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Side-Channel Inference Attacks on Mobile
Keypads using Smartwatches

Anindya Maiti, Student Member, IEEE, Murtuza Jadliwala, Member, IEEE, Jibo He, and Igor Bilogrevic

Abstract—Smartwatches enable many novel applications and are fast gaining popularity. However, the presence of a diverse set of
on-board sensors provides an additional attack surface to malicious software and services on these devices. In this paper, we
investigate the feasibility of key press inference attacks on handheld numeric touchpads by using smartwatch motion sensors as a
side-channel. We consider different typing scenarios, and propose multiple attack approaches to exploit the characteristics of the
observed wrist movements for inferring individual key presses. Experimental evaluation using commercial off-the-shelf smartwatches
and smartphones show that key press inference using smartwatch motion sensors is not only fairly accurate, but also comparable with
similar attacks using smartphone motion sensors. Additionally, hand movements captured by a combination of both smartwatch and
smartphone motion sensors yields better inference accuracy than either device considered individually.

Index Terms—Wearables; Smartwatches; Side channel attacks; Keystroke inference.
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1 INTRODUCTION

The popularity of smartwatches is soaring with more than 45
million devices expected to be shipped by 2017 [1]. These devices,
typically equipped with state-of-the-art sensors and communica-
tion capabilities, will enable a plethora of novel applications,
including activity tracking, wellness monitoring and ubiquitous
computing. However, the presence of a diverse set of on-board
sensors also provides an additional attack surface to malicious
applications on these devices. Security and privacy threats on
handheld smartphones that take advantage of such sensors as
side-channels have received significant attention in the literature.
Notable examples include keystroke (or key press) inference [2],
[3], [4], activity identification [5] and location inference [6] at-
tacks. As most modern mobile operating systems introduced strin-
gent access controls on front end sensors, such as microphones,
cameras and GPS, adversaries shifted attention to sensors which
cannot be actively disengaged by users (e.g., accelerometer and
gyroscope). Typically, handheld device usage is highly intermittent
and such devices spend a majority of time in a constrained
(e.g., in users’ dress pocket) or activity-less (e.g., on a table)
setting where most on-board sensors are partially or completely
non-functional, thereby limiting the effectiveness of handhelds in
inference attacks. Contrary to this, wearable device usage is much
more persistent as they are constantly carried by the users on their
body. This makes wearable devices a more desirable platform for
a variety of side-channel attacks. If access to wearable sensor data
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is not appropriately regulated, it can be used as a side-channel to
infer sensitive user information.

In this paper, we evaluate the feasibility of side-channel secu-
rity vulnerabilities in smart wearables by investigating motion-
based keystroke inference attacks using smartwatches. More
specifically, we evaluate the feasibility and effectiveness of
keystroke inference attacks on smartphone numeric touchpads
by using smartwatch motion sensors as a side-channel. Numeric
touchpads are typically targeted by adversaries for obtaining sen-
sitive information such as security pins and credit card numbers.
We propose multiple attacks suitable for three popular typing
scenarios. In typing scenarios where key press events can be iden-
tified based on surge in motion sensor activity, we use supervised
learning to infer the key presses. This attack comprises of first
training appropriate classification models to learn the uniqueness
in wrist motion caused during individual keystrokes depending on
known relative location of the key on the screen, and then using the
trained classifiers to infer unlabeled (or test) keystrokes. During
preliminary experiments, we observed that keystroke induced
motion data captured by smartwatch and smartphone sensors differ
significantly. Consequently, we thoroughly assess how signifi-
cantly smartwatch motion sensors elevate the threat of keystroke
inference, compared to similar attacks using only smartphone
motion data [2], [3], [4]. We also evaluate the case where the
adversary may have gained access to motion sensors on both the
smartwatch and smartphone, to see how our attack will perform
when motion data from both devices are combined. For the typing
scenario where key press events cannot be identified based on the
uniqueness of motion sensor activity surge (corresponding to a
key press), we present a novel scheme to infer a sequence of key
presses based on the transitional movement between individual
key presses. We evaluate the proposed attacks in both controlled
and realistic typing scenarios. We also briefly discuss possible
protection measures against such inference attacks that employ
motion sensors as side-channels.

The remainder of this article is structured as follows: First
we discuss similar side-channel attacks in the literature in Sec-
tion 2. Then we give an overview of the threat and adversary
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model in Section 3. In Section 4 we describe the classification-
based keystroke inference framework, followed by its evaluation
in Section 5. In Section 6 we describe the relative transitions-
based keystroke inference framework, followed by its evaluation in
Section 7. Finally, we discuss implications, limitations and future
research directions.

2 RELATED WORK

Inference of private information from various forms of side
channels has been an active area of research in the community.
Electromagnetic signals emanating from devices have been used
to infer private data stored on Smart Cards [7], data transmitted
on RS-232 cables [8] and content being played on CRT and
LED monitors [9], [10]. Recently, Hayashi et al. [11] showed
that it is also possible to remotely reconstruct and eavesdrop on
flat panel displays on tablets via measurement of electromagnetic
emanations. Similarly, optical emanations from monitors [12] or
from eyes [13] have also be used to infer information such as
content being displayed or watched. Acoustic or sound signals
emanating from devices such as printers have also been used to
infer the content being printed on certain models of dot-matrix
printers [14].

Availability of several high-precision sensors on modern mo-
bile cyber-physical systems such as smartphones have given rise
to additional side-channels [15], thus increasing the risk of private
information leakage through such side-channels. Past research
efforts have shown how malicious applications can misuse their
access rights to these sensors in order to execute various imper-
ceptible side-channel attacks by stealthily capturing information
from the physical environment. For example, smartphone cameras
can be accessed in an unauthorized fashion to infer sensitive
information from user keystrokes [16], [17]. Unauthorized micro-
phone recordings of ambient sound [18] provide a rich source
of information that can be used to infer sensitive information
about a person’s daily life. Activities and locations can be inferred
based on characteristic ambient sound patterns, e.g. walking on the
streets, or eating in a restaurant [19]. Unauthorized access to GPS
sensors can pose obvious risks related to loss of location privacy,
such as revealing home/work locations, stalking and location-
targeted advertisements [20]. Advanced learning-based techniques
were also proposed for predicting users’ future movements from
previous tracking records of their location activities [21], [22],
[23], [24]. Security and privacy risks associated with front-end
sensors, such as, microphones, cameras and GPS, have been
comprehensively studied because of the hazards apparent to users.

However, security risks due to sensors obscured from users
(e.g., accelerometer, gyroscope, and magnetometer) have largely
been overlooked until recently. After modern mobile operating
systems introduced user-managed access control on front-end
sensors, adversaries shifted attention to sensors which cannot be
disengaged by users. It has been shown that malicious applications
can track users’ movements [25], [26] and activities [27], [28],
[29] by using only smartphone accelerometer readings. It has also
been shown that, with the help of standard signal processing and
machine learning techniques, it is possible to recognize speakers
and parse speech by using gyroscopes on modern mobile devices
to measure acoustic signals [30].

Keystroke inference attacks using side-channel information
have received significant attention due to their potentially danger-
ous consequences. Electromagnetic emanations from external key-
boards (both wired and wireless) have been used in the past to infer

user keystrokes [31]. However, the requirement of extensive setup
and expensive monitoring hardware prevents less sophisticated
adversaries from carrying out such attacks. Keystroke inference
attacks using audio or acoustic signals [32], [33], [34], [35], [36],
on the other hand, have also received significant attention in the
literature. Such attacks have proven to be very successful and
can be carried out using modest off-the-shelf hardware (e.g., any
microphone equipped device). Due to the ubiquitous nature of
modern smartphones that are equipped with high-precision mi-
crophones, such attacks are much more practical than previously
argued.

