
Authors’ copy downloaded from: https://sprite.utsa.edu/

Copyright may be reserved by the publisher.

https://sprite.utsa.edu/

Date of publication xxxx xx, 20xx, date of current version September 21, 2018.

Digital Object Identifier 00.0000/ACCESS.2018.DOI

A Game-Theoretic Analysis of
Shard-Based Permissionless
Blockchains
MOHAMMAD HOSSEIN MANSHAEI1, MURTUZA JADLIWALA2, ANINDYA MAITI3, AND
MAHDI FOOLADGAR1
1Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
2Department of Computer Science, University of Texas at San Antonio, USA
3Institute for Cyber Security, University of Texas at San Antonio, USA

ABSTRACT Low transaction throughput and poor scalability are significant issues in public blockchain
consensus protocols such as Bitcoins. Recent research efforts in this direction have proposed shard-based
consensus protocols where the key idea is to split the transactions among multiple committees (or shards),
which then process these shards or set of transactions in parallel. Such a parallel processing of disjoint
sets of transactions or shards by multiple committees significantly improves the overall scalability and
transaction throughout of the system. However, one significant research gap is a lack of understanding
of the strategic behavior of rational processors within committees in such shard-based consensus protocols.
Such an understanding is critical for designing appropriate incentives that will foster cooperation within
committees and prevent free-riding. In this paper, we address this research gap by analyzing the behavior of
processors using a game-theoretic model, where each processor aims at maximizing its reward at a minimum
cost of participating in the protocol. We first analyze the Nash equilibria in an N -player static game model
of the sharding protocol. We show that depending on the reward sharing approach employed, processors
can potentially increase their payoff by unilaterally behaving in a defective fashion, thus resulting in a
social dilemma. In order to overcome this social dilemma, we propose a novel incentive-compatible reward
sharing mechanism to promote cooperation among processors. Our numerical results show that achieving a
majority of cooperating processors (required to ensure a healthy state of the blockchain network) is easier to
achieve with the proposed incentive-compatible reward sharing mechanism than with other reward sharing
mechanisms.

INDEX TERMS Sharding, Blockchain, Game Theory, Cooperation, Incentive Design.

I. INTRODUCTION

A blockchain is an append-only, immutable distributed
database that records a time-sequenced history of facts called
transactions. Transactions are typically grouped into blocks,
and the blockchain protocol enables the construction and
maintenance of consistent copies of the cryptographic hash-
chain of blocks in a distributed fashion. The first blockchain
protocol was introduced in 2009 by Satoshi Nakamoto to sup-
port the Bitcoin cryptocurrency [1]. A key aspect of this pro-
tocol is the consensus algorithm (also sometimes referred in
the literature as Nakamoto consensus) which enables agree-
ment among a network of processors or miners on the state of
the blockchain (identified by its cryptographic digest), under

the assumption that a fraction of them could be malicious or
faulty. In addition to this, as Bitcoin’s blockchain is permis-
sionless, i.e., no trusted infrastructure to establish verifiable
identities for processors exists or is assumed, consensus on
the blockchain’s state cannot be achieved using standard
distributed Byzantine fault-tolerant consensus algorithms in
the literature. In such a permissionless setting, the blockchain
protocol selects (randomly and in an unbiased fashion) one
processor once every 10 minutes on average (epoch), and this
selected processor gets the right to commit (or append) a new
block onto the blockchain. The network (other processors)
implicitly accept this block by building on top of it in the
next epoch or reject it by building on top of some other block

VOLUME 0, 2018 1

Manshaei et al.: A Game-Theoretic Analysis of Shard-Based Permissionless Blockchains

in the hash-chain.
Consensus in Bitcoin is thus long-term, i.e., a block is said

to be included in the blockchain if it is part of the longest
valid blockchain and has received a significant number of
confirmations1. The Bitcoin protocol uses a Proof-of-Work
(PoW) mechanism to select the leader (processor with the
right to commit a block) in each epoch in an unbiased
fashion, which is nothing but a hash puzzle that each pro-
cessor attempts to solve - one that succeeds is selected and
gets the right to propose the next block. As PoW involves
significant computation, Bitcoin’s protocol includes a reward
mechanism to incentivize processors to compete (in a fair
fashion) and to behave honestly. As of July 2018 [2], there
were a total of 1624 cryptocurrencies, a significant number
of which use the same code base as Bitcoin or are directly in-
spired by Bitcoin’s distributed consensus algorithm. The use
of blockchains and blockchain-based distributed consensus,
however, is not just restricted to cryptocurrencies. Systems
that can host and execute arbitrary distributed applications
(commonly referred to as “smart contracts") over a single
public permissionless hash-chain, for example, Ethereum
[3], have also become popular. Such systems also employ a
Bitcoin-like Proof-of-Work based consensus algorithm and
a related cryptocurrency (e.g., Ether in Ethereum) to incen-
tivize processors or miners to participate honestly in the
consensus process.

Despite its tremendous popularity, one significant short-
coming of Bitcoin’s consensus protocol (and of similar public
permissionless blockchain systems) is its low transaction
throughput and poor scalability. With an average inter-block
time of 10 minutes and a maximum block size of 10 MB,
Bitcoin’s transaction rate is currently only 7 transactions per
second [4]. Similarly, Ethereum can support only roughly 20
transactions per second. This is significantly lower than the
transaction rates afforded by centralized transaction process-
ing systems. For instance, PayPal can process more than 450
transactions per second while VisaNet can process anywhere
between 1667 and 56,000 transactions per second [4]. It is
clear that the current Bitcoin and Ethereum transaction rates
are not sufficient for many practical applications, and thus,
there have been significant efforts towards improving their
transaction throughputs, for example, BIP [5] and Bitcoin-
NG [6] for Bitcoin and Raiden [7] for Ethereum.

Similarly, there have been other significant efforts within
the research community towards improving the transac-
tion throughput and scalability of public permissionless
blockchain protocols in general. One key outcome of this
line of research is sharding [8]–[10], which proposes to peri-
odically partition the network of processors (in an unbiased
fashion) into smaller committees, each of which processes a
disjoint set of transactions (also called a shard2) in parallel
with other committees. As each committee is reasonably

1Number of blocks added on top of the block in question in the longest
valid blockchain.

2Note that the committees are working inside shards in these protocols.
Hence, we use the two terms interchangeably in the paper.

small, it can run a classical Byzantine consensus protocol
such as PBFT [11] to agree on a set of transactions rather
than the traditional Nakamoto consensus of Bitcoin, thus
increasing the overall transaction throughput of the system.
Although the idea of parallelizing the tasks of transaction
processing and reaching consensus (on a set of transactions)
by partitioning the processor network into committees is
promising, existing sharding proposals [8]–[10] fail to clarify
how processors will be incentivized to honestly participate
and discharge their committee duties.

Two facts about existing sharding protocols are relevant
to this discussion and should be highlighted: (i) the intra-
committee consensus algorithms (e.g., PBFT) employed by
existing protocols are inherently fault-tolerant, i.e., they will
operate correctly even in the presence of a certain number of
faulty or non-participating committee members, and (ii) the
agreed (or consensus) set of transactions within each com-
mittee is required to be ratified (or signed) by only a majority
of the committee members in order for those to be included
into a block. Now as participation in committee tasks (such
as transaction validation, signature creation, etc.) impose a
cost on processors, it is possible that rational processors
may choose not to participate in these tasks (and get away
with it as the protocol may still succeed at the end) if their
remuneration is not appropriately determined. For example,
if each processor within a committee is equally remunerated,
a rational processor may choose to free-ride, i.e., get paid
without participating in any committee work. In summary,
one key research gap in this line of research is a lack of
understanding of the strategic behavior of rational processors
in shard-based consensus protocols for public permissionless
blockchains. Such an understanding is critical for designing
appropriate incentives that will foster cooperation within
committees and prevent free-riding. Our goal in this paper
is to address this research gap.

