level (which is the one that is actually used by the
EC). Due to this, privacy-sensitive inference attacks will be
much harder on the household-level data shared by the SM
without significantly impacting the demand-response and
electricity generation/distribution calculations at the EC.

With Seer Grid1, we propose a household-level predic-
tion scheme comprising of a statistical learning algorithm
(trained using past consumption pattern of the household)
which predicts an entire day’s electricity consumption pat-
tern one day in advance. This prediction can be performed
locally on the SM, on a local energy management unit or on
a computing device that connects to such a unit. The house-
hold electricity consumption pattern predicted locally at the
SM, with the load or appliance signatures masked or flat-
tened, is then reported to an aggregator or data concentrator
(referred here as a cluster head or CH) at the beginning of
each day. All SMs within a neighborhood or cluster report
their energy consumption predictions to their respective
CH who in turn forwards an aggregated prediction (as
described below) to the EC. As our localized prediction
flattens or eliminates sharp variations (which may indicate
load signatures) in the predicted consumption at the SM
or household level, this difference can add up significantly
while aggregating predictions for multiple households in
a neighborhood or a cluster. This can reduce the accuracy
of the aggregated prediction, thereby adversely impacting
its utility or usefulness to the EC. In order to restore this
utility lost due to prediction at the SM level, we introduce

1. According to Oxford Dictionary, seer is “a person who is supposed
to be able, through supernatural insight, to see what the future holds.”
Through two-level energy prediction we enable insight into future
demands, while simultaneously promoting consumer privacy.

a second level of energy load prediction at the CH for
compensating the difference in the aggregate of predicted
and actual energy usage of individual SMs in the cluster.
CH performs the spike prediction based on past energy
consumption pattern of the entire neighborhood or cluster,
and then reports the result of the second level prediction, in
addition to summation of first level predictions, to EC just
before beginning of each day. EC can then use this cluster
or neighborhood-wide load prediction to efficiently control
electricity generation and distribution. To ensure fail-proof
operation of the SGN in case of major prediction errors, we
also incorporate real-time and privacy-preserving reporting
of the aggregated variance between actual and predicted
energy consumption of all SMs in the cluster.

Seer Grid’s two-level prediction mechanism offers sev-
eral advantages over traditional privacy-preserving energy
data reporting schemes in the literature. Unlike data hiding
schemes that require several encryption operations at the
SM or household level per day (once every reporting inter-
val), our prediction and reporting operation is performed
just once per day. Moreover, Seer Grid is communication-
efficient (as no additional data or overhead needs to be com-
municated), does not require any specialized hardware (e.g.,
storage batteries) and does not need access to appliance-
level consumption patterns. In rest of the paper, we first
describe the generic SGN architecture and capabilities of
the assumed adversary in Section 3. In Section 4, we discuss
the details of the proposed Seer Grid architecture and it’s
operation. In Section 5, we evaluate the Seer Grid archi-
tecture by performing extensive experimental simulations
using real smart meter data. We empirically measure the cor-
relation between predicted and actual consumption patterns
at each level, using standardized metrics, to support our
proposition of a practical SGN architecture which improves
both privacy and utility of SM data. Comparative evaluation
shows that Seer Grid’s two-level prediction provides better
privacy and utility, compared to just SM level perturbation
techniques.

2 RELATED WORK

Multiple schemes have been proposed for short term [17]
[18] [19] and long term [20] load prediction at cluster level.
Sevlian and Rajagopal [21] proposed short term electric-
ity load forecasting on varying levels of aggregation, and
concluded that aggregating more customers improves the
relative forecasting performance only up to a specific point.
Recently, smart meter based short-term load forecasting
was proposed [22] [23], as a household’s historic energy
consumption pattern is a better predictor of peak load than
any other observable variables. In contrast, Seer Grid uses
two level of prediction to retain the privacy benefits of
aggregation, and utility benefits of individual household
prediction.

There have also been extensive research efforts that
attempt to address privacy issues related to SM data re-
lease. Li et al. [6] proposed using Paillier cryptosystem’s
homomorphic property for distributed energy consumption
data aggregation from SMs, where the EC is able to know
only the aggregated data upon decryption of the aggregated
cipher. Garcia and Jacob [7] proposed the combination of
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additive secret sharing algorithms and cryptosystems with
homomorphic property, in order to compute the aggregated
energy consumption of a given set of users (for example,
in a cluster) in a privacy preserving fashion. However,
cryptosystems with homomorphic properties induce a large
computational overhead on the SMs, and real-time report-
ing in short time interval is impractical [15]. Alternatively,
McLaughlin et al. [9] proposed a non-intrusive load leveling
model by using large capacity batteries. Large capacity
batteries smoothen the energy consumption pattern and
effectively help in hiding load signatures contained in actual
consumption pattern. However, large batteries are econom-
ically inconvenient [16] due to their high capital cost and
low energy-efficiency.