However, as touchscreen key press events emanate very weak
acoustic signals, inference attacks using them is very difficult.
Additionally, requirement of undisturbed eavesdropping is another
major obstacle in using electromagnetic and acoustic emanations
for such attacks. As a workaround to the above limitations,
smartphone motion sensors have been used to recover keystroke
events on the device. For instance, TouchLogger [2] and TapPrints
[37] utilize change in orientation angles of the smartphone, as
captured by its accelerometer, to extract appropriate features
for keystroke inference. Similarly, ACCessory [3] also attempts
to infer keystrokes using the smartphone accelerometer data by
employing multiple supervised learning techniques. Alternatively,
TapLogger [4] automates the training and logging phases and
attempts to work stealthily on the smartphone. Smartphone mo-
tion sensors have also been used to detect keystroke events on
other external devices/keyboards in proximity [38]. Despite these
research efforts, side-channel privacy threats (especially, keystroke
inference attacks) posed by wearable devices such as smartwatches
have received far less attention. Recently, Wang et al. [39], Liu
et al. [40], Wang et al. [41] and Maiti et al. [42] have explored
new attacks to infer user keystrokes or key presses on external
physical keyboards/keypads by using smartwatch motion sensors.
In contrast to these research efforts, our work focuses on keystroke
inference on hand-held mobile keypads by employing smartwatch
motion sensors.

In our preliminary work in this direction [43], we designed
and evaluated a basic supervised learning-based classification
framework to infer keystrokes on a mobile/smartphone keypad.
The evaluation was limited to the typing scenarios where key press
events were identifiable based on surge in wrist motion activity.
In this paper, we present new and improved attack frameworks,
which include attack on an additional typing scenario. We made
significant changes to the classification-based attack framework,
such as enriching the feature vectors and using a robust ensemble
classification scheme. Our new relative transition-based attack
framework is designed to infer sequences of key presses, where
individual key press events cannot be detected by using the unique
surge in the wrist motion activity (captured on the smartwatch mo-
tion sensor). We conduct extensive empirical evaluation for both
frameworks with the help of multi-sensor typing data contributed
by human subject participants using two different smartwatch
hardware. We also evaluate the efficacy of our attack framework
in a non-controlled natural typing setting, Further, we also analyze
our attack framework for gain in inference accuracy (if any)
when typing-related motion data from both the smartwatch and
smartphone is combined.
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(a) (b)

(c) (d)

Fig. 1: Smartwatch and smartphone on (a) Same Hand and Non-
Holding Hand Typing (SH-NHHT), (b) Same Hand and Holding
Hand Typing (SH-HHT), (c) Different Hand and Non-Holding
Hand Typing (DH-NHHT), (d) numeric keypad used in our
experiments.

3 ATTACK DESCRIPTION

In this research effort, we focus on three of the most popular typing
(or tapping) scenarios in mobile hand-helds or smartphones [44].
We consider a user typing on a smartphone’s numeric touchscreen
keypad while wearing a smartwatch on one of his/her hand. In
the first case, smartwatch and smartphone are on the same hand
and the user types with the hand not holding the smartphone (see
Figure 1(a)), also referred by us as SH-NHHT scenario. In the
second case, smartwatch and smartphone are again on the same
hand and the user types with a finger (generally, thumb) of the
smartphone holding hand (see Figure 1(b)), also referred by us
as SH-HHT scenario. In the above two scenarios, the action of
tapping a key on the smartphone keypad results in a unique motion
of the wrist (on the smartphone holding hand) for each keystroke,
which can be captured by the motion sensors (e.g., accelerometer
and gyroscope) of the smartwatch and used to identify the tapped
keystroke. In the third case, smartwatch and smartphone are on
different hands and the user types with the hand not holding the
smartphone (see Figure 1(c)), also referred by us as DH-NHHT
scenario. Unlike the previous two scenarios, each key tap does
not produce a unique motion signature on the wrist of the typing
hand (where the smartwatch is situated), and thus it cannot be used
to infer the exact keystroke in a fashion similar to the previous two
cases. However, assuming that the relative position of keys on the
keypad as per the standard layout shown in Figure 1(d) is known
and remains static, we can use the relative transitional movement
between taps to infer a (sub)sequence of the tapped keys.

In addition to the above three, other typing scenarios are also
possible, for example, typing with both hands and holding (the
phone) and typing with non watch wearing hand. However, in
order to limit the scope of our study and to clearly demonstrate
the keystroke inference threat posed by smartwatches, we only
consider the above three typing scenarios (i.e., SH-NHHT, SH-
HHT and DH-NHHT) in this work, which also happen to be very

widely adopted by smartphone users. We further justify our focus
on these three typing scenarios by more precisely determining
the percentage of users that employ these typing methods, and as
a result, are impacted by the proposed inference attacks. Based
on the data available from a study concerning users’ smartphone
holding and usage behaviors [44], 32.83% of all users hold and
use the phone as shown in Figure 1(b), 28.44% of users hold and
use the phone as shown in Figure 1(a), while only 2.11% of users
hold and use the phone as shown in Figure 1(c). In this work,
we also investigate two variations of scenarios in Figures 1(a)
and 1(b), where the phone is held in the other hand as shown in
Figures 13(a) and 13(b) respectively. Based on [44], 16.17% of all
users hold and use the phone as shown in Figure 13(b), while only
7.56% of users hold and use the phone as shown in Figure 13(a). It
should be noted that [44] does not provide any data on which hand
(left or right) the smartwatch is traditionally worn, so the above
only represents percentages of users based on the hand in which
the phone is held and the hand used to type or tap. Now even if
the phone holding scenario of Figure 1(c) is ignored (due to its
low usage percentage), our framework can potentially impact at
least 44.61% of users who wear the smartwatch on the left hand,
i.e., those who type as shown in Figures 1(a) and 13(b). Similarly,
at least 40.39% of users wearing the smartwatch on the right hand
are impacted by our keystroke inference framework, i.e., those
who type as shown in Figures 1(b) and 13(a)). Moreover, we also
show in Section 5.9 that the performance of our framework does
not vary significantly between a particular typing scenario and
its variation (say, between Figure 1(b) and 13(b)). This shows
that a significant percentage of users have the potential of being
impacted by the proposed keystroke inference framework.

Threat Model: We assume an adversary whose goal is to infer
a target’s keystrokes on a generic smartphone numeric keypad (as
shown in Figure 1(d)), based on the wrist movements perceptible
by the target’s smartwatch motion sensors. The adversary may
gain access to the target’s smartwatch by installing a malicious
application on it which records the activity of the on-board
accelerometer and gyroscope sensors. This step can be achieved by
exploiting known software vulnerabilities or by tricking the victim
into installing malicious code, e.g., using a trojan software. Based
on the fact that most common smartwatch operating systems (e.g.,
Google’s Android Wear, Apple’s watchOS, etc.) do not implement
access control and/or user notification for motion sensor usage,
the malicious application may have unrestricted and undetected
access to the on-board accelerometer and gyroscope. As a re-
sult, the compromised smartwatch can act as an eavesdropping
device which the targets’ themselves may place on their wrist,
and unsuspectingly have it on their wrist while typing on a
smartphone. The malicious application may also maintain a covert
communication channel [45] with the adversary, and periodically
upload the collected wrist motion data on some adversarial server
by means of this channel. The use of a covert channel by the
trojan is optional. However, if a covert channel is not used, there
is a possibility of this information transfer being easily detected
and the trojan being inactivated. We assume that the adversary
also has sufficient off-site storage and computational resources
to download the raw sensor data, extract significant keystroke
events, and execute standard machine learning algorithms in order
to classify the keystrokes. For comparison with attacks based on
smartphone data, we assume similar adversarial capabilities and
actions for the smartphone.