In line with the above goal, we first model shard-based
protocols, and the interaction between processors in such
protocols, using a static non-cooperative game by systemati-
cally quantifying processor strategies in such a game and the
resulting payoffs. We show that in such a setting, if the total
reward (received at the end of the game when a new block
is successfully committed to the blockchain) is equally or
uniformly distributed among all the participating processors,
then the resulting strategic interactions can be characterized
using a game with social dilemma, such as a public goods
game. Consequently, we show that not participating in the
committee tasks (by all processors) is a Nash equilibrium of
the game. We further show that it is impossible to enforce
a cooperative Nash equilibria in this setting unless certain
improbable conditions are met. Hence, we extend the current
game model by considering fair sharing of rewards, instead of
equal sharing, where processors receive benefits only if they
have cooperated within their shards. In this new system, we
derive the Nash equilibria and conditions under which such
an equilibria can be achieved. Although this game is still
a public goods game, we were able to establish conditions

2 VOLUME 0, 2018

Manshaei et al.: A Game-Theoretic Analysis of Shard-Based Permissionless Blockchains

for achieving cooperation by processors towards executing
the committee tasks in this game. These conditions can be
derived and verified by processors before they decide on
their strategy to cooperate or defect in the game. Our results
show that it is possible to achieve a cooperative equilibium
in such a fair reward sharing system. Finally, we design
the incentive-compatible reward sharing protocol that further
improves upon the fair sharing protocol by introducing a
shard coordinator who can guide individual processors to
follow the optimal strategy (cooperate or defect), based on
a preview of the shard’s consensus status in each epoch.
Our numerical analysis show that the incentive-compatible
protocol can outperform both the uniform and fair reward
sharing protocols. To the best of our knowledge, this paper
is the first to investigate the selfish behavior of processors,
and its effect, in shard-based permissionless blockchains.

The rest of the paper is organized as follows. In Section II,
we discuss the state of the art and present a generic sys-
tem model for shard-based blockchain protocols, considering
rational processors. In Section III, we present the game
model and investigate all possible Nash equilibria under
different reward sharing schemes. In Section IV, we describe
the proposed incentive-compatible reward sharing protocol,
followed by numerical evaluations presented in Section V.
Related research efforts efforts have been outlined in Sec-
tion VI. We conclude the paper in Section VII.

II. SYSTEM MODEL
In this section, we first generically outline details of a shard-
based approach for achieving consensus in permissionless
blockchains. Then, we formally outline the various costs
involved for participating processors. Lastly, we clarify the
rationality assumptions related to the processors.

A. SHARD-BASED CONSENSUS PROTOCOL
Consider a network of N processors participating in a public
permissionless blockchain. Processors in such a network
do not have an identity assigned by a trusted third-party
or a public-key infrastructure, i.e., they use self-generated
pseudonyms as transient identifiers. For simplifying the ex-
position, we assume that all processors are similar to each
other in terms of computational capabilities. Further, we as-
sume that all processors are honest, but selfish (more details
on this will follow in section II-C).

Let time be divided into fixed-sized epochs. The network
accepts transactions in blocks, i.e., at the end of each epoch
the network accepts and commits a new block of transactions.
Any block B is composed of (or can be partitioned into)
k disjoint sets of transactions Bi, where Bi can be empty.
Each such disjoint set Bi is referred to as a shard and can be
defined based on some property(ies) of transactions within
that set, for example, least significant bits of the transaction
hash. The number of shards (k) is a variable quantity and
can grow linearly with the size of the network. The network
determines a binary validation function V , which takes as an
input a transaction (belonging to any shard) and any other

data representing the current state of the blockchain and
outputs whether the input transaction is valid or not, and all
processors have access to such a function V .

Now, given the above, a sharding or shard-based protocol
is a protocol which is run among the processors and which
outputs (at the end of each epoch) a block B containing k
disjoint shards Bi such that all honest processors agree on B
with a very high probability and all transactions within the
block B are valid (i.e., all transactions satisfy the validation
function V). The protocol does this by splitting the network
of processors into multiple disjoint committees, where each
committee processes (validates and agrees on) a separate
shard (Bi). The main steps in the protocol execution during
each epoch is illustrated in Figure 1. Below, we summarize
the main steps involved in sharding by outlining a classical
protocol called Elastico [8]. Recent research efforts such as
Omniledger [10] provide some enhancements and additional
functionalities to the original sharding proposal in Elastico,
but the key idea of partitioning the transactions into disjoint
shards and assigning a committee of processors to process
each shard in parallel remains the same in all shard-based
protocols.

A sharding protocol proceeds in epochs and in each epoch
the processors execute the following steps (in this order) [8]:

1) Committee Formation: First, each processor attempts
to generate a publicly verifiable identity by solving
some Proof-of-Work (PoW) puzzle. In other words,
each processor uses the solution of a PoW hash puz-
zle (i.e., the message digest that lies within the pre-
determined target) as an identity in that epoch. There
are two advantages of using a PoW puzzle for identity
creation: (i) network (other processors) can verify the
identity and, (ii) number of malicious sybils can be
limited due to the computation involved in solving the
puzzle. Each processor is then assigned to a committee
corresponding to its established identity (say, using the
s least significant bits of the identity). Moreover, each
committee processes a distinct shard based on this s-bit
identifier.

2) Overlay Setup: Next is the community discovery step
where processors discover identities of other proces-
sors in their committee by communicating with each
other. The outcome of this step is a fully-connected
overlay for each committee in the network.

3) Intra-Committee Consensus: Next, processors run a
standard byzantine agreement protocol such as PBFT
[12] within their committees to agree on a set of
transactions. Each committee then sends its consensus
set of transactions Bi (or shard) to a final committee
for inclusion in the new block B at the end of current
epoch. In order to be considered by the final committee,
each shard Bi needs to be signed by a simple majority,
i.e., by at least c2 +1 processors for a committee of size
c.

4) Final Consensus: A final committee (chosen based
on a designated s-bit final committee identifier) then

VOLUME 0, 2018 3

Manshaei et al.: A Game-Theoretic Analysis of Shard-Based Permissionless Blockchains

Nodes

…

Network Blockchain

Committee 1

in

Shard 1

Committee i

in

Shard i

Committee to Shard Assignments Committee k

in

Shard k

BFT BFT

…

Master Chain

Node

Committee Leader

Block header

Block body (Verified TXs)

TXs

Final Committee

BFT BFT

Shard 1 Shard (k-1) Shard k

Committee 1 Committee i Committee kS
te

p
 (

1
),

 (
2

)
S

te
p

 (
3

)
S

te
p

 (
4

),
 (

5
)

BFT

FIGURE 1: Conceptual view of a shard-based consensus
protocol.

takes the consensus shards (Bi) from the previous step
and merges these to create a final block B, creates a
cryptographic digest or hash of B and broadcasts it to
the rest of the network. During the merge operation,
each processor in the final committee first validates that
each shard Bi is signed by at least c

2 + 1 processors
in the correct committee and then computes a union
of all the shards to form the block B. After each
processor in the final committee computes a union
in this fashion, they then collectively run a byzantine
agreement protocol such as PBFT [12] to arrive at
a consensus on the final block B. The cryptographic
digest of the final consensus blockB needs to be signed
by a simple majority of the final committee before it
can be broadcast on the network.