Privacy through anonymization tries to unlink the
energy usage data from individual SMs [24]. However,
anonymization may turn out to be ineffective, as Jawurek et
al. [25] and Faisal et al. [26] demonstrated the feasibility of
using household anomaly detection and behavior pattern to
de-anonymize SM data. With limited computational capa-
bilities and practicality in mind, researchers suggested the
use of perturbation techniques for hiding load signatures.
Consumer privacy can be preserved by deliberately intro-
ducing error into the energy usage data [10] [11] [27] [28],
and such perturbation techniques often try to achieve dif-
ferential privacy in order to reduce the privacy-utility trade-
off [12]. However, the privacy-utility trade-off of SM data
perturbation techniques can still be significant [29], which
may not be admissible to ECs. In this paper, the proposed
Seer Grid architecture aims to decrease the privacy-utility
trade-off by using a two-level prediction scheme.

3 THE TRADITIONAL SGN ARCHITECTURE

We base our work on one of the most popular SGN ar-
chitecture consisting of a three-level hierarchical network
(Figure 1). At the lower level are the SMs, physically located
in households of end-users or customers. At the middle
level, each neighborhood has a CH, and SMs report energy
consumptions to CH. Situated at the higher level is the EC,
to which all CHs report aggregated load of their respective
neighborhood. The load reporting from all CHs aids EC in
optimizing generation and distribution of electricity. In real-
life implementation, CH may be owned and operated by a
third party or by the EC itself.

We assume a passive adversary who may try to infer
personal information of customers based on accessible en-
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Fig. 1. Traditional SGN architecture on the left, and our proposed SGN
architecture (details in Section 4) on the right.

ergy consumption data. Motivations can vary widely, such
as financial gain from advertising agencies, health insurance
companies trying to find unhealthy lifestyle of insurees,
etc. If given access to actual energy consumption data,
the adversary is computationally capable of carrying out
inference attacks by analyzing the data. We also assume
that the adversary can access energy consumption data
reported to the CH and/or to the EC. However, CH and EC
must be honest and cooperative for the protocol to function
properly. Thus, CH and EC can be considered as honest
but curious adversaries. We also consider any eavesdropper
(eavesdropping communication between SM and CH, or CH
and EC) as an adversary. All SMs are assumed to honestly
and correctly follow the proposed protocol. As a result, we
do not consider collusion attacks between SMs and CH, or
between SMs and EC.

4 SEER GRID

The primary distinction between the traditional SGN and
Seer Grid is that, in Seer Grid SMs never report their
actual energy consumption data; they report predicted en-
ergy consumption pattern instead. Similar to the traditional
SGN architecture, Seer Grid also consists of a three level
hierarchical network (Figure 1). At the lower level are the
SMs, physically located in households. At the middle level,
each neighborhood has a CH, and SMs report next day’s
predicted energy consumption patterns to CH. A second
level prediction is performed by CH on the aggregated
predicted patterns reported by all SMs belonging to the
cluster. At the higher level is the EC, to which all CHs
report the second level predicted energy forecast for their
respective neighborhood. The predicted forecast from all
CHs aids EC in optimizing generation and distribution of
electricity. We assume that the CH is capable of measuring
the actual electricity usage of the whole cluster for a given
time interval2, which is used to the form statistics used in
the cluster level prediction. This is a reasonable assumption
because all cluster level energy forecasting schemes [17] [18]
[19] [20] rely on readings from a cluster level electricity
meter. We also consider billing once as a month event, which
can be done independently.

We carefully analyzed various statistical learning algo-
rithms for predicting energy consumption patterns, in order
to identify the algorithm apposite for preserving only the
desired characteristics of the consumption pattern data. We
first detail the constituents and properties of the consump-
tion pattern data, followed by a discussion on how we
select prediction algorithms for SM and CH. Readers should
note that we use the following prediction algorithms as an
example, in order to demonstrate the benefits of Seer Grid.
Other suitable prediction algorithms can be used as well.

4.1 Prediction at SM Level

In a traditional SGN, SMs report energy usage data in
short time intervals, where each report conveys the energy

2. CH is assumed to be equipped with a cluster level meter which
measures energy being withdrawn by the entire cluster. When CH
measures the electricity usage of the entire cluster, it does not violate
privacy of individual household because of aggregation.
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Fig. 2. Interaction between a(τi) and OTτi is 2-way. Interaction between
a(τi) and DTWτi is also 2-way. And there exists a 3-way interaction
between a(τi), OTτi and DTWτi . The prediction model must learn
these interactions in order to make effective predictions.