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX 20XX 4

Ty
p

in
g 

Er
ro

r 
R

e
m

o
va

l 
M

o
d

u
le Feature 

Extraction 
Module

Time-Stamped 
Key Press 
Labels (L)

Key Press 
Detection 
Module

Training 
Set

Target 
Set

Training
Module

Key 
Labeler

Classification
Module

Predicted 
KeysK

ey
st

ro
ke

-R
e

co
rd

s

Er
ro

r-
Fr

e
e

 
K

ey
st

ro
ke

-R
e

co
rd

s

Li
n

e
ar

 A
cc

e
le

ro
m

et
e

r 
St

re
am

 (
A

)

Fe
at

u
re

 
V

e
ct

o
rs

Supervised Machine Learning

Tr
ai

n
e

d
 

C
la

ss
if

ie
rs

Tr
ai

n
in

g 
P

h
as

e
A

tt
ac

k 
P

h
as

e

Fig. 2: Overview of the classification-based attack framework for SH-NHHT and SH-HHT typing scenarios.

4 CLASSIFICATION-BASED ATTACK FRAMEWORK

The linear accelerometer motion sensor found on smartwatches
measures the three dimensional acceleration experienced by the
device, excluding the omnipresent force of gravity. During prelim-
inary experimentation with SH-NHHT and SH-HHT scenarios, we
observed that key press events can be accurately detected using the
surge in linear acceleration during a key press. Based on the ob-
servation that taps on different locations of the smartphone screen
produces characteristically unique motions on the wrist, our attack
framework leverages on supervised machine learning to directly
classify the detected key presses. The attack framework (Figure
2) consists of a learning phase followed by an attack phase. Both
phases go through similar steps of data collection followed by
feature extraction, with the learning phase culminating in training
(the classifiers), while the attack phase in classification (using the
trained classifiers from the training phase). Next, we describe in
detail each component of the proposed framework.

Data Collection and Pre-Processing: We developed an ap-
plication for Android Wear that continuously samples linear ac-
celerometer measurements on the smartwatch, and runs in the
background during experiments. Details of the data collection
experiments and technical specifications of the hardware used for
the experiments are outlined later in Section 5.1. The smartwatch
data collection application communicates the linear accelerometer
measurements to the host smartphone (with which the watch
is paired) using Andorid Wear’s Wearable Data Layer API. On
the smartphone, another Android application displays a keypad
to the users to type sequences of numbers. In the background,
the smartphone application chronologically logs all accelerometer
measurements received from the smartwatch and any key press
events registered on the displayed keypad. It logs two data-
streams: (i) timestamped readings of the smartwatch’s linear
accelerometer (A); and (ii) timestamped key press labels (L).
Both A and L are stored locally on the smartphone (which is also
paired with the smartwatch) during the data collection process
and retrieved later for offline evaluation. Note that in the attack
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Fig. 3: Time series of key press events in SH-NHHT, and their
corresponding effect on linear accelerometer samples.

phase of our experiments we use L only to verify the classification
accuracy.

Due to the absence of labeled data, the attack phase requires an
additional key press event detection mechanism. Figure 3 shows a
portion of a raw linear accelerometer data-stream, spanning four
key press events in the SH-NHHT scenario. As evident from the
graph, each tap agitates the linear accelerometer sensor readings
on the three axis, with more prominence along the Y-axis and
Z-axis than X-axis. SH-HHT data also exhibits similar traits. We
apply this observation to model an algorithm for automating the
process of key press event detection. Algorithm 1 sequentially
examines the “energy” of each sample i in A as the sum of
acceleration on the three axis (Equation 1). The energy value
calculated in Algorithm 1 is then used in Algorithm 2 to determine
keystroke events.

Energy[i] =
∣∣∣∣∣A[i][X]

∣∣+ ∣∣A[i][Y ]
∣∣+ ∣∣A[i][Z]

∣∣∣∣∣ (1)



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX 20XX 5

Algorithm 2 establishes the threshold value as the average
peak energy values observed in the time-stamped training set.
In the attack phase, once the energy level surpasses the empir-
ically learned threshold (from Algorithm 2), a key press event
is recognized and a “keystroke-record” is saved. Each keystroke-
record is intended to represent the wrist motion pattern of a key
press event, and consists of few linear accelerometer readings
immediately before and after the key press event is recognized.
We empirically observed that the movement due to a key press
subsides after approximately 350 msecs. Thus, a keystroke-record
of eighteen samples (at 50 Hz sampling frequency) sufficiently
captures all motion features related to a keystroke. Taking into
consideration some of the milder initial motion, we form each
keystroke-record as follows: the sample to surpass the energy
threshold is preceded by three samples and followed by fourteen
samples, chronologically from A. After a key press event is
recognized and the corresponding keystroke-record is saved, the
key press detection algorithm resumes its search for next key
press. As multiple samples during a key press may cross the
energy threshold, ignoring the fourteen samples following the last
keystroke-record ensures that the same key press is not recorded
multiple times.

Feature Extraction: Our proposed attack infers the numeric
key that was pressed based on features of the underlying physical
event of wrist motion caused during typing (or tapping) on a
smartphone. The features of a keystroke-record must be able to
capture as many attributes as possible about the underlying three-
dimensional movement caused by a key press. A properly designed
feature vector should be similar with other feature vectors of the
same key, simultaneously being distinguishable between feature
vectors of other keys. We observed that, based on the location
of a key on the screen, the degree of movement caused by a tap
varies on each of the X , Y , and Z axis of the linear accelerometer
(Figure 4). Interestingly, this movement remains fairly consistent
for the same key.

In our preliminarily work [43], we used only 54 basic time do-
main features of the accelerometer data to identify the uniqueness
of each key (and the corresponding key press event), and found
those features to be reasonably useful for keystroke inference. In
this work, we expand that to a more comprehensive set of features,
employing both time and frequency domain features, with a total
of 155 different features in our feature vector for each key. We
continue to use time domain features of individual axis such as
minimum and maximum magnitudes, squared sum of magnitude
data below 33 percent and above 67 percent of maximum mag-
nitude (to measure the duration of major and minor movements),

Algorithm 1 Key Press Detection Algorithm

function KEYPRESS_DETECTION(ATarget)
KeyPresses = {∅}
Threshold = Set_Threshold()
for i = 1 to N (N samples in A) do

if Energy[i] ≥ Threshold then
ThisKeyPress = A[i− 3] to A[i+ 15]
Insert ThisKeyPress into KeyPresses
i = i+ 15

end if
end for

end function

Algorithm 2 Determining Energy Threshold

function SET_THRESHOLD(ATraining , LTraining)
Threshold = 0
KeyPressT ime = 0
for j = 1 to M (M key presses in L) do

KeyPressT ime = L[j][time]
ThisKeyEnergy =
{Energy[KeyPressT ime− 1] +
Energy[KeyPressT ime] +
Energy[KeyPressT ime+ 1] +
Energy[KeyPressT ime+ 2]}/4
Threshold = Threshold + ThisKeyEnergy

end for
Threshold = Threshold/M

return M
end function

position of maximum and minimum magnitude samples, mean,
median, variance, standard deviation, skewness (measure of any
asymmetry) and kurtosis (to measure any peakedness), raw ac-
celerometer readings, and their first order numerical derivatives
(to measure the rate of change of energy). We also use inter-axis
time domain features to capture the correlation between movement
on the three axis, such as minimum and maximum magnitudes
across all three axis, Frobenius norm, Infinity norm, 1-norm,
Euclidean norm, and axis with highest and lowest magnitude for
each time sample. Along with the time domain features, we also
capture frequency domain features by computing the Fast Fourier
Transform (FFT) of individual axis readings of the keystroke-
record. The frequency domain features are necessary to identify
the different rebounding (or oscillatory) motion of the wrist. Note
that in the learning phase, the feature vectors are also labeled,
using the timestamped key press labels (L) recorded by the data
collection application.