5) Randomness Generation for Next Epoch: In the final
step of the protocol, the final committee generates a
set of random strings and broadcasts it to the network.
These random strings are used by the processors in the
identity creation and committee formation tasks of the

next epoch.

B. PROCESSOR COSTS
We now characterize the costs (including, computation and
communication costs) borne by the processors in each time
epoch due to their participation in the sharding protocol. It
should be noted that our goal here is not to arrive at a precise
quantification of these costs, rather to characterize them such
that they could be used to analyze the strategic behavior of
processors while participating in the protocol. The protocol
steps in each epoch, as outlined in the previous section,
can be basically grouped into two phases: (1) organization
phase and, (2) committee participation phase. During the
organization phase, the processors create identities using
PoW puzzles, form committees and identify other processors
in their committee (i.e., execute steps 1 and 2 in the protocol
above), whereas in the committee participation phase the
processors validate their respective shards and arrive at an
agreement with other committee members (i.e., execute steps
3, 4 and 5 in the protocol above).

It should also be clear from the protocol description above
that the organization phase precludes the committee par-
ticipation phase, and it is required or mandatory. In other
words, if a processor does not go through the organization
phase, it does not have an identity nor it gets assigned to
a committee, and so it cannot take part in the committee
participation phase. Similarly, it should also be clear that
the committee participation phase is not mandatory for pro-
cessors, i.e., a processor could choose to create a verifiable
identity and be assigned to a committee, but may choose
not to participate in tasks such as shard validation and intra-
committee consensus. If some processors do not take part
in the committee participation phase, it does not mean that
the protocol will fail. The inherent fault-tolerance of intra-
committee consensus protocols such as PBFT and the simple
majority rule employed in intra-committee voting implies
that a certain number of non-participation can be tolerated by
the protocol. For the sake of convenience, we assume that if
more than half (> c

2) of the processors within a committee of
size c do not participate in the committee participation phase,
the entire protocol for that epoch fails, i.e., no new block is
proposed in that epoch.

Thus, we can characterize the total cost for a processor to
participate in an epoch of the sharding protocol based on the
cost for executing the above two phases. For the organization
phase, let’s assume that a processor bears a cost cm, which we
refer to as the mandatory cost. It should be noted that cm is
a fixed cost and is independent of the number of transactions
processed by the processor. Moreover, as solving the PoW
puzzle is the most significant activity during the organization
phase, cm can be approximated using the current difficulty of
the PoW puzzle and the average computational power of all
the processors.

Accordingly, for executing the committee participation
phase let’s assume that a processor bears an optional cost
co, depending on whether the processor fully participates

4 VOLUME 0, 2018

Manshaei et al.: A Game-Theoretic Analysis of Shard-Based Permissionless Blockchains

in it or not. Unlike the mandatory cost, the optional cost
co has two components: (i) a fixed component and, (ii)
a transaction-dependent component. During the committee
participation phase, a processor performs activities such as
participation in intra-committee consensus the cost of which
can be bounded by a fixed average cost [12]. We represent
all these per-processor fixed costs during the committee
participation phase as cf . Another activity during this phase
that all processors are expected to perform is verifying the
validity of all outstanding transactions (they have received)
within their respective shards by using the validation function
V . Depending on the complexity of the validation function
V , this can be a significant cost (to a processor) which also
depends on the number of outstanding transactions being
validated. We represent the cost to validate each transaction
using V by cv . Hence, we can compute the total optional cost
coi for a processor Pi as:

coi = cf + |xji |c
v (1)

where xji is the vector of transactions received and validated
by processor Pi. The average per-processor cost (cti) for
participation in each epoch of the shard-based protocol can
thus be characterized as cti = cm + cf + |xji |cv .

One point that needs further clarification is why a proces-
sor may choose not to execute the committee participation
phase after executing the organization phase. Our rationality
assumption, which we describe next, provides this clarifica-
tion.

C. RATIONALITY ASSUMPTION
Earlier research efforts on sharding [8], [10] have assumed
a byzantine adversary where processors controlled by the
adversary can be arbitrarily malicious, i.e., malicious proces-
sors could arbitrarily deviate from the correct execution of
the protocol or could arbitrarily drop protocol messages. In
this work, however, we assume that processors are honest but
selfish. In other words, processors do not arbitrarily deviate
from protocol execution or drop protocol messages, but de-
cide against participation in the protocol only when there is
an incentive (financial or otherwise) to do so. Let us further
provide a brief intuition of the notion of rationality in this
setup. All processors receive some rewards if the protocol
execution in an epoch is successful, for example, in terms
of block rewards, transaction fees, etc. The precise nature
of rewards depend on the specific system or application
that the blockchain protocol enables. Moreover, as discussed
in the earlier section, all processors bear some costs for
fully participating in both phases of the protocol. The total
benefit or payoff received by processors in each epoch is the
difference between the obtained reward and the spent costs
in that epoch. A selfish (or rational) processor will always
choose a protocol participation strategy that improves its
benefit or payoff. If a processor does not execute the orga-
nization phase, it does not get any reward as it is not a part
of any committee. However, a rational processor’s strategy
could be to execute the organization phase but refrain from

TABLE 1: List of Symbols.

Symbol Definition
k Number of shards (or committees)
N Number of processors
xji Vector of received transactions by processor i in shard j
yj Vector of transactions submitted by shard j to Blockchain
c Minimum number of processors in each committee
τ Required number of processors in shard for consensus
r The benefit for each transaction
bi Benefit of processor i after adding the block
cti Total cost of computation for processor i
co Total optional costs in each epoch
cm Mandatory costs in each epoch to enter the shard
cv Cost of transaction verification
cf Fixed costs in optional cost
BR Block Reward
lj Number of cooperative processors in each shard
L Total number of cooperative processors in all shards

C
lj
j The set of all cooperative processors in shard j

D
n−lj
j The set of all defective processors in shard j

CL The set of all cooperative processors
DN−L The set of all defective processors

the committee participation phase. Such a selfish strategy
saves on the optional cost co and may result in a reward
if enough other processors participate fully, and thus may
provide more benefit or payoff to the rational processor. We
assume that a rational processor will always choose such a
selfish strategy which provides more benefit or payoff, if it
exists. In summary, the goal of each processor is to maximize
its individual payoff (received at the end of each epoch),
without maliciously trying to deviate or disrupt the protocol.
We assume that processors do not collude/coordinate in order
to jointly maximize their combined utility.

III. SHARD-BASED BLOCKCHAIN GAME
In this section, we present the game-theoretic aspects of a
shard-based blockchain protocol with multiple processors in
a honest but selfish environment. We first introduce a non-
cooperative N -Player game model that we refer to as the
shard-based blockchain game G. Upon starting an epoch
t, processors must decide whether to collaborate with each
other, verify transactions, and make a block to be appended
to the chain (i.e., take part in the community participation
phase), after the organization phase as we addressed in the
previous section. The key point of the game-theoretic anal-
ysis is to consider the computation costs for processors who
verify transactions and participate in consensus mechanism,
as presented in Section II-B and II-C, and the total benefits
when they agree on a valid block. Therefore, using a game-
theoretic analysis, we investigate whether block generation
can emerge in such a non-cooperative system. By means of
our game model and the related analysis, we would like to

VOLUME 0, 2018 5

Manshaei et al.: A Game-Theoretic Analysis of Shard-Based Permissionless Blockchains

show that with a uniform distribution of rewards in these
protocols, the interactions between processors fall in a cat-
egory of games, where there exists a social dilemma of all-
defection behavior. We then propose a novel reward sharing
protocol and address the conditions for having a new class of
equilibrium, where a subset of processors will be forced to
cooperate. Table 1 summarizes the notation used throughout
the paper.