Fig. 3. The abstract structure of the MLP used of learning and prediction.
a
(τi)
W−1, a(τi)W−2 and a(τi)W−3 is the power usage in the τith interval from last

3 weeks; DTWτi represents day and time of the week,; and OT (τi)
W−1,

OT
(τi)
W−2 and OT

(τi)
W−3 are the outdoor temperatures (in Fahrenheit) in

the τith interval from last 3 weeks.

consumed since the last reporting. Let us denote the actual
daily SM energy consumption pattern of a household hk
as Ahk = {a(τ1), a(τ2), · · · , a(τn)}, where a(τi) is the energy
consumed since a(τi−1). In Seer Grid, the goal of using a
prediction model at the SM is to predict a pattern Φhkdayj =

{p(τ1), p(τ2), · · · , p(τn)}, such that there is a high overlap
between Φhkdayj and Ahkdayj , but Φhkdayj is free of specific load
signatures (such as spikes and plateaus). Predictive model-
ing leverages statistics to predict outcomes, i.e., the forecast
of a day’s consumption pattern is based on collection of past
Ahk (let’s say for m days). After analyzing various factors
that affect consumers’ energy usage, we identified the input
variables critical to the outcome of the prediction model
as [i] power usage history in each time interval (a(τi)), [ii]
outdoor temperature 3 in each interval (OTτi ), and [iii] day
and time of the week (DTWτi ). Each day of the week is
considered differently so as to improve prediction based on
weekly routines [30]. All interactions present between these
three variables is represented in Figure 2.

Classical time series forecasting techniques [31] use a
statistical model for predicting future values based on pre-
viously observed values. However, such basic time series
forecasting does not capture the complex interactions be-
tween different input variables, thus resulting in inferior

3. Many older SMs are not equipped with temperature sensors. In
such cases, appropriate outdoor temperature values can be provided
by the CH or EC.
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Fig. 4. Proposed SM data flow.

forecasting. Due to the highly complex interactions and
some dependencies between input variables, multi-class
classification and regression analysis will also result in non-
optimal prediction. To achieve better prediction results, we
employ structured prediction using supervised machine
learning techniques. Among candidate machine learning
techniques for structured prediction, we decided to use
multi-layered perceptron (MLP) because it is specifically
designed to discover the complex interactions among input
variables. MLP is a feed-forward artificial neural network
(ANN) model that uses a nonlinear activation function to
map sets of input data onto a set of appropriate outputs.
MLPs consisting of three or more layers (input, output, and
one or more hidden layers) is called a deep neural network,
where each node in one layer connects with a certain weight
wpq to every node in the following layer. The error in output
of a node q in the nth training data point is represented as
eq(n) = dq(n) − yq(n), where d is the target value and y is
the value produced by the perceptron. The calculated error
for each training data point is used to make corrections to
the weights of the node as E(n) = 1

2

∑
q e

2
q(n), which in

turn minimizes the error in the entire output of the ANN.
Change in each weight during an epoch is calculated as
∆wqp(n) = −η ∂E(n)∂vq(n)

yp(n), where yp is the output of the
previous neuron and η is the learning rate.

In the learning phase of our MLP execution, for each
epoch we input power usage history of past three weeks
recorded in 5 minute intervals. Outdoor temperature for the
corresponding interval and day of the week is also fed in
each epoch (Figure 3). The output of the ANN is a structured
object (Y ) containing multiple possible Φhkdayj for next day.
Given that the next day’s temperature forecast and day of
the week is known, the structure object is parsed for the
matching Φhkdayj . More details about the MLP specifications
used in our simulation experiments can be found in Sec-
tion 5. Additionally, Connor et al. [32] demonstrated that
neural networks trained on filtered data can perform better
predictions than neural networks trained on unfiltered time
series. Therefore, we use a low-pass filter over SM training
data which shaves any load pattern for energy consumption
above 4kW. The value 4kW was empirically determined
based on the observation that in our training data, more
than 94% of data samples are lower than 4kW.

A distributed model of SMs is used in our proposed
SGN model, where the first level prediction is performed
independently on all SMs belonging to the SGN. The pre-
diction algorithm running inside the SM of a household
hk locally stores a small database (Figure 4), containing
actual consumption patterns Ahk and outdoor temperature
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measurements OTi from last m days. Each day, the Ahk
and OTi values are used to train the MLP and predict the
Φhkdayj for next (j-th) day. Also, at the end of a day, that
day’s actual consumption pattern Ahkdayj−1

is inserted into
the queue of the database and the oldest actual consumption
pattern Ahkdayj−m+1

is removed. As mentioned before, Φhkdayj
is computed and reported only once (before beginning of)
each day. All communications between SM and CH for
reporting Φhkdayj are assumed to be symmetrically encrypted,
for example, by using AES [33].