Training and Classification: We model the keystroke infer-
ence problem as a multi-class classification problem. Labeled
feature vectors are used to train classifiers in the learning phase,
whereas unlabeled feature vectors are mapped to the “closest”
matching class by the already trained classifiers during the attack
or test phase. To train our classifiers, we initially tested five

Fig. 4: The intuition behind our classification-based attack
is that taps on different locations of the smartphone screen
produces characteristically unique motions on the wrist. Ac-
cordingly, taps on each number on the keypad should be
identifiable based on the uniqueness in the resultant wrist
motion.
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Fig. 5: Ensemble classification scheme used in the attack
phase is robust and generally more accurate than a single
classification algorithm.

different classification algorithms that are appropriate given the
properties of our features: (i) simple linear regression (SLR),
(ii) random forest (RF), (iii) k-nearest neighbors (k-NN), (iv)
support vector machine (SVM), and bagged decision trees (BDT).
However, each of these classification techniques has its own
advantages and shortcomings, leading us to adopt an ensemble
classification approach. Ensemble approaches have proven to be
more accurate and robust than any single classification algorithm
[46], [47]. We consider an extremely broad set of classification
algorithms in our ensemble method, as a result of which, the
errors made by constituting classifiers are highly uncorrelated.
We include parametric algorithms (SLR, SVM), as well as non-
parametric algorithms (k-NN, RF, BDT). Our ensemble method
involves both linear (SLR, SVM) and non-linear (k-NN, RF,
BDT) techniques. Moreover, RF and BDT are strong ensemble
classifiers in themselves which makes our classification framework
even more robust. Such a diverse set of classification algorithms
increases the likelihood of improvements in classification accuracy
over a single algorithm.

During the training phase, multi-class classifiers of each con-
stituting classification algorithm are trained separately using the
labeled training data. After all the classifiers have been trained
using the labeled data, feature vectors of unlabeled keystroke-
records are classified using these trained classifiers (in the attack
phase) using an ensemble strategy. Finally, a majority wins en-
semble strategy is used to determine the final classification result
(Figure 5).

5 EVALUATION OF CLASSIFICATION-BASED AT-
TACKS

In this section, we present the findings from our evaluation of the
classification-based attack framework.

5.1 Experimental Setup

Our initial data collection experiments involve 12 participants,
aged between 19-32 years. The identity of these participants are
anonymized as P1, P2, . . . , P12. We employ a Samsung Gear Live
smartwatch equipped with an InvenSense MP92M 9-axis Gyro +
Accelerometer + Compass sensor. Smartwatch was worn on left

hand for SH-NHHT (Figure 1(a)) and on right hand for SH-HHT
(Figure 1(b)). Participants use the virtual numeric keypad of a
Motorola XT1028 smartphone (Figure 1(d)) for typing. Linear
accelerometer of the smartwatch was sampled at 50 Hz. We used
the Weka 3.7.12 [48] libraries for both training and testing the
classifiers. MATLAB R2014a was used to compute most of the
time and frequency domain features.

We also evaluate the performance of our keystroke inference
framework in several additional settings: (i) a more natural or
uncontrolled typing scenario (Section 5.6), (ii) using a different
smartwatch hardware (Section 5.7), (iii) employing an additional
type of motion sensor, i.e., gyroscope (Section 5.4), and (iv) typing
on a QWERTY or alphabetic keypad (Section 5.8). For these
last four experimental settings, we collected additional data from
different sets of participants, and in certain cases using a different
smartwatch and/or smartphone hardware. The participant and
data collection procedure details for these additional experimental
settings appear in their respective sections.

5.2 Constructing and Testing the Classifiers

We construct our classifiers based on different training datasets of
labeled keystroke-records generated by the participants. An audio
stream of uniformly distributed random numbers between 0 to 9
guided the participants in typing. To prevent fatigue, participants
were given optional breaks, during which they were allowed to
set down the phone on the table and some participants even went
out of the room. However, they returned to approximately the
same holding position after the break. We comparatively evaluate
the classification accuracy (the percentage of correct prediction
divided by the total number of predictions) of our classifiers for
the following three training/testing scenarios:

• One vs. One: In this case, we measure the percentage
of successful inferences on an individual participant, with
classifiers trained from the training set of the same par-
ticipant. Target set size is 100 (10 per key) and training
set size is 200 (20 per key). One vs. One is not only a
best case scenario, but also represents how the attack will
perform if the adversary is able to collect target-specific
training data.

• One vs. Rest: In this case, we measure the percentage
of successful inferences on an individual participant, with
classifiers trained from the training set of the rest of the
participants (not including the target participant). Target
set size is 100 (10 per key) and training set size is 2200
(220 per key). One vs. Rest is a typical scenario where
the adversary has a target, but is unable to obtain labeled
training data from the target.

• All vs. All: In this case, we measure the percentage of
successful inferences on all participants, with classifiers
trained from training set of all participants. Target set size
is 1200 (120 per key) and training set size is 2400 (240
per key). All vs. All is helpful in understanding how our
attack framework will perform if the adversary constructs
a heterogeneous training data set to infer keystrokes from
multiple non-specific targets.

Classification results for One vs. One are shown in Figure 6.
One vs. One classification accuracy ranged fairly high between
94% and 77% for SH-NHHT, and between 93% and 75% for
SH-HHT, with an average of 84.58% and 83.5%, respectively.
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Fig. 6: Classification accuracy for One vs. One and One vs.
Rest using two different smartwatches (Samsung Gear Live
and LG Watch Urbane W150).

TABLE 1: Mean computation time observed in each train-
ing/testing scenario. All measurements are in seconds.

SLR RF K-NN SVM BDT Total

One vs. One 191 234 98 95 65 683
One vs. Rest 166 365 398 184 167 1280
All vs. All 504 617 441 271 218 2051

However, classification accuracy drops noticeably in One vs.
Rest. As shown in Figure 6, One vs. Rest classification accuracy
ranged between 82% and 63% for SH-NHHT, and between 78%
and 65% for SH-HHT, with an average of 70.08% and 71.16%,
respectively. The achieved All vs. All classification accuracy was
88.16% and 85.83% for SH-NHHT and SH-HHT, respectively.
Overall, these results validate our claim that smartwatch motion
sensors are a feasible side-channel for inferring keystrokes on
mobile touchpads.

We also recorded the mean computation time in each train-
ing/testing scenario (Table 1). All training and testing operations
were executed on a laptop featuring a 2.7 GHz dual-core Intel
i5 processor and 8 GB of working memory. Due to the use
of ensemble classification technique, the total computation time
is the sum of time taken by the five constituting classification
algorithms. The average total computation time in One vs. One
scenario was less then 12 minutes, about 21 minutes in One vs.
Rest, and about 34 minutes in All vs. All scenario. Moreover,
the total computation time can be further reduced if the different
classification algorithms are executed in parallel (with suitable
hardware support). These results show that the above keystroke
inference attacks can be carried out by an attacker using reasonable
computation resources in a fairly short amount of time.

5.3 Reduced Sampling Frequency:
We also briefly investigate how our attack will perform at reduced
sampling rate (25 Hz and 10 Hz), a more realistic scenario for
low-cost wearables, equipped with less precise sensors. We repeat
the experiments outlined in Sections 5.1 and 5.2 with smartwatch
data sampled at a reduced frequency, and Figure 7 shows the
drop in accuracy of our attacks for both the SH-NHHT and SH-
HHT scenarios. For example, One vs. One classification accuracy
in SH-NHHT dropped from 84.58% to 72% when sampling
frequency was reduced to 25 Hz and to 23% when sampling
frequency was reduced to 10 Hz. Similarly, the other scenarios
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Fig. 7: Classification accuracy dropped when sampling rate
was reduced, results averaged over all 12 participants.

also observed drop in classification accuracy with reduction in
sampling frequency, but percentage of successful classification can
be considered fairly substantial even at a sampling frequency of
25 Hz.