A. GAME MODEL
Game theory allows for modeling situations of conflict and
for predicting the behavior of participants when they interact
with each other. In our shard-based blockchain game G, pro-
cessors must decide upon joining the shards whether to coop-
erate and contribute to optional costs (as addressed in Section
II-B) or not. We model the shard-based blockchain game
as a static game, because all processors must choose their
strategy simultaneously, after they have joined the shards.
This modeling decision also keeps our analysis tractable,
while conforming to a simple model of processor rationality.
The game G is defined as a triplet (P,S,U), where P is
the set of players, S is the set of strategies and U is the
set of payoff values. We also assume that at any time epoch
t, a game is played among all the processors in all shards,
because the benefits of successfully adding a block is shared
among all processors.
• Players (P): The set of players P = {Pi}Ni=1 cor-

responds to the set of processors who have already joined
shards in a given epoch time t. In fact, all N processors
must have already performed PoW and paid the mandatory
costs cm. Considering the number of shards in our system
model, i.e., k, we conclude that each shard has n = N/k
committee members. During this epoch time in our game, we
assume that each processor Pi in shard j receives the vector
xji of transactions to verify and participate in the consensus
algorithm.

As it is shown in Figure 2, we also assume that to perform
a consensus algorithm in each shard we need at least τ
processors who agree on a given list of transactions. For
example, in Elastico protocol which uses PBFT, τ is equal
to 2

3n. Finally, yj , j ∈ {1, ..., k} represents the result of
the consensus algorithm including the list of transactions that
would be added to the blockchain by shard j.
• Strategy (S): Each processor Pi can choose between

two moves si: (i) Cooperate C, or (ii) Defect D. Hence the
set of strategies in this game is S = {C,D}. The strategy
of processor Pi determines whether Pi participates in all
optional tasks presented in Section II or not. In particular,
if processor Pi plays C, it will accept and verify all received
transactions. In this case, it also cooperates in all consensus
algorithms and incurs cost co for its participation. Contrary
to a cooperative behavior, a given processor can refuse all
transaction verifications and simply do nothing during the
community participation phase (i.e., play D).
• Payoff (U): Without loss of generality, we assume that

each transaction will make r benefits, for example in form

1 j k

𝜏𝜏𝜏

CCC

C or D C or D C or D

𝑦ଵ 𝑦 𝑦

n
processors

Final
Block

FIGURE 2: In each shard at least τ processors among n pro-
cessors must be cooperative to perform consensus algorithm.
Each Shard j submits the final yj vector of transactions to
make the final block.

of a transaction or some other fee (a similar model exists
in Bitcoin and other popular cryptocurrencies). Hence, the
total benefit that a given shard j can make from transactions
is bj = r|yj |, where yj is the set of verified, signed, and
accepted transactions by shard j. This benefit term r for
the network is some function of the average transaction fee
included in the transactions and number of committee (shard)
members that have processed the transaction. A precise quan-
tification of r is not trivial and is considered out of scope
of this work. Finally, the total benefits that are made by all
transaction fees in the final appended block can be calculated
as TF = r

∑k
j=1 |yj |.

Recall that the total cost of cooperation for processor Pi is
equal to cti = cm+coi = cm+cf+|xji |cv if the processor acts
honestly and follows the protocol. All processors should pay
the mandatory costs, i.e., cm in order to be in a committee and
finally receive the reward. But they can avoid paying optional
cost co, including the cost of verifications. In summary, we
can divide processors into two groups of cooperative and
defective processors, based on whether they contribute to
optional tasks (i.e., play C and pay ct) or not (i.e., play D
and pay only cm). Let Cljj and Dn−ljj denote the sets of lj
cooperating players and n − lj defecting players in a given
shard j with n processors. Recall that in order to obtain a
consensus transaction vector yj in a given shard j, |Cljj | must
be greater than or equal to τ (|Cljj | ≥ τ).

After executing the protocol and inserting the computed
block to the blockchain at the end of the epoch, we assume
that the system receives two rewards. This assumption is
motivated from the observation in current public blockchain
applications such as Bitcoin and Ethereum. The first reward
is a fixed reward for adding a new block, called the block
reward (BR). The current block reward for Bitcoin, for
example, is 12.5 BTC [13]. The second reward is the sum of
transaction fees which is equal to TF = r

∑k
j=1 |yj |. Note

that all following analyses are based on the assumption that
each shard has already provided a non-empty yj . Due to lack
of clarity in shard-based blockchain proposals [8]–[10], we
assume that if one or more shards fail to provide a yj in an

6 VOLUME 0, 2018

Manshaei et al.: A Game-Theoretic Analysis of Shard-Based Permissionless Blockchains

epoch, the system cannot compute and append a new block
in that epoch.

If we assume that all processors receive an equal share of
profits after block computation (i.e., the existing protocol),
we can calculate the reward share for each processor as

BR+ r
∑k
i=1 |yj |

N
.

In other words, all processors receive equal share of the
rewards from block reward and total transaction fees. Hence,
we can compute the payoff of processor Pi in shard j by

uji (C) = bi−cti =
BR+ r

∑k
j=1 |yj |

N
−(cm+cf + |xji |c

v),

(2)
if we assume that the processor Pi was cooperative, i.e.

Pi ∈ C
lj
j . Similarly, if Pi is defective, i.e., Pi ∈ D

n−lj
j , its

payoff would be:

uji (D) =
BR+ r

∑k
j=1 |yj |

N
− cm. (3)

Considering the above calculated payoffs, we analyze the
game G next.

B. GAME ANALYSIS
In order to get an insight into the strategic behavior of the
processors, we apply the most fundamental game-theoretic
concept, named Nash equilibrium, introduced by John Nash
[14]:

Definition 1. In a Nash equilibrium strategy profile, none of
the players can unilaterally change his strategy to increase
his utility.

In other words, if in a non-cooperative game all strategies
are mutual best responses to each other, then no player has
any motivation to deviate unilaterally from the given strategy
profile. Nash also proved that any finite game has at least
one Nash equilibrium strategy profile. In non-cooperative
game theory, Prisoner’s dilemma or PD, discovered by Flood
and Dresher in 1950 and later formalized by Tucker [15],
is a classical 2-player game which shows why two rational
individuals might not cooperate, even if it appears that the
cooperative strategy is more beneficial for both of them (i.e.,
Pareto Optimality). In PD, each individual has two strategies
of cooperation and defection, and the defection strategy
strictly dominates the cooperation strategy. Hence, the only
Nash equilibrium in PD, is a mutual defection.

More than 20 years later, Hamburger defined the analogous
N -player version of PD game in [16]. This extension is called
public good game (PGG). In a PGG setting, each individual
can cooperate and pay a contribution of α or defect and do
not pay anything. Then all contributions would be summed
and multiplied by a reward factor γ > 1. Finally, the total
reward would be distributed among all users equally, whether
they have cooperated or defected. In other words, if n agents

out of N cooperate, their payoff would be γαn
N − α and the

defectors’ payoff is γαn
N . Indeed, the total payoff of all users

is maximized when everyone contributes to the public good.
However, it has been proved that the Nash equilibrium in this
game is defection by all users. A complete survey of PGGs
and related results is available in [17].

Following our definition for shard-based blockchain game
G, we show in the following theorem that G is a PGG. In
other words, the system fails to make any new block and
remain in the same state if all processors defect initially.

Theorem 1. In each epoch of a shard-based blockchain
game G with N processors, if rewards are equally shared
among all processors, then G reduces to a public goods
game.