4.2 Prediction at CH Level

The purpose of using prediction at SM is to remove specific
load signatures (such as spikes and plateaus) from Ahkdayj .
Although the missing spikes and plateaus from the SM of
one household represent a minuscule amount of energy for
the grid, spikes and plateaus from multiple households in
a cluster can add up to a significant amount of unpredicted
energy. This accumulated error in prediction can affect pro-
cesses that would use the predicted data, for example, intel-
ligent electricity distribution, demand-response, etc. There-
fore, we introduce another level of statistical prediction at
the CH based on historical load profile of the cluster, while
also factoring in individual predictions from all SMs in the
cluster {Φh1

dayj
,Φh2

dayj
,Φh3

dayj
, ...}.

As mentioned earlier, the CH is assumed to have load
measurement capability to measure total energy consump-
tion in it’s neighborhood. The meter measures the energy
injected into the entire cluster, without having access to
actual individual SM readings at any point. As a result, CH
can easily calculate the difference between the aggregated
predicted values which are gathered from SMs and the mea-
sure of actual total energy consumption in the cluster. The
proposed algorithm (Algorithm 1) uses average of differ-
ence between past load predictions and actual loads of the
entire cluster (Λdayd = {λ(τ1), λ(τ2), · · · , λ(τn)}), in order
to complement missing loads. The output of the algorithm
Ψdayj = {ψ(τ1), ψ(τ2), · · · , ψ(τn)} is the prediction for the
whole cluster reported to CH, where ψ(τi) = δ(τi)+

∑
k p

(τi)

and δ(τi) =
∑d=j−1
d=j−m{λ

(τi)

dayd
−
∑
k p

(τi)

dayd
}

m .

Algorithm 1 Prediction algorithm executed by CH.
Prediction Function (for day j)

Define new Ψdayj = {ψ(τ1), ψ(τ2), · · · , ψ(τ288)}

for k = 1 to K (K households in the cluster) do∑
p
(τi)
dayj

end for

for i = 1 to 288 (5 minutes time intervals for 24 hours) do
for d = 1 to m (m days to historical data) do
δ(τi) = λ

(τi)
dayd
−

∑
k p

(τi)
dayd

end for
δ(τi) = δ(τi)

m

ψ(τi) = δ(τi) +
∑
k p

(τi)

end for

Report Ψdayj to CH
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Fig. 5. Proposed CH data flow.

For the second level prediction, the CH accumulates all
Φhkdayj in the cluster, adds the calculated δ(τi) to

∑
k p

(τ)

for each time interval (τ), and reports the resulted pattern
Ψdayj to the EC. CH also stores a database of past Λ and∑
k p

(τ) values from last m days, which is updated at the
end of each day (Figure 5).

4.3 Privacy Preserving Real-time Monitoring

The predicted pattern Ψdayj is a refined estimate of next
day’s energy consumption at the cluster level, as compared
to individual SM predictions Φhkdayj . However, there may
occur unexpected events which are not captured by the
input variables of our prediction system, for example severe
weather conditions, natural disasters, etc. To ensure proper
functioning of SGN in case of an unexpected power de-
mand, we incorporate a real-time reporting system in our ar-
chitecture to measure the difference in actual and predicted
energy consumption of all households. But, directly report-
ing difference in actual and predicted energy consumption
pattern to CH defeats our goal of privacy, because CH can
add back the difference to predicted pattern to obtain the
actual pattern of individual SMs. So, the real-time reporting
system uses a “token chain” mechanism to aggregate the
difference in actual and predicted energy consumption pat-
tern for all SMs in the cluster. The token chain design design
can be based on existing energy-efficient token passing
mechanisms designed for ad-hoc wireless sensors networks
[34] [35] and smart grid networks [36]. In the logical chain
of all SMs belonging to a cluster, a token is circulated across
all SMs (as shown in Figure 1) for aggregation of difference
in actual and predicted energy consumption of the cluster.
The difference in aggregated actual and predicted energy
consumption θ(τ) =

∑
k(p(τ) − a(τ)) in each time interval

τ , can be used to handle unexpected demand events in
real-time. Due to aggregation of the difference in actual
and predicted energy consumption, individual household
privacy is not compromised. Figure 4 illustrates how each
SM adds their difference in actual and predicted energy
consumption to the token. The final token value containing
the aggregated difference in actual and predicted energy
consumption of the cluster is reported to EC (via CH) for
regulating generation and distribution, if necessary. To pro-
tect the token chain against eavesdropping inference attacks,
all SMs symmetrically encrypt (and decrypt for addition)
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Fig. 6. Comparison of Dp and Dq over a test day. The lower values of Dp
means P is relatively “smoother”.

the token using a shared secret, obtained by using a key
exchange protocol, such the Diffie-Hellman protocol [37].

5 EVALUATION

In order to validate the benefits of our proposed Seer Grid
architecture, we conduct extensive experimental simulations
using real smart meter data. In this section we present our
experimental setup followed by results.