5.4 Comparison with Smartphone-Based Attacks

Previous research efforts on keystroke inference attacks by using
smartphone sensor data [4], [37] (or data collected from the tar-
get’s smartphone sensors) also used similar learning-based multi-
class classification frameworks. This motivated us to apply our
attack framework on smartphone data and compare the results
with those carried out using smartwatch data. This enables us to
understand how much more or less vulnerable a motion sensor-
based side-channel originating on a smartwatch makes us, as com-
pared to known motion-based side-channels on the target users’
smartphone. We conduct similar experiments (as in Sections 5.1
and 5.2) by using smartphone linear accelerometer data sampled
at 50 Hz, rather than using the smartwatch data. Figures 8 and
9 shows the accuracy of our attack for SH-NHHT and SH-HHT
scenarios. On comparing with previous results from Section 5.2,
it can be observed that the keystroke inference attacks in SH-
NHHT resulted in slightly better average classification accuracy
when smartwatch motion data was used. Whereas in SH-HHT,
classification accuracy results are mixed, and nearly equal, for both
the smartwatch and smartphone data. In summary, these results
demonstrate that the threat of motion-based keystroke inference
may be increased in certain typing scenarios due to smartwatches.
An interesting pattern of classification accuracy can be observed
(see Fig. 10) for inference using only smartphone data in SH-HHT.
We observe that the classification accuracy for certain keys (based
on their location) are distinctly higher than others. Interestingly,
this occurrence is not recognizable for the smartwatch dataset.
This may be due to the fact that keys farther away from the thumb
impels the user to bend the phone towards the thumb. As a result,
significantly greater movement of the phone occurs, compared to
keys that are near the thumb.

In order to conduct an exhaustive comparison between the
inference threat posed by different motion sensors present on
a smartwatch and smartphone, we carry out additional experi-
ments using the gyroscope data which is another widely studied
side-channel for keystroke inference [2], [37], [49]. Due to the
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Fig. 8: Classification accuracy for One vs. One using smart-
phone data.
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Fig. 9: Classification accuracy for One vs. Rest using smart-
phone data.

absence of a gyroscope sensor on the Motorola XT1028, we
used another smartphone for this experiment, namely a Motorola
XT1096 (paired with the Samsung Gear Live). The same ex-
periment as above was repeated by 12 new participants, each
typing 100 randomly dictated numbers. For this experiment,
we recorded keystroke related motion data, comprising of both
linear accelerometer and gyroscope measurements, from both
the smartphone and the smartwatch. We derived 59 time and
frequency domain features from the three-dimensional gyroscope
data of both devices, such as minimum and maximum values, the
mean value, variance, skewness, kurtosis, vertex angles, number
of spikes, peak intervals, attenuation rate, etc. These features
were selected from the literature on activity detection [50], [51]
and keystroke inference [49]. Figure 11 shows the One vs. Rest
classification accuracy results when solely the gyroscope features
are used compared to when they are used in combination with
features derived from the linear accelerometer measurements. The
mean classification accuracy is marginally lower when using only
the smartwatch gyroscope, compared to the smartphone gyroscope
(SH-NHHT: 59.91% vs. 61.25%, SH-HHT: 59.66% vs. 64.75%).
However, we can observe that after combining multiple motion
sensors (linear accelerometer and gyroscope) on a device, the
keystroke inference threat on the smartwatch is greater than the
one on the smartphone (mean classification accuracy, SH-NHHT:
69.91% vs. 61.41% and SH-HHT: 71% vs. 66.08%).

Fig. 10: All vs. All classification accuracy for individual keys
in SH-HHT using smartphone data, results averaged over all
12 participants.
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Fig. 11: One vs. Rest classification accuracy using only gyro-
scope features, and in combination with linear accelerometer
features. Results compared between smartwatch and smart-
phone.

5.5 Combining Smartwatch and Smartphone Data

After comparing the accuracy of keystroke inference attacks using
individually both the smartwatch and smartphone motion data,
we were intrigued to study the impact of combining or fusing
motion sensor data from both devices in order to further reduce
the number of classification errors. As most modern smartwatch
operating systems and applications require the watch to be paired
with a smartphone, such an attack is quite realistic. The feature
vectors of same keystroke-records from both the devices were
merged to obtain new feature vectors containing 310 features. We
rebuild the classifiers with the larger feature vectors, and re-ran
the previous experiments (as outlined in Sections 5.1 and 5.2).
Results of these experiments (outlined in Table 2) show that in-
deed accuracy improved when the features from both smartwatch
and smartphone were combined. For example, the One vs. One
classification accuracy in SH-NHHT was 90.66%, compared to
83.5% and 84.0% when individual smartwatch or smartphone data
were used, respectively. Similar improvements can be observed in
other scenarios as well. However, the improvement was relatively
marginal, which can be attributed to the convergence in the
learning process. Therefore, combining or fusing data from both
smartwatch and smartphone may be more beneficial when the
adversary has fewer training data.
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TABLE 2: Classification accuracy after combining features
from both smartwatch and smartphone, results averaged over
all 12 participants.

SH-NHHT Combined
(Smartwatch Only,
Smartphone Only)

SH-HHT Combined
(Smartwatch Only,
Smartphone Only)

One vs. One 88.91% (84.5%, 78.7%) 90.66% (83.5%, 84.0%)

One vs. Rest 71.59% (70.0%, 63.3%) 74.29% (71.1%, 70.9%)

All vs. All 88.65% (88.1%, 85.5%) 89.78% (85.8%, 86.8%)
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Fig. 12: An example where rebounding motion of a key press
overlapped with the next key press.

5.6 A More Realistic Setting: Natural or Non-Controlled
Typing

In all of the experiments so far, the participants were being
directed (to tap) by an audio stream. Because participants have to
hear the audio and then act on it, a minor delay or disturbance may
be introduced in each key press. Moreover, such a kind of typing
or tapping does not invoke (and capture) users’ natural typing
behavior and speed. To evaluate a more natural typing behavior,
we conduct another experiment where a new set of 10 participants
were instructed to type their phone number followed by their
residential zip code (a total of 15 numbers). These two pieces
of information can be readily recollected by participants, thus
eliminating any delay and/or disturbance while typing. This also
enables us to capture more realistic typing or tapping data from
users. However, for prediction we continue to use the classifiers
trained earlier in the guided experiments (Section 5.2). The new
data was processed by the same attack framework to extract
keystroke-records and build feature vectors. We obtained a mean
classification accuracy of 52% and 61% for SH-NHHT and SH-
HHT, respectively. It was observed that the primary cause of
drop in classification accuracy resulted from faster typing, where
the rebounding motion of few key presses overlapped with their
next key press (see Figure 12). Such instances were observed
more often when two consecutive key presses were for number
adjacent to each other on the keypad. Although the classification
accuracy of naturally typed numbers is not as high as in the guided
experiments, it is high enough to be a significant threat.

5.7 Cross Device Performance
In order to further evaluate how the proposed attack framework
performs across different commercial wrist wearable or smart-
watch hardware, we test our trained classifiers (from Section
5.2) on keystroke motion data obtained from a smartwatch of a
different make and model. This simulates a situation where an ad-
versary trains classification models using one type of smartwatch
hardware and then employs those models to infer the keystrokes
of a target user who is using a completely different (possibly,
unknown) smartwatch. Such a situation is much more realistic. For
this set of experiments, we used a LG Urbane W150 smartwatch
that has a InvenSense M651 accelerometer and gyroscope sensor
and collected keystroke motion data from 12 completely new
participants. Motion data corresponding to 100 keystrokes were
collected from each of the new participants, and tested using
the classifiers trained earlier in Section 5.2. The new data was
collected at the same sampling frequency of 50 Hz. Results
(Figure 6) show that while mean classification accuracy dropped
slightly on the Urbane W150 (SH-NHHT: 70.08% vs. 67.41%,
SH-HHT: 71.16% vs. 70.83%), the variance is significantly lower
in case of the Gear Live (SH-NHHT: 26.62 vs. 56.26, SH-HHT:
17.24 vs. 77.0). Although such a trend is intuitive, it nevertheless
shows that keystroke inference using the propose framework is still
feasible with reasonable accuracy even in such a realistic setting.