Proof. Let us consider the strategy profile where all proces-
sors defect and do not pay optional cost co after joining to
the shards. We call this strategy profile All −D. The payoff
of each processor i would be then ui = −cm. In this case,
none of the processors can unilaterally change his strategy to
increase its payoff. Because, the only cooperative processor
cannot obtain any reward without the contribution of at least
τ − 1 other processors in its shard, as addresses in Section
II. In other words, the new payoff of each processor who
deviates would be−cm−cf−|xji |cv which is indeed smaller
than −cm. Hence, All − D is a Nash equilibrium profile in
this game and G is a PGG.

Theorem 2 further shows that we can never enforce an all-
cooperation strategy (All − C) in the game G, as it is not a
Nash Equilibrium.

Theorem 2. In each epoch of a shard-based blockchain
game G with N processors, if rewards are equally shared
among all processors, we cannot establish All-Cooperation
strategy profile as a Nash equilibrium.

Proof. We first assume that all N processors have already
cooperated in transaction verifications (i.e., All−C strategy
profile) and payed the optional cost co. We can compute the
payoff of each processor Pi by Equation (2). Hence, if a given
processor deviates from the cooperation and play defection
unilaterally, its payoff would be equal to Equation (3), which
is always greater than cooperative payoffs at Equation (2).
Hence, each user has incentive to deviate unilaterally and
increases its payoff. Then, theAll−C strategy profile is never
a Nash equilibrium.

Finally, Theorem 3 shows the conditions under which
we can enforce an equilibrium in game G, where some
processors cooperate.

Theorem 3. Let Cljj and Dn−ljj denote the sets of lj coop-
erating processors and n − lj defecting processors inside
each shard j with n processors. If L =

∑k
j=1 lj is the total

number of cooperative processors, (CL,DN−L) represents
a Nash equilibrium profile in each epoch of the game G, if

VOLUME 0, 2018 7

Manshaei et al.: A Game-Theoretic Analysis of Shard-Based Permissionless Blockchains

and only if lj = τ in all shards j, where CL =
⋃
j C

lj
j and

DN−L =
⋃
j D

n−lj
j .

Proof. If in all shards, there exist exactly lj = τ cooper-
ative processors, any cooperative processor cannot deviate
unilaterally to increase its payoff. Because, the deviation
will remove yj transaction fees from the benefits and con-
sequently its payoff would be decreased. In the worst case,
the system could even potentially fail to add a new block to
the chain and all benefits would be zero. Moreover, similar to
previous cases, there is no incentive to deviate for defective
processors, since they must pay an extra charge for their
cooperation, while this will not change the result of the
consensus algorithm.

The above theorems prove that if rewards are uni-
formly distributed among processors, a cooperative equilibria
cannot be enforced in shard-based public permissionless
blockchains. Hence, in the following section we define a
new reward sharing approach, which promotes cooperation
among processors by providing appropriate incentives.

C. FAIR REWARD SHARING
In this section, we extend our game model to include a fair
reward sharing approach, where each processor receives a
reward if and only if it has already cooperated with other
processors within the shard. Let’s call this new game GF ,
in which the payoff of cooperative processors in set Clj is

uji (C) =
BR

klj
+
r|yj |
lj
− (cm + cf + |xji |c

v), (4)

Recall that we assume lj ≥ τ for the consensus algorithm
and each shard j will submit a non-empty yj set to the
blockchain. Analysis of the case where the processors cannot
make a consensus on a given vector of transactions can be
easily extended from our model, by assigning BR and r a
value of zero (no benefits). As Equation (4) shows, we first
assume that the BR is uniformly distributed among shards
and each cooperative processor can receive a share of it.
Moreover, each shard j receives all fees for all transactions
that it has submitted to the blockchain. Then, in each shard
this reward is uniformly distributed among all cooperative
processors. It is worth mentioning that |xji | may not always
be equal to |yj |. It means that a processor Pi might be
cooperative but finally all other processors may agree on
a vector of transactions yj that is different from xji . Thus,
contrary to the standard shard-based protocols, in GF the
defective processors’ payoff can be calculated as

uDi = −cm, (5)

because the defective processors will not receive any benefit.
It is easy to show that the conditions of Theorem 1 still hold
in the new game GF and the game GF is PGG. However, we
can show that in this newly defined game G, it is easier to
enforce users to cooperate at a Nash equilibrium profile. We
derive the conditions under which there exists a cooperative

Nash equilibrium profile in game GF , with the following
theorem.

Theorem 4. Let Cljj and Dn−ljj denote the sets of lj coop-
erating processors and n − lj defecting processors inside
each shard j with n processors, respectively. (CL,DN−L)
represents a Nash equilibrium profile in each epoch of game
GF , if the following conditions are satisfied:

1) In all shards j, lj ≥ τ .
2) If for a given processor Pi in shard j, xji = yj , then

the number of transactions |xji | must be greater than

θ1c =
cf−BR

klj

r/lj−cv

3) If for a given processor Pi in shard j, xji 6= yj , then
the number of transactions |xji | must be smaller than

θ2c =
BR
klj

+
r|yj |
lj
−cf

cv .

Proof. The number of cooperative processors must be greater
that the consensus threshold τ , otherwise the cooperative
processors will not receive any transaction and block reward
benefits for their cooperation. Hence, they can increase their
payoff by unilaterally deviating from cooperative strategy.

We now find the largest group of cooperative processors lj
in each shard, where no processor in Dn−ljj can join Cljj to
increase its payoff. Let’s assume that l∗j is this largest set of
processors. If processor P ji is among the set of cooperative
processors, then it will not unilaterally deviate if its payoff
(calculated by Equation (4)) is greater than −cm. Two possi-
ble cases could happen in this case. First, P ji could be among
processors who have the same vector of transactions as the
output of the shard, i.e., xji = yj . In this case, P ji will not
deviate from cooperation if:

BR

klj
+
r|xji |
lj
− (cm + cf + |xji |c

v) ≥ −cm, (6)

which shows that xji ≥ θ1c , where

θ1c =
cf − BR

klj

r/lj − cv
.

In the second case, processor P ji have cooperated with
others in Cljj , but its vector of transactions is different from
the output of the shard, i.e., xji 6= yj . Hence, the following
condition must be satisfy if this user wants to remain in the
cooperative set.

BR

klj
+
r|yj |
lj
− (cm + cf + |xji |c

v) ≥ −cm, (7)

which shows that xji < θ2c , where

θ2c =

BR
klj

+ r|yj |
lj
− cf

cv
.

If l∗j represents the largest set of cooperative processors in
each shard, then (CL,DN−L) would be the unique coopera-
tive Nash equilibrium of the game GF . Please note that this

8 VOLUME 0, 2018

Manshaei et al.: A Game-Theoretic Analysis of Shard-Based Permissionless Blockchains

NE is a unique cooperative equilibrium of the game, as we
have already found the largest set of cooperative processors
in all shards.

Note that by increasing the optional costs of computation
(whether cf is in the numerator or cv in denominator of θC)
and for any given number of transactions |xji |, processors will
be tempted to be more defective as the threshold θ1c will be
increased. This is in line with our intuition that processors
are not cooperative if the cost of cooperation is high. On
the other hand, the calculated threshold shows that by in-
creasing the number of processors N and consequently the
number of shards k, the processors would be more defective.
This is representing the case where the processors will not
cooperate in the hope that other processors will participate
in the transaction verifications and other optional tasks in
the defined protocol. Moreover, as the reward is smaller, the
processor must obtain more benefits from the transaction
fees to have positive payoff. In other words, cooperative
processors have less incentives to cooperate, because the
number of participants is more and they will receive smaller
reward.