5.1 Experimental Setup
We use real SM data collected from residences equipped
with BS EN62053 − 21002003 smart meters. The data
was recorded in East Midlands, UK in the year 2008 [38].
The fabricated cluster we consider for evaluation consists
of 5 households, each having one smart meter. Envision-
ing the limited memory that SMs may have, we limit the
use of historical data in our experiments to three weeks,
i.e, m = 21. Longer training period not only takes more
storage space, but also makes less significant contribution
in the prediction because of changing conditions (such as
temperature) throughout the year. The ANN prediction
algorithm is trained with data from past 21 days to predict
the energy consumption for a test day. Every day, the
last day’s energy consumption information is added to the
training set, and the oldest (22nd) day’s energy consumption

TABLE 1
Neural network training parameters.

Parameter Value

Number of SMs in cluster (assumed
neighborhood)

5

Training period 3 weeks (21 days)
Testing period 3 day
Number of predicted data points a day 288
Number of ANN Inputs 9
ANN Proto 50
Number of ANN hidden layers 3
Number of nodes in each hidden layer 10
Number of ANN output 1
ANN Learn Rule Ext DBD
ANN transfer mode Sigmoid
Epoch 288*21=6048
Number of iterations 106

information is removed from the training set. This helps
account for changing seasons, and at the same time, limits
memory requirements. The training data itself consists of
eight variables: interval number and target date as indexing
variable, 3 power usage measurements in the interval from
last three weeks, and 3 outdoor temperature measurements
in the interval from last three weeks. More specific details
of the parameters that we use to train our ANN prediction
mechanism can be found in Table 1.

5.2 Privacy Implications
To evaluate the privacy implications of Seer Grid, we
conduct two different experiments at the SM level. Both
the experiments are designed to observe and compare the
amount of information that can be inferred from Seer Grid’s
predicted energy consumption time series data, versus
time series data of actual energy consumption. We define
P = {p1, p2, . . . , pn} as the Seer Grid’s predicted energy con-
sumption time series and Q = {q1, q2, . . . , qn} as the actual
energy consumption time series, where pt, qt : 1 6 t 6 n are
the energy consumptions for each time interval. We also cal-
culate difference between successive power measurements
in P and Q, symbolized as Dp = {dp(1), . . . , dp(n)} and
Dq = {dq(1), . . . , dq(n)}, where dp(i) = pi − pi−1 and
dq(j) = qj − qj−1. Dp indicates the changes in energy con-
sumption load, which is important to understand privacy
leaked through load signatures. We plot Dp and Dq in Figure
6 to visualize if much Seer Grid indeed suppresses load
differences. It can be observed that Seer Grid has consis-
tently less changes in energy consumption load throughout
the test day, indicating consistent privacy protection. This
motivates us to further analyze Dp with respect to Dq,
and compare privacy leakage of Seer Grid with another
well-known protection mechanism in the following two
experiments.

Relative Entropy: In our first experiment, we try to
quantitatively compare Dp and Dq over four seasons (each

(a) Winter (b) Spring

Relative Entropy Between Dp and Dq (Average of three Test Days)
Relative Entropy Between Dg and Dq (Average of three Test Days)

(d) Summer (e) Fall

Fig. 7. Relative entropy between Dp and Dq compared with relative en-
tropy between Dg and Dq, where Dg is the series of differences between
successive power measurements in GRN induced energy consumption
data.
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with 21 training and 3 test days): winter (January 1 to 24),
spring (April 1 to 24), summer (July 1 to 24), and fall (Octo-
ber 1 to 24). Let A and B be the probability distributions of
Dp and Dq, respectively. We use the well-established relative
entropy metric (Equation 1) as a non-symmetric measure of
difference between the two probability distributions A and
B. Due to the premetric property of relative entropy, the
larger the relative entropy D(A‖B), the higher the level of
protection offered.

In order to understand the level of privacy protection
offered by Seer Grid, we compare it’s relative entropy with
a widely accepted perturbation technique - introduction of
Gaussian random noise (GRN) [12]. Introduction of GRN
adds or subtracts random values in each reported energy
consumption interval, in order to mislead an adversary.
However, completely random noise will reduce data utility
adversely. Therefore, we use past energy consumption data
features to set a level of noise which balances between
privacy and utility, as proposed by [12]. Figure 7 shows the
relative entropy values for Seer Grid and GRN, for the five
smart meters under evaluation. From the results, we observe
that the relative entropy of Seer Grid is generally higher
compared to relative entropy of GRN, which indicates that
Seer Grid may offer better privacy protection.