5.8 Extending to QWERTY Keypads
Up until this point, our primary focus has been keystroke in-
ference attacks on numeric mobile keypads. We now briefly
investigate how our proposed attack framework performs against
alphanumeric mobile keypads with the standard QWERTY layout.
Intuitively, as the keys on a standard smartphone QWERTY
keypad are relatively smaller and placed closer to each other
(compared to keys on the numeric keypad), keystroke prediction
may suffer from high confusion with neighboring keys [37]. We
collected 1248 alphabet keystrokes from a completely new set
of 12 participants using the LG Urbane W150 smartwatch, with
equal distribution of alphabets (48 each). We then re-ran the
training and attack modules in the One vs. Rest setting, with
75% data used for training and 25% data used for testing. Table 3
summarizes the classification accuracy of the 26 alphabets, along
with two most confused keys predicted for each alphabet. As
anticipated, the classification accuracy is significantly lower on
the QWERTY keypad (compared to the numeric keypad), with an
average accuracy of 30.44%. While the low classification accuracy
of individual keys is prohibitive in carrying out effective inference
attacks, it is important to note that the most confused keys are
usually neighboring to the actual key. It is possible that we may be
able to further improve the accuracy of these inference attacks by
analyzing keyboard characteristics and/or performing a dictionary-
based search [38], [42].

5.9 Variations of the SH-NHHT and SH-HHT Attack Sce-
narios
In addition to the SH-NHHT and SH-HHT scenarios presented in
Figures 1(a) and 1(b), there is an additional variation for each
of these scenarios, as shown in Figures 13(a) and 13(b). For
SH-NHHT, the scenario 1(a) assumes that the smartphone and
smatwatch is on the left hand (and users type with the right hand).
A variation of this SH-NHHT scenario is having the smartphone
and smatwatch on the right hand and typing with the left hand
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TABLE 3: Classification accuracy of the 26 alphabets (in
percent), along with two most confused keys predicted for
each alphabet. Results averaged over all 12 participants.

Accuarcy 1st Confusion 2nd Confusion

a: 41.66 s: 25.00 z: 16.66
b: 25.00 v: 33.33 g: 16.66
c: 33.33 f: 25.00 v: 25.00
d: 16.66 s: 33.33 c: 25.00
e: 33.33 w: 33.33 d: 16.66
f: 16.66 d: 33.33 v: 16.66
g: 25.00 h: 58.33 b: 8.33
h: 33.33 g: 25.00 n: 25.00
i: 33.33 o: 25.00 u: 25.00
j: 16.66 h: 16.66 k: 16.66
k: 16.66 j: 41.66 m: 16.66
l: 25.00 k: 25.00 o: 16.66
m: 33.33 k: 25.00 n: 8.33
n: 25.00 h: 16.66 m: 16.66
o: 33.33 i: 16.66 l: 8.33
p: 50.00 o: 25.00 i: 8.33
q: 41.66 a: 16.66 w: 16.66
r: 25.00 e: 33.33 f: 16.66
s: 16.66 x: 25.00 z: 25.00
t: 33.33 f: 16.66 h: 16.66
u: 41.66 h: 33.33 k: 16.66
v: 25.00 c: 33.33 b: 25.00
w: 41.66 q: 25.00 e: 8.33
x: 41.66 z: 33.33 c: 8.33
y: 33.33 t: 41.66 u: 16.66
z: 33.33 a: 33.33 x: 8.33

Average Accuracy:
30.44

(a) (b)

Fig. 13: Variations of typing scenarios in Figures 1(a) and 1(b).

(13(a)). A similar variation (13(b)) can also be envisioned for
the SH-HHT scenario 1(b). We would like to analyze whether
the performance of our proposed keystroke inference framework
differs significantly for these variations. The same experiment as
in Section 5.2 was repeated by 12 new participants, each typing
100 randomly dictated numbers per variation. A two-tailed t-
test on the One vs. Rest classification accuracies for the SH-
NHHT variations in Figures 1(a) and 13(a) returned the value of
t = −0.46, p = 0.65. For the SH-HHT variations 1(b) and 13(b),
it returned t = 0.61, p = 0.54. Both results are not significant
at p<0.05, implying that our attack framework is not dependent
on these variations. Therefore, an adversary can still use the same
framework to carry out the inference attacks for these variations
by simply retraining the classifiers.

6 RELATIVE TRANSITIONS-BASED ATTACK
FRAMEWORK

As discussed earlier, unlike the SH-NHHT and SH-HHT sce-
narios, key press events in the DH-HHT scenario (Figure 1(c))

cannot be uniquely and accurately detected on the smartwatch.
To overcome this problem in the DH-HHT scenario, we leverage
on the observation that transitional movement between each pair
of keys produces characteristically unique motions on the wrist,
which can be accurately captured by the smartwatch. Accordingly,
for the DH-HHT scenario, the keystroke inference framework
(Figure 14) leverages on supervised machine learning to first
classify transitional movements between consecutive key presses.
Then, assuming a reasonable distribution of numbers typed, when
multiple transitional directions in between a target sequence of key
presses are traced on the key pad, we obtain a unique or highly
reduced possibilities for the target sequence.

Data Collection and Pre-Processing: The same data collec-
tion application that was used for the SH-NHHT and SH-HHT
scenarios is also used for the DH-NHHT scenario. Although the
data collection process is exactly the same, the pre-processing
operations are entirely different for DH-NHHT. Instead of detect-
ing key press events, our goal here is to detect the type of wrist
movement transition between every two consecutive key presses.
As a result, we use the labeled stream of data to create labeled
“transition-records” (Figure 15) and use them as the training set.
To create the training set, all linear accelerometer samples between
two consecutive key press events are used as the transition-record.

Transition Classification: We classify transitions based on
cardinal directions. The logic behind such a classification is that
transitions in the same direction results in similar wrist movement.
For example, wrist movement between numbers 4 and 1 would
be similar to wrist movement between 6 and 3 (North), wrist
movement between numbers 4 and 7 would be similar to wrist
movement between 6 and 9 (South), and so on. One classifier is
trained for each possible transitional direction, as listed in Table
4: North (N), South (S), East (E), West (W), Northeast (NE),
Northwest (NW), Southeast (SE), Southwest (SW) and Repeat
(O). To achieve higher inference ability through tracing (explained
later), the transition classifications must also be evenly populated.
The number of possible transitions in each of the above nine
categories follows a fairly even distribution, varying between 9
and 14.

As an adversary will not have access to labels L, in the attack
phase we use a variable-length moving window to check and
determine the occurrences of transitions. The moving window is
used to traverse (in steps of one sample) the linear accelerometer
data A in chronological order, and classify each window of linear
accelerometer samples into one of the nine directions. The length
of the window was varied from 10 samples (200 msec at 50
Hz) to 100 samples (2 sec at 50 Hz), to capture the variable
length intervals possible between key presses. When ten or more
consecutive windows were classified to be in the same direction,
the classification result was recorded and the centroid was used as
the key press time to form transition-records.

Feature Extraction: Contrary to the previous direct
classification-based attacks, where each key press event was
denoted in a fixed time period, transition periods between two
key presses can vary widely depending on typing habit, keypad
size, key pairs, etc. As a result, many of the time domain features
used in SH-NHHT and SH-HHT scenarios cannot be applied for
DH-NHHT. Thus, we rely mainly on frequency domain features,
such as FFT of individual axis readings of the transition-record,
their mean, correlation, spectral roll-off, spectral centroid, spectral
flux and power spectral density estimates, to learn and classify
transitions.
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Fig. 14: Overview of the relative transition-based attack framework for DH-NHHT typing scenario.
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Fig. 15: Time series of key press events in DH-NHHT, and their
corresponding linear accelerometer readings. In DH-NHHT
scenario, the wrist (along with the smartwatch) continues to
move in between key press events. As a result, key press events
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level.

TABLE 4: Classification of all 100 possible numeric transitions.