Recall that the game GF is still a social dilemma game, but
with the new reward distribution approach we can provide
enough incentives to enable processor cooperation. Our re-
sults in this section showed that a shard-based permissionless
blockchain protocol could be potentially a PGG and pro-
cessors could remain in All − D equilibrium without any
reward. We also showed that the cooperation can be enforced
under some conditions where the number of transactions are
large enough for the processors. Next we apply the results
from Theorem 4 to design an incentive-compatible sharding
protocol for public permissionless blockchain.

IV. INCENTIVE-COMPATIBLE REWARD SHARING
As discussed earlier, in any shard-based protocol, processors
may not have enough incentives to cooperate and verify
transactions, which leads them to a social-dilemma. In other
words, the decision of each processor (to cooperate or defect)
exclusively depends on the number of received transactions
compared to a fixed threshold. Our game-theoretic evaluation
allows us to design a more sophisticated protocol - the
incentive-compatible reward sharing - that extends current
shard-based protocols by considering optimal strategies of
processors and enforcing cooperation in these protocols. The
incentive-compatible reward sharing protocol is based on our
results for fair reward distributions presented in Section III.

Algorithm 1 outlines the main steps of our proposed
protocol. Comparing to the standard shard-based protocols,
the main difference of our proposed incentive-compatible
protocol is that we first announce to processors whether
the cooperation would be in their interests. The protocol
proceeds as follows. The processors first try to solve the PoW
puzzle and obtain an ID to participate in a committee. After
committee formation and assignment, each processor Pi in
shard j receives a list of xji transactions to verify.

Algorithm 1 Incentive-Compatible Protocol
procedure INITIALIZATION AND COMMITTEE CREATION

ID, Shard← ComputeID(epochRandomness, IP, PK)
xi ← ShardTransactions(Shard)

end procedure
5: procedure COOPERAIVE/DEFECTIVE NODE SELECTION

Pi sends H(xji) to Coordinator
if Coordinator then

Receive H(xji)s
lj ←Maximum number of processors with

10: common transactions
if lj < τ then

return All −D
else

Prepare the list of lj processors Cljj
15: Calculate θ1c and θ2c from Theorem 4

return θ1c , θ2c , and Cljj
end if

end if
end procedure

20: procedure SHARD PARTICIPATION (CONSENSUS)
if Pi ∈ C

lj
j and |xji | ≤ θ

1
c then

return Defect
else if Pi /∈ C

lj
j and |xji | ≥ θ

2
c then

return Defect
25: end if

Verify transactions and create a set of verified transactions yj by all
remaining cooperative processors

Consensus on verified transactions
Sign BFT agreement result
return Signature, Agreed block’s header

30: end procedure
procedure VERIFICATION, REWARD, AND PUNISHMENT

Verify whether Pi ∈ CL have cooperated in each shard
Distribute rewards among cooperative Pi according to
Equation (4)

35: end procedure

At this stage, all processors calculate the H(xji) and
submit it to a coordinator, where H is a predefined hash
function. Note that the coordinator could be potentially one
of the processors that has been selected randomly in each
shard. This coordinator could be a centralized trusted third
party as well, as it does not receive any sensitive information.
The coordinator then finds the maximum subset of processors
with similar H(xji). This will estimate lj and Cljj , which will
be then used to calculate the θ1c and θ2c .

As described in Algorithm 1, the incentive-compatible
protocol assists processors in selecting the optimal strategy
in a given epoch. We assume that the set of cooperative
processors Cljj and the set of defective processors Dn−ljj are
publicly announced in each shard. In each epoch, the protocol
defines publicly which rational processor must cooperate or
defect, by considering the number of received transactions
by all processors and based on the results in Theorem 4. At
the end of committee participation phase, it is easy to verify
if a given processor Pi has already followed the recommen-
dations by the incentive-compatible protocol or they have
deviated from the defined strategies. In case a processor in
Cljj has not cooperated in this phase, the incentive-compatible
protocol will not give this processor any reward at the end of
this epoch. This is also a novel punishment approach that has
been added to our proposed protocol compared to previous

VOLUME 0, 2018 9

Manshaei et al.: A Game-Theoretic Analysis of Shard-Based Permissionless Blockchains

ones.

V. NUMERICAL ANALYSIS
We conduct a comprehensive set of numerical simulations,
in order to validate how our proposed incentive-compatible
protocol compares with uniform and fair reward sharing pro-
tocols in shard-based blockchains. We first detail the experi-
mental setup used to simulate a basic shard-based blockchain
in Section V-A. Variants of the simulation were used to
analyze multiple parameters that may affect the strategy of
individual processors, and thereby its effect on the successful
operation of the blockchain network.

A. EXPERIMENTAL SETUP
We simulate a shard-based public permissionless blockchain
with approximately N (±1%) processors that are selfishly
following a protocol to reach consensus in each shard, then
combine all shards to add the next block, and finally collect
their reward at the end of each epoch. We assume committees
of size 100 (±1%), and the required number of processors in
each shard for consensus is τ ≈ 51. Also, the number of
committees (and shards) grow linearly w.r.t. the number of
processors in the network (k ≈ N

100). Each processor in the
network is assumed to receive |xji | ≈ |yj | (±1%) transac-
tions corresponding to the shard it belongs to. As imperfect
views of the network is common occurrence in real-world
networks, we also assume that the number of processors with
xji 6= yj is approximately 15%. We present mean results
of 100 iterations for each combination of parameters (in
Figures 3-6), i.e., every point in the graphs was obtained after
averaging the results of 100 independent epochs with that
particular set of parameters.

B. NUMBER OF TRANSACTIONS
We first analyze the effect of varying the average number of
transactions |xji | between 500 and 15000. The corresponding
ratios of cooperative and defective processors is plotted in
Figure 3. As intuitive, the uniform reward sharing results in
all defect (Figure 3a), and thus no block is ever added to the
blockchain. In case of fair and incentive-compatible reward
sharing protocols (Figure 3b and 3c, respectively) we observe
that processors opt for all defect strategy when the number
of transactions is low, but eventually change their strategy
to cooperate as the number of transactions gets high enough
to make a profit. More importantly, the proposed incentive-
compatible reward sharing protocol achieves a majority of
cooperative processors for lesser number of transaction than
in the case of fair sharing, which is favorable.

C. BLOCK REWARD
We next analyze the effect of varying the block reward BR
between 1000 and 7000, and the corresponding ratios of
cooperative and defective processors is plotted in Figure 4.
As before, the uniform reward sharing results in all defect
(Figure 4a), regardless of the value of the block reward.
In case of fair and incentive-compatible reward sharing

protocols (Figure 4b and 4c, respectively) we observe that
processors opt for all defect strategy when the block reward
is low, but eventually change their strategy to cooperate as
the block reward gets high enough to make a profit. Again,
the proposed incentive-compatible reward sharing protocol
achieves a majority of cooperative processors for lesser val-
ued block reward than in the case of fair sharing, which is
favorable.

D. SIZE OF THE NETWORK

The number of processors in the network in a given epoch can
vastly impact the strategy for individual processors, because
if a small reward is shared between a large number of cooper-
ative processors, it may not cover other costs associated with
participation (such as cf). We observe this intuition in effect
in Figure 5, where N is varied between 100 and 6000. Both
the proposed incentive-compatible and fair reward sharing
protocols lose majority of cooperative processors when N
is increased significantly. However, the proposed incentive-
compatible reward sharing protocol retains a majority of
cooperative processors for greater number of processors than
in the case of fair sharing, which is desirable. As before,
the uniform reward sharing results in all defect (Figure 5a),
regardless of the number of processors.

In order to better understand why cooperative processors
flip to being defective, we also plotted the corresponding
weighted utility of processors in Figure 6. In case of both
fair and incentive-compatible protocols, the average utility
drops significantly with increasing number of processors.
The average utility gradually converges at about−cm (which
is −10 in our simulation). As utility by cooperation drops
below −cm, processors flip to being defective and incur only
−cm. Also, in uniform reward sharing we see a constant−cm
utility for all (defective) processors.