D(A‖B) =
∑
i

A(i) log
A(i)

B(i)
(1)

Clustering: As a second metric to evaluate privacy of
Seer Grid, we apply a clustering technique to recover activ-
ity information of consumers. Clustering creates groups of
similar levels of energy consuming intervals. More number
of the clusters can leak more granular information (spikes,
switching on/off, and consumption pattern) in each house-
hold. In other words, higher number of clusters inferred
by an adversary reveals more private information about
appliances and activity within the household. We use the
Self Organizing Map (SOM) algorithm [39] to create clusters
on successive energy difference time series. The interesting
aspect of SOM is that it learns to cluster data without
supervision. In our application, SOM groups input values
into n clusters such that the difference between power
consumption values across clusters is minimized. We use

Fig. 8. Number of clusters in Dq, Dp, and Dg, and percentage of distance
in each cluster.

the Viscovery tool [40] to apply SOM and calculate the opti-
mum number of clusters for successive energy differences in
actual, Seer Grid predicted and GRN perturbed time series
(Figure 8). As defined before, Dq, Dp, and Dg denote the
successive differences in actual, Seer Grid and GRN energy
time series, respectively. Figure 9 visualizes the clustering
done by the SOM algorithm on the three series, for each of
the five SMs. Each sub-figure in Figure 9 is clustered into
specific distances between the cluster members, where the
distance is varied from zero to the maximum in the time
series. As evident from Figure 8 and 9, Seer Grid generally
has the lowest number of clusters, and thus, reveals least
information compared to actual and GRN induced energy
time series. Figure 8 also illustrates clusters and distribution
of cluster population within each cluster. Because Seer Grid
prediction results in a “smoother” pattern, we observe a
high population in the low distance clusters.

Comparison with SARMA [23]: Singh et al. proposed
the use of Seasonal Auto Regressive Moving Average
(SARMA) for household load prediction. We compare our
household level prediction with SARMA by recreating their
experiments for our earlier defined test days across four
seasons. Figure 10 shows the root mean square error and
normalized mean square error percentage in the predicted
loads. Higher error percentage means that the prediction
is further off from the actual load values, implying more
privacy against inference attacks. It is observed that Seer
Grid’s household level prediction has an overall higher error
percentage compared to SARMA, which means Seer Grid
offers more privacy than SARMA. However, it should be
noted that SARMA was designed to have low error percent-
age in household level prediction, so as to improve utility.
On the other hand, our primary goal for the household
level prediction is to improve privacy. However, the error
percentage should not be very high, otherwise the cluster
level prediction may suffer loss of data utility. We evaluate
the utility of the cluster level prediction below, to validate
that data utility is in fact not significantly compromised in
Seer Grid, even when there exists relatively higher error
percentage in household level prediction.

5.3 Data Utility

In this section we empirically evaluate the utility implica-
tions of Seer Grid using the well-accepted squared corre-
lation metric [8], [12]. We conduct experiments over four
seasons: winter (January 1 to 24), spring (April 1 to 24),
summer (July 1 to 24), and fall (October 1 to 24). The
results, averaged over the 3 test days, are presented in Table
2. The squared correlation between actual and predicted
energy consumption patterns of SM vary between 51.07%
and 80.09%, and averages at 62.10% across all 5 SMs. As
an example, Figure 11(a) shows the actual and predicted
energy consumption pattern for a SM on 22nd January,
and Figure 11(b) shows the squared correlation between
them. The squared correlation between actual and predicted
energy consumption pattern for CH vary between 89.95%
and 91.15%, and averages at 90.60%. Figure 11(c) shows
the actual and predicted energy consumption pattern for
CH on 22nd January, and Figure 11(d) shows the squared
correlation between them. Evidently, SM prediction is less
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Fig. 9. Cluster forms on Dq, Dp, and Dg. The experiment is performed with 21 training (January 1 to 21) and 3 test days (January 22 to 24). The
results are averaged over 3 consecutive test days.

Fig. 10. Root mean square error (RMSE) and normalized mean square
error (NMSE) percentage in predicted household loads by SARMA and
Seer Grid. Results are averages of the five test SMs.

correlated than CH prediction by a clear margin, as seen in
Table 2. We also check the standard deviation of the test days
to verify there does not exists any bias. Standard deviation
values appear random, without any visible connection with
the squared correlation results, leading us to believe that our
results are unbiased.

Comparison with Jain and Satish [19]: Jain and Satish
proposed the novel use of support vector machines (SVM)
to perform short-term load forecasting at cluster level [19].
To better understand how our cluster level prediction would
perform, we do a comparative analysis with [19] by recre-
ating their experiments, in the same period of our earlier
defined test days across four seasons. Figure 10 shows
the maximum percent error and average percent error in

cluster level load prediction for Jain and Satish, and Seer
Grid. In this case, lower percent error in prediction implies
better utility for EC. Seer Grid’s cluster level prediction has
marginally lower percent error in winter and fall, marginally
higher percent error in spring, and a significantly lower
percent error in summer. Overall, we can conclude that Seer
Grid’s utility is similar to [19], if not better. Readers should
note that [19]’s SVM based load forecasting at cluster level is
only a single level prediction, where the prediction model is
trained with actual data from past. Whereas, in case of Seer
Grid, the cluster level prediction is primarily based on the
household level prediction, which provides better privacy
as seen earlier. Therefore, Seer Grid having similar utility as
other cluster level prediction schemes is very promising.