N 4-1, 5-2, 6-3, 7-4, 8-5, 9-6, 0-8, 7-1, 8-2, 9-3, 0-5, 0-2,
0-1, 0-3

S 1-4, 2-5, 3-6, 4-7, 5-8, 6-9, 8-0, 1-7, 2-8, 3-9, 5-0, 2-0,
1-0, 3-0

E 1-2, 2-3, 4-5, 5-6, 7-8, 8-9, 1-3, 4-6, 7-9

W 2-1, 3-2, 5-4, 6-5, 8-7, 9-8, 3-1, 6-4, 9-7

NE 4-2, 5-3, 7-5, 8-6, 0-9, 4-3, 7-6, 7-2, 0-4, 8-3, 7-3

NW 5-1, 6-2, 8-4, 9-5, 0-7, 6-1, 9-4, 9-2, 0-6, 8-1, 9-1

SE 1-5, 2-6, 4-8, 5-9, 7-0, 1-6, 4-9, 1-8, 4-0, 2-9, 1-9

SW 2-4, 3-5, 5-7, 6-8, 9-0, 3-4, 6-7, 3-8, 6-0, 2-7, 3-7

O 1-1, 2-2, 3-3, 4-4, 5-5, 6-6, 7-7, 8-8, 9-9, 0-0

Tracing and Recovery: To infer a target sequence of key
presses, the proposed framework tries to “trace” the transitions
between key presses on the numeric keypad. Tracing eliminates
all non-fitting key-pairs (the pair of keys that may have been
pressed before and after a transition) for each transition of the
target sequence, where the fitness of a key-pair is determined by
the preceding and following transitions. In case tracing results in
a uniquely identified key-pair for a transition, the keys pressed
before and after that transition can be directly inferred. In other
cases where tracing results in multiple possible key-pairs for a
transition, the keys pressed before and after that transition can
either be inferred by multiple trials or from the other adjoining
key-pairs (only if the adjoining key-pairs are uniquely identified).

After the transitions are classified, tracing of keys can be
performed using one of the following strategies: leftmargin=*

• Forward Tracing: The transitions are plotted on the keypad
in the same order as they happened in time (Function
F_Tracing() in Algorithm 3). In forward tracing, for
a transition between candidate key pair (p, q), if there
does not exists a pair (∗, p) that satisfies the directional
classification of the preceding transition, pair (p, q) is
eliminated from possible key pairs for that transition. The
F_Tracing() function works from left to right on the test
sequence.

• Backward Tracing: The transitions are plotted on the
keypad in the reserve order of how they actually happened
in time (Function B_Tracing() in Algorithm 3). In
backward tracing, for a transition between candidate key
pair (p, q), if there does not exists a pair (q, ∗) that satisfies
the directional classification of the following transition,
pair (p, q) is eliminated from possible key pairs for that
transition. The B_Tracing() function works from right
to left on the test sequence.

• Bidirectional Tracing: Both forward and backward trac-
ings are applied to reduce the possibilities for the target
sequence (Function BD_Tracing() in Algorithm 3).
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We use bidirectional tracing in our evaluations because bidi-
rectional tracing limits the propagation of any error that may be
introduced by a transition misclassification.

Algorithm 3 Tracing Algorithms

Transitions[N ] (N transitions in target sequence)
Directions[] = {∅}
KeyPairs[] = {∅}
for i = 1 to N do

Directions[i] = Classify(Transitions[i])
KeyPairs[i] = AllPossiblePairs(Directions[i])

end for

function F_TRACING(KeyPairs[])
for j = 2 to N do

for each pair (p, q) in KeyPairs[j] do
if ∃! a pair (∗, p) in KeyPairs[j − 1] then

Remove (p, q) from KeyPairs[j]
end if

end for
end for

return KeyPairs[]
end function

function B_TRACING(KeyPairs[])
for k = N − 1 to 1 do

for each pair (p, q) in KeyPairs[k] do
if ∃! a pair (q, ∗) in KeyPairs[k + 1] then

Remove (p, q) from KeyPairs[k]
end if

end for
end for

return KeyPairs[]
end function

function BD_TRACING(KeyPairs[])
return B_Tracing(F_Tracing(KeyPairs[]))
end function

7 EVALUATION OF RELATIVE TRANSITION BASED
ATTACK

In this section, we present the findings from our evaluation of the
relative transition based attack framework.

7.1 Experimental Setup
The same experimental setup and participants as in Section 5.1
were used for DH-NHHT. The only difference was that the
smartwatch was worn on the right hand by the participants, and
the smartphone was held in the left hand.

7.2 Constructing and Testing the Framework
We construct our transition classifiers based on training datasets
of labeled transition-records generated by the same 12 participants
who helped create the classifiers for the SH-NHHT and SH-HHT
scenarios. The same audio stream of uniformly distributed random
numbers between 0 to 9 guided the participants in typing 100
numbers. Out of the 1200 total numbers typed by all 12 partic-
ipants, we use 960 numbers (having 948 transitions) for training

Fig. 16: An example of how bidirectional tracing drastically
reduces the possibilities of the key presses. First the for-
ward tracing eliminates incompatible transitions (in red) in
chronological order. Then the backward transition removes
additional incompatible transitions in chronologically reverse
order. In this example, we are able to uniquely identify the
last 4 key-pairs using bidirectional tracing, which allows
unambiguous inference of the last 5 key presses.

and rest for testing. We test the accuracy of the transition classifiers
and tracing algorithms using two 10-digit long number sequences
per participant (24 total test sequences, 240 total numbers, and
216 total transitions). We calculate the accuracy of the different
tracing algorithms based on the number of correctly identified key
presses in the traced number sequence. In order to infer a key,
at least the preceding or following transitions should be uniquely
identified. For example, in the instance shown in Figure 16, the
transition 9 to 2 and 2 to 0 both have other contending key-pairs
(the incorrect transitions which are not removed by the tracing
algorithm because they fit in the overall sequence of transitions).
In such cases, it becomes impossible to determine the exact key
(2 in this example) pressed in one trial. However, although the
transition 2 to 0 have other contending key-pairs, the pressing of
key 0 can be inferred with the help of the uniquely identified 0 to
7 transition, following the key press. In case both the preceding
or following transitions are uniquely identified, the adversary can
be more confident about the inference. One may also notice that
the first and last number in a sequence are harder to infer, as there
exists only one transition for each.

In our evaluation, the transition classifiers were able to cor-
rectly classify 191 transitions-records (88.42% accuracy), while
the remaining 25 incorrect or unclassified transitions introduced
error in 17 of the test sequences. We also observe that an incorrect
prediction is more likely to occur immediately after a previous
incorrect prediction. One of the possible explanations behind such
an observation is that the transition behavior varies depending on
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TABLE 5: The 21 possible number sequences that satisfy the
bidirectional tracing obtained in Figure 16.

4-1-5-8-1-0-7-8-5-3 7-1-5-8-1-0-7-8-5-3 0-1-5-8-1-0-7-8-5-3
4-1-6-9-5-0-7-8-5-3 7-1-6-9-5-0-7-8-5-3 0-1-6-9-5-0-7-8-5-3
4-1-6-9-2-0-7-8-5-3 7-1-6-9-2-0-7-8-5-3 0-1-6-9-2-0-7-8-5-3
4-1-6-9-1-0-7-8-5-3 7-1-6-9-1-0-7-8-5-3 0-1-6-9-1-0-7-8-5-3
5-2-6-9-5-0-7-8-5-3 0-2-6-9-5-0-7-8-5-3 8-2-6-9-5-0-7-8-5-3
5-2-6-9-2-0-7-8-5-3 0-2-6-9-2-0-7-8-5-3 8-2-6-9-2-0-7-8-5-3
5-2-6-9-1-0-7-8-5-3 0-2-6-9-1-0-7-8-5-3 8-2-6-9-1-0-7-8-5-3
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Fig. 17: More ambiguously traced sequences require additional
number of trials (in the worst case).

the preceding and following transitions. In terms of inference
accuracy, 85 key presses out of the 240 test numbers were
unambiguously identified using the bidirectional tracing (43.75%
accuracy). We relate the relatively low inference accuracy to three
primary reasons: (a) incorrectly classified transitions introduce
error in not one but two key presses, (b) unclassified transitions
do not introduce error but there is no remedy to fill in the missing
information, and (c) even a very small number of contending key-
pairs makes it impossible to determine the exact key pressed.