E. DISCUSSION AND LIMITATIONS

Our goal in this work was to design practical incentive mech-
anisms for eliciting cooperation in shard-based blockchains.
The above analytical and empirical results shows how our
proposed reward sharing mechanism promotes cooperation in
shard-based blockchains, and thwarts free-riding processors.
Nonetheless, there exists certain limitations in the proposed
mechanism, discussed below, some of which we plan to
address in the future.
Inter-Shard Communication. Due to the lack of commu-
nication between committees, cooperative processors in a
shard where consensus is reached, can suffer when another
committee fails to reach consensus (because no block is
added to the blockchain if one or more shards fail). This can
be resolved if an inter-shard communication is established in
Algorithm 1, wherein coordinators can exchange consensus
status and inform potentially cooperative processors about
the state of consensus in other shards as well. We plan to
include inter-shard communication in our future work, and
analyze how the game changes due to it.

10 VOLUME 0, 2018

Manshaei et al.: A Game-Theoretic Analysis of Shard-Based Permissionless Blockchains

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 2500 5000 7500 10000 12500 15000

R
at

io
 o

f
C

o
o

p
er

at
iv

e
an

d

D
ef

ec
ti

v
e

N
o

d
es

C

D

𝒚𝒋

(a) Uniform

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 2500 5000 7500 10000 12500 15000

R
at

io
 o

f
C

o
o

p
er

at
iv

e
an

d

D
ef

ec
ti

v
e

N
o

d
es

C

D

𝒚𝒋

(b) Fair

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 2500 5000 7500 10000 12500 15000

R
at

io
 o

f
C

o
o

p
er

at
iv

e
an

d

D
ef

ec
ti

v
e

N
o

d
es

C

D

𝒚𝒋

(c) Incentive-Compatible

𝑩𝑹 1000

𝒄𝒎 10

𝒄𝒇 6

𝒄𝒗 0.0005

𝒓 0.1

𝑷(𝒙𝒊
𝒋
≠ 𝒚𝒋) 15%

𝑵 ≈ 3000

𝒏 ≈ 100

𝒚𝒋 ≈ 500-15000

(d) Simulation Parameters

FIGURE 3: Ratio of cooperative and defective processors for different sizes of yj .

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1000 3000 5000 7000

R
at

io
 o

f
C

o
o

p
er

at
iv

e
an

d

D
ef

ec
ti

v
e

N
o

d
es

Block Reward (BR)

C

D

(a) Uniform

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1000 3000 5000 7000

R
at

io
 o

f
C

o
o

p
er

at
iv

e
an

d

D
ef

ec
ti

v
e

N
o

d
es

Block Reward (BR)

C

D

(b) Fair

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1000 3000 5000 7000

R
at

io
 o

f
C

o
o

p
er

at
iv

e
an

d

D
ef

ec
ti

v
e

N
o

d
es

Block Reward (BR)

C

D

(c) Incentive-Compatible

𝑩𝑹 1000-7000

𝒄𝒎 10

𝒄𝒇 6

𝒄𝒗 0.001

𝒓 0.1

𝑷(𝒙𝒊
𝒋
≠ 𝒚𝒋) 15%

𝑵 ≈ 1000

𝒏 ≈ 100

𝒚𝒋 ≈ 10000

(d) Simulation Parameters

FIGURE 4: Ratio of cooperative and defective processors for different values of BR.

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 2000 4000 6000

R
at

io
 o

f
C

o
o

p
er

at
iv

e
an

d

D
ef

ec
ti

v
e

N
o

d
es

Number of Processors (N)

C

D

(a) Uniform

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 2000 4000 6000

R
at

io
 o

f
C

o
o

p
er

at
iv

e
an

d

D
ef

ec
ti

v
e

N
o

d
es

Number of Processors (N)

C

D

(b) Fair

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 2000 4000 6000

R
at

io
 o

f
C

o
o

p
er

at
iv

e
an

d

D
ef

ec
ti

v
e

N
o

d
es

Number of Processors (N)

C

D

(c) Incentive-Compatible

𝑩𝑹 10000

𝒄𝒎 10

𝒄𝒇 6

𝒄𝒗 0.001

𝒓 0.1

𝑷(𝒙𝒊
𝒋
≠ 𝒚𝒋) 15%

𝑵 ≈ 100-6000

𝒏 ≈ 100

𝒚𝒋 ≈ 10000

(d) Simulation Parameters

FIGURE 5: Ratio of cooperative and defective processors for different values of N .

Inclusion of Malicious Processors. In this work we consider
only honest but greedy (or selfish) processors (each trying to
maximize its utility) who would follow the instructions of a
coordinator. However in real-world, malicious processor(s)
may also exist whose sole objective may be to disrupt the
blockchain network. Such malicious processors may misbe-
have at various stages of the protocol, such as reporting false
H(xji) or not following coordinator’s instruction to cooperate
(or defect). As part of our future work, we plan to include
malicious processors in the game and re-analyze the game.

Parametric Values. The parametric values chosen for our
numerical analysis was primarily to showcase the trends
observable across the three different reward sharing mech-
anisms. They may or may not be reflective of values in a
real shard-based blockchain network, but we did our best to
establish the inequalities between parameters as completely
as possible.

VI. RELATED WORK

In this section, we briefly outline the efforts in the literature
towards improving the scalability and transaction rate of
consensus protocols in public permissionless blockchains.
For an exhaustive survey of blockchain consensus protocols
in the literature, readers are referred to [18]. The original
Nakamoto consensus protocol [1] of Bitcoin which em-
ployed a leader selection using PoW puzzles (to commit the
next block) suffered from poor scalability and transaction
throughput. Bitcoin-NG [6] attempted to improve Bitcoin’s
performance by employing microblocks. In Bitcoin-NG, sim-
ilar to Bitcoin, a leader is selected using PoW in each epoch.
However, unlike Bitcoin, the leader can continue to append
microblocks (containing transactions) to the blockchain for
the duration of its epoch, until a new leader is elected.

As leader or single node based (implicit) consensus al-
gorithms such as Nakamoto consensus and Bitcoin-NG still
suffer from poor performance, fault-tolerance and consis-
tency issues, the community’s focus shifted on designing
blockchain consensus protocols using a committee of nodes,

VOLUME 0, 2018 11

Manshaei et al.: A Game-Theoretic Analysis of Shard-Based Permissionless Blockchains

-20

0

20

40

60

80

100

120

0 2000 4000 6000

W
ei

g
h

te
d

 A
v

er
ag

e
U

ti
li

ty

Number of Processors (N)

C

D

(a) Uniform

-20

0

20

40

60

80

100

120

0 2000 4000 6000

W
ei

g
h

te
d

 A
v

er
ag

e
U

ti
li

ty

Number of Processors (N)

C

D

(b) Fair

-20

0

20

40

60

80

100

120

0 2000 4000 6000

W
ei

g
h

te
d

 A
v

er
ag

e
U

ti
li

ty

Number of Processors (N)

C

D

(c) Incentive-Compatible

𝑩𝑹 10000

𝒄𝒎 10

𝒄𝒇 6

𝒄𝒗 0.001

𝒓 0.1

𝑷(𝒙𝒊
𝒋
≠ 𝒚𝒋) 15%

𝑵 ≈ 100-6000

𝒏 ≈ 100

𝒚𝒋 ≈ 10000

(d) Simulation Parameters

FIGURE 6: Weighted average utility of cooperative and defective processors for different values of N .

rather than a single node (or leader). While committee-
based consensus algorithms were introduced more than two
decades ago [19], much recently Decker et al. [20] proposed
one of the first committee-based consensus protocols for pub-
lic blockchains, named PeerCensus. However, PeerCensus
did not clarify how committee formation is done and how
an honest majority can be ensured within the committee.
Follow up works [21]–[24] in similar direction improved
the practicality of such single committee-based consensus
protocols by proposing different strategies on how unbiased
committees can be formed.