6 DISCUSSIONS

6.1 Smart Meter Performance Analysis

Although Seer Grid uses complex prediction schemes, it
does not suffer from significant computational and com-
municational bottlenecks. As the prediction is once a day
event, SMs have an entire day to compute for next day,
which should be sufficient even for less powerful computing
systems. Reporting the predicted data is also an once-a-day
event, and SMs can avoid network congestion if they re-
port using a multiplexed (time, frequency, or code sharing)
channel with other SMs. Among all SM privacy preserving
frameworks, the most closely resembling (in terms of re-
source requirements, architecture, and assumptions made)
frameworks are based on homomorphic cryptography [41].
So, we compare the computational complexity of Seer Grid
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(a) (b) (c) (d)

Fig. 11. Exemplary results from 22nd January 2008, showing the correlation between actual and predicted energy consumption patterns at different
levels of Seer Grid. (a) Actual and predicted energy consumption patterns for one of the SMs, (b) Correlation between actual and predicted energy
consumption patterns for the same SM, (c) Actual and predicted energy consumption patterns for CH, (d) Correlation between actual and predicted
energy consumption patterns for CH.

TABLE 2
Squared correlation coefficient (R2) between predicted and actual energy consumption patterns for each SM and CH,

and the standard deviations of the 3 test days.

Season SM1 SM2 SM3 SM4 SM5 CH

Winter
R2: Actual vs Predicted 0.5715 0.5529 0.7793 0.6421 0.5772 0.9098
Three Test Days Standard Deviation 0.1240 0.0618 0.1470 0.0901 0.0187 0.0118

Spring
R2: Actual vs Predicted 0.5107 0.5627 0.8009 0.6687 0.5799 0.9115
Three Test Days Standard Deviation 0.0728 0.1236 0.1588 0.0459 0.1868 0.0095

Summer
R2: Actual vs Predicted 0.5888 0.5341 0.6322 0.6439 0.6528 0.8985
Three Test Days Standard Deviation 0.1775 0.1366 0.0922 0.0479 0.1855 0.01725

Fall
R2: Actual vs Predicted 0.6195 0.6025 0.6477 0.6450 0.6072 0.9041
Three Test Days Standard Deviation 0.0572 0.1412 0.0284 0.0808 0.1074 0.0102

Fig. 12. Maximum percent error (MPE) and average percent error (APE)
in cluster level load prediction for Jain and Satish, and Seer Grid. Results
are averages of the five test SMs.

versus frameworks based on homomorphic cryptography.
Seer Grid’s household level prediction through multilayer
perceptron has a time complexity of O(x2) [42], while
Paillier cryptography has time complexity of O(y3) [41].
Therefore, time complexity of homomorphic cryptography
based SM privacy frameworks is O(y3t) while Seer Grid’s
time complexity is O(x2t), where x and y are the size of
input in Seer Grid and homomorphic (Paillier) cryptosystem
[41], respectively, with x � y, and t is the number of
daily samples in both schemes. In other words, Seer Grid’s
asymptotic time complexity is lower than similar aggrega-
tion frameworks based on homomorphic cryptography.

6.2 Implications
The Importance of Two Level Prediction: One may think
that only a single level of prediction may achieve the same
results as two-levels, but a single level of prediction has
some inherent drawbacks. If the prediction is done only
at the CH level (where households report their actual con-
sumption to CH), we lose privacy at the SM level. Whereas,
if prediction is done only at the SM level, the cluster-wide
difference between actual and predicted consumption data
will be larger, resulting in data utility loss.

Training Parameters: In our experiments, we took a
heuristic approach for determining the training parameters
(epochs, iterations, learning rule, etc.) for the ANN used
by SMs. The parameters were chosen in such a way that
it satisfies our goal of optimizing both privacy and utility
of SM data. From the experimental results we observe that
the correlation between actual and predicted energy con-
sumption pattern varies moderately across households and
seasons. This is primarily because of different characteristics
of the training data (actual energy consumption for last 21
days) leading to differently converged prediction model in
each SM. In future, we plan to develop a unified prediction
framework for the SMs which will analyze characteristics of
the training data, and accordingly govern learning rate such
that prediction accuracy remains below a privacy preserving
threshold with high likelihood. Unlike this work, where
all SMs use the same prediction parameters, the unified
framework will adapt to the characteristics of local training
data of individual SMs. As a result, the convergence in
learning will be more uniform across SMs and seasons, thus
offer a more stable privacy guarantee.

Privacy due to Uncertainty: Uncertainty in next day’s
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energy consumption provides user privacy in Seer Grid,
which is similar to how uncertainty in location data pro-
vides spatio-temporal privacy [43]. The naturally occurring
irregularities in consumers’ day-to-day schedule results in
smoother household prediction patterns (that hides load
signatures), which also means that the predicted energy
pattern cannot be used to determine temporary house un-
occupancies with complete confidence.