Because most of today’s information systems acknowledge
natural human mistakes and allows multiple trials to validate
security tokens (pin, password, card number, etc.), adversaries can
easily take advantage of it to try all possible number sequences
derived from the output of bidirectional tracing. Accordingly, we
evaluate the inference accuracy using multiple trials (solving from
left to right), up to the maximum number of trials required to
correctly infer the full number sequence. For example, in the
instance shown in Figure 16, there can be 21 possible sequences
derivable from the output of bidirectional tracing (listed in Table
5). Results of multiple trials are presented in Figure 17, where
we see that more ambiguous sequences require additional number
of trials (in the worst case). We do not restrict the adversary to
a certain number of attempts (which would be system dependent)
because the actual sequence may or may not be tried in the limited
number of attempts. Instead, we evaluate the worst case scenario,
where the adversary has to try all possible sequences derived
from the output of bidirectional tracing. Note that we evaluate
this using only the 7 bidirectionally traced sequences for which all
the predicted transitions are correct.

7.3 Combining Smartwatch and Smartphone Data
As smartphones cannot capture transitional wrist movements of
the typing hand, we cannot merge feature vectors like it was
done in SH-NHHT and SH-HHT scenarios. As an alternative,
we found a novel way to combine smartphone motion sensor
data due to key taps, which was used in the classification-
based attacks (as evaluated in Section 5.5), with the smartwatch
transition-records obtained in DH-NHHT scenario. Based on the
previous observation that classifying transition-records itself is
highly accurate (88.42% accuracy), we continue using the same
attack framework. However, to overcome the limitations faced
in the inference process (after tracing is completed), classified
smartphone keystroke-records may be used to choose from the
multiple candidate sequences obtained as the output of the tracing
algorithm. We evaluate this attack using linear accelerometer
readings of the smartphone, which were additionally collected
during the DH-NHHT experiments of previous section. Keystroke-
records and feature vectors are extracted from the smartphone
data as it was done for SH-NHHT and SH-HHT. Elimination of
contending key-pairs and filling up of undetected transitions with
the help of classified smartphone keystroke-records (combined
with reasonably accurate classification of keystroke-records), re-
sulted in 82.50% unambiguous inference of key presses. This is
a substantial improvement in the inference accuracy, compared to
the 43.75% accuracy obtained earlier without the help of classified
smartphone keystroke-records.

7.4 A More Realistic Setting: Natural or Non-Controlled
Typing
Similar to SH-NHHT and SH-HHT experiments, the participants
were being directed by an audio stream in the above DH-NHHT
experiments, which may introduce a minor delay or disturbance in
each key press. As a result, we conducted a similar natural or non-
controlled typing experiment in the DH-NHHT scenario, where a
completely new set of 12 participants were instructed to type their
phone number followed by their residential zip code (15 numbers,
14 transitions). In this setting, out of a total of 168 transitions-
records, 134 were classified correctly (79.76% accuracy). The
remaining incorrect or unclassified transitions introduced error in
test sequences of 10 participants. Out of a total of 180 key presses,
69 were unambiguously identified using the bidirectional tracing,
thus giving an accuracy of 38.33%.

8 DISCUSSION

8.1 Limitations
Posture and Ambient Movement: In practice, wrist movement
patterns may change drastically based on the target user’s body
posture and orientation. In other words, the key press features
while sitting may differ substantially from the key press features
while laying down. One main limitation of our attack framework
is that it is not robust against such different body postures and
orientation. In order to overcome this, an attacker must train mul-
tiple classification models using data corresponding to different
user postures and orientations, and then apply the appropriate one
for the victim. This, if the attacker knows what was the victim’s
posture while typing. Similarly, if the target user is moving (for
example: walking, running, sitting inside a car or train, etc.) while
typing, keystroke events in the accelerometer/gyroscope data may
get masked and our framework may not be able to correctly
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infer them. However, we must point out that this issue is not
specific only to our attack framework, but other frameworks in
the literature suffer from a similar drawback.
Power Consumption: Another limiting factor of our attack can
be the power consumption rate on the smartwatch, due to the
continuous recording of sensor data at a high frequency. For
instance, the 300 mAh battery inside the Samsung Gear Live
dropped from 100% to 69% in an hour, while recording linear
accelerometer readings at 50 Hz. This limitation is less evident
in case of smartphones due to their significantly higher battery
capacity. To carry out a stealthy attack using the smartwatch, an
attacker may have to either reduce the sensor sampling rate, or
devise a mechanism to start the recording only when the potential
victim is typing.
Both Hand Typing: We cover three major typing styles in this
paper, while missing the case where a user holds the smartphone
and types using both hands. In this scenario, the motion captured
by the smartwatch will vary depending on which thumb is used
to type a key, and which hand the smartwatch is worn on. The
movement captured in this typing scenario will yield very different
results and requires a new inference technique. We plan to work
in this direction in the future.
Threats to Validity: Most of our experimental results were ob-
tained from analysis of keystrokes typed in a relatively controlled
setting, where participants were dictated on what to type. As a
result, it is possible that those results may not be representative of
how our attack framework may perform in more natural typing
scenarios. However, we must point out that we do investigate
the efficacy of our attack framework in several natural typing
scenarios (in Sections 5.6 and 7.4), and the obtained results show
that our inference framework has reasonable accuracy in these
scenarios as well.

8.2 Defenses
Defending against side-channel attacks is a much debated topic
[52]. Although modern mobile and wearable operating systems
offer access control on some sensors, sensors such as accelerome-
ter and gyroscope cannot be disengaged by the user. Moreover,
most mobile applications do not require explicit permissions
(either at install or run time) in order to access these sensors.
A straightforward defense approach is to safeguard all sensors
using system or user-defined access controls. However, such a
static access control will become increasing complex to manage
and will not protect against applications that gain legitimate access
to these sensors. Reducing the frequency at which applications
can sample data from these sensors is another potential defense
mechanism. A system-level monitoring mechanism that tracks the
context and frequency of sensor accesses, and appropriately flag
unwanted accesses requested by applications, could also serve as
a useful defense tool.

8.3 Enhancements
Random Walk Tracing: This is a tracing algorithm we propose
for use with very long number sequences typed in DH-NHHT sce-
nario. In this tracing algorithm, a random subsequence of varying
length is selected and bidirectional tracing is applied. The process
is repeated several times such that every transition is covered
multiple times, and each key press may end up having multiple
candidate keys. Majority voting may be used to determine the final
predicted keys (only if a key press has multiple candidate keys).

This tracing algorithm will greatly minimize the propagation of
any error that may be introduced by a transition misclassification.

9 CONCLUSION

In this paper, we comprehensively investigated the feasibility of
keystroke inference attacks on mobile numeric keypads by using
smartwatch motion sensor data as an information side channel.
We proposed two supervised learning-based frameworks to infer
keystrokes from smartwatch motion data in three popular mo-
bile holding and typing scenarios. We empirically evaluated the
performance and efficacy of our proposed inference frameworks
under various experimental settings (i.e., controlled versus natural
typing), by using different types of smartwatch hardware, by
using different types of motion sensors (i.e., accelerometer versus
gyroscope) and by fusing motion data from multiple sources (i.e.,
smartphone and smartwatch). We also evaluated the performance
of our attack framework on alphanumeric mobile keypads with a
QWERTY layout. Results from our various experimental studies
have shown that typing-induced motion data captured by smart-
watch sensors can be employed as an effective side-channel to
infer keystrokes on mobile keypads.
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