Larger Cluster: We consider a very small scale clus-
ter in our experiments, and yet achieve considerably high
prediction accuracy at the cluster level. As evident from
previous cluster level prediction schemes [44], accuracy
tends to dramatically improve with increasing cluster size.
Thus, we think our results are highly encouraging for large
scale implementation.

6.3 Dishonest and Malfunctioning Smart Meters
SMs are often the target of bad data injection attacks,
primarily due to monetary incentives [45] [46]. However,
it is critical for ECs to prevent such attacks, not only to
avoid financial losses, but also to ensure proper distribution
of electricity. Previous efforts in this direction suggested
the use of embedded sensors for ‘Trusted Metering’ [47],
having a centralized or dedicated detection system, or a
hybrid system of embedded sensors and centralized detec-
tion [46]. In Seer Grid, as the CH collects predicted energy
consumption data of individual smart meters in advance,
existing anomaly detection mechanisms can be effectively
applied on the predicted energy consumption data reported
by individual smart meters.

In real deployment, SMs and/or communication links
can also experience failures, due to which they may be
unable to report the predicted energy consumption infor-
mation. Similar challenge is also faced by existing SMs
(and many proposed aggregation schemes), and can be a
non-trivial issue to address. If a negligible number of SMs
(belonging to the same energy company) are unresponsive,
the effects most likely will be unnoticeable. However, if a
large number of SMs are unresponsive, the effects can be
significant. In Seer Grid, such cases of malfunctioning SMs
can perhaps be handled more efficiently than other aggre-
gation schemes, due to the readily available past prediction
data. For example, if the next day’s predicted energy con-
sumption data is not reported by a SM, the cluster head can
simply substitute it with the same week-day’s prediction of
that SM from last week. The intuition behind this exemplary
approach is that households generally have similar usage
pattern for each day of the week [48].

6.4 Deployment Barriers
Smart meter deployment presents EC with many logistical,
technical and commercial challenges. The primary incentive
for ECs to deploy SMs is efficiency and thus savings over
time. Conventional SMs, already deployed in many places,
perfectly serve this commercial benefit. However, these SMs
were not designed to provide privacy for consumers. As a
result, any new framework designed to enable consumer
privacy will require modification or re-deployment by the
EC, which will require additional investment from ECs.
Because this new investment does not add any additional

efficiency improvements, ECs might be reluctant in deploy-
ing any privacy preserving add-ons to existing SMs. This
is a major limitation faced by many novel privacy preserv-
ing frameworks proposed for smart grids [49]. Cavoukian
and Dix [49] pointed out that privacy by design is the
best approach. Therefore, deployment of Seer Grid can be
easier in new localities (without existing smart metering
infrastructure), than to implement in localities where smart
metering is already in place. Given that Seer Grid will
require additional hardware and software to function, below
are the few directions we think can aid deployment:

• Add-On Service: ECs can offer SMs with Seer Grid’s
prediction framework as an add-on service. That is,
privacy-aware consumers can opt in for the privacy
preserving framework, by paying an one time fee,
which would cover the cost of additional hardware
and software installation.

• Off-Loading Computation: Instead of adding a comput-
ing unit (for performing the prediction operations)
built inside the SMs, it may be beneficial to off-load
the operations to a household computer. For exam-
ple, the prediction operations can be undertaken by a
paired (using low energy communication protocols,
such as Bluetooth) smartphone or PC, once per day.
The prediction results can be communicated back to
the SM for reporting to EC. Also, future upgrades
may be easier for consumers, as smartphones and
PCs are more frequently upgraded [50].

Alternatively, privacy issues can result in poor SM adop-
tion in privacy-aware communities [51]. By addressing pri-
vacy issues in a way that does not hamper utility too much,
ECs can increase SM adoption. This can be an incentive for
ECs to participate in implementing frameworks like Seer
Grid.

CONCLUSION

We propose Seer Grid, an alternate SGN architecture aimed
to reduce the privacy-utility trade-off faced by SMs. As
a result of two-level energy load prediction in Seer Grid,
there exists high correlation between predicted and actual
energy consumption patterns at cluster level, which indi-
cates excellent utility preservation. However, the correlation
between predicted and actual energy consumption patterns
of individual SM is weak, which indicates good privacy
preservation for households. Evaluation results strongly
support our proposition of Seer Grid.

FUTURE WORK

The goal of this paper is to demonstrate the benefits of using
two-level prediction in SGN, using exemplary models. In
future, we plan to generalize and formulate the minimiza-
tion of privacy-utility trade-off in Seer Grid. Also, we plan
to quantitatively evaluate Seer Grid against non-intrusive
load monitoring attacks, using publicly available data sets,
such as thst REDD dataset [52] or the Residential Energy
Consumption Survey dataset [53].
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