Although single committee consensus algorithms provide
significantly improved performance compared to single node
or leader-based consensus algorithms, one major limitation
of such techniques is that they do not scale well. Moreover,
increasing committee size in such techniques comes at the
expense of a decreased throughput. This motivated the design
of blockchain consensus protocols that employ multiple com-
mittees. The main idea in these protocols is to split the trans-
actions among multiple committees (or shards), which then
process these shards or set of transactions in parallel. This
also improves the overall scalability of the system. RSCoin
[25] was proposed as a shard-based blockchain technique for
centrally-banked cryptocurrencies, while Elastico [8] was the
first shard-based consensus protocol for public blockchains.
Omniledger [10] and Rapidchain [9] are some of the recently
proposed shard-based public blockchain protocols that at-
tempt to address the scalability and security issues of Elas-
tico. Despite the recent interest in shard-based protocols for
improving transaction throughput and scalability in public
blockchains, there have been no prior efforts in the literature,
until this one, that study the rational behavior of processors
or miners in such a multiple committee approach.

VII. CONCLUSIONS

In this paper, we comprehensively studied the problem of
selfishness in shard-based permissionless blockchains. We
first introduced a system model to capture the main opera-
tional parameters in current shard-based blockchain proto-
cols. Next, we evaluated the strategic behavior of processors
in such protocols by employing concepts from game theory.
Specifically, we modeled shard-based blockchain protocols
as n-player non-cooperative games using different reward

sharing scenarios and obtain the Nash equilibria (NE) strat-
egy profile for each scenario. Based on our analytical results
under different reward sharing scenarios, we designed an
incentive mechanism for shard-based blockchain protocols
which would enforce cooperation among processors by guar-
anteeing optimal incentive distribution. Our numerical anal-
ysis also validated that the proposed reward sharing mecha-
nism outperforms uniform reward sharing and provides more
incentive for cooperation when the block reward or number
of transactions is small. This work is the first step towards a
deeper understanding of the effect of non-cooperative behav-
ior in shard-based blockchains.

REFERENCES
[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” bit-

coin.org, 2009.
[2] “All Cryptocurrencies.” https://coinmarketcap.com/all/views/all/, July

2018.
[3] “Ethereum project.” https://ethereum.org/, July 2018.
[4] “Scalability - Bitcoin Wiki.” https://en.bitcoin.it/wiki/Scalability/, July

2018.
[5] J. Garzik, “Bitcoin Improvement Proposal 102.” https://github.com/

bitcoin/bips/blob/master/bip-0102.mediawiki, 2015.
[6] I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse, “Bitcoin-ng: A

scalable blockchain protocol.,” in NSDI, pp. 45–59, 2016.
[7] “The Raiden Network.” https://raiden.network/, July 2018.
[8] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena, “A

secure sharding protocol for open blockchains,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
pp. 17–30, ACM, 2016.

[9] M. Zamani, M. Movahedi, and M. Raykova, “RapidChain: A Fast
Blockchain Protocol via Full Sharding.” Cryptology ePrint Archive, Re-
port 2018/460, 2018. https://eprint.iacr.org/2018/460.

[10] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and B. Ford,
“Omniledger: A secure, scale-out, decentralized ledger via sharding,” in
2018 IEEE Symposium on Security and Privacy (SP), pp. 19–34, 2018.

[11] M. Castro and B. Liskov, “Practical byzantine fault tolerance and proactive
recovery,” ACM Trans. Comput. Syst., 2002.

[12] M. Castro, B. Liskov, et al., “Practical byzantine fault tolerance,” in OSDI,
vol. 99, pp. 173–186, 1999.

[13] “Blockchain explorer.” https://www.blockchain.com/explorer, July 2018.
[14] J. Nash, “Non-Cooperative Games,” Annals of Mathematics, 1951.
[15] A. Tucker, “A Two-Person Dilemma,” Rasmusen, E., Readings in Games

and Information, pp. 7–8, 1950.
[16] H. Hamburger, “N-Person Prisoner’s Dilemma,” Journal of Mathematical

Sociology, vol. 3, no. 1, pp. 27–48, 1973.
[17] M. Archetti and I. Scheuring, “Game Theory of Public Goods in One-Shot

Social Dilemmas Without Assortment,” Journal of theoretical biology,
vol. 299, pp. 9–20, 2012.

[18] S. Bano, A. Sonnino, M. Al-Bassam, S. Azouvi, P. McCorry, S. Meik-
lejohn, and G. Danezis, “Consensus in the age of blockchains,” CoRR,
vol. abs/1711.03936, 2017.

12 VOLUME 0, 2018

Manshaei et al.: A Game-Theoretic Analysis of Shard-Based Permissionless Blockchains

[19] G. Bracha, “An o (log n) expected rounds randomized byzantine generals
protocol,” Journal of the ACM (JACM), vol. 34, no. 4, 1987.

[20] C. Decker, J. Seidel, and R. Wattenhofer, “Bitcoin meets strong consis-
tency,” in Proceedings of the 17th International Conference on Distributed
Computing and Networking, p. 13, ACM, 2016.

[21] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and A. Spiegelman, “Solida: A
blockchain protocol based on reconfigurable byzantine consensus,” CoRR,
vol. abs/1612.02916, 2017.

[22] R. Pass and E. Shi, “Hybrid consensus: Efficient consensus in the permis-
sionless model,” in LIPIcs-Leibniz International Proceedings in Informat-
ics, 2017.

[23] E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford,
“Enhancing bitcoin security and performance with strong consistency
via collective signing,” in 25th USENIX Security Symposium (USENIX
Security 16), pp. 279–296, 2016.

[24] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling byzantine agreements for cryptocurrencies,” in Proceedings of the
26th Symposium on Operating Systems Principles, 2017.

[25] G. Danezis and S. Meiklejohn, “Centrally banked cryptocurrencies,”
CoRR, vol. abs/1505.06895, 2015.

MOHAMMAD HOSSEIN MANSHAEI received
the BSc degree in electrical engineering and the
MSc degree in communication engineering from
the Isfahan University of Technology in 1997 and
2000, respectively. He received another MSc de-
gree in computer science and the PhD degree in
computer science and distributed systems from
the University of Nice Sophia-Antipolis, France,
in 2002 and 2005, respectively. He did his thesis
work at INRIA, Sophia-Antipolis, France. He is

currently an Associate Professor at the Isfahan University of Technology,
Iran. From 2006 to 2011, he was a senior researcher and lecturer at the
Swiss Federal Institute of Technology in Lausanne (EPFL). He held visiting
positions at the UNCC, the NYU, the VTech, and the UTSA. His research
interests include wireless networking, wireless security and privacy, compu-
tational biology, and game theory.

MURTUZA JADLIWALA is currently an Assis-
tant Professor in the Department of Computer
Science at the University of Texas at San Antonio,
USA. Prior to that, he was an Assistant Professor
in the Department of Electrical Engineering and
Computer Science at the Wichita State Univer-
sity, USA from 2012-2017 and a Post-doctoral
Research Fellow in the Department of Computer
and Communication Sciences at the Swiss Federal
Institute of Technology in Lausanne (EPFL) from

2008-2011. He also served as a Summer Faculty Fellow at the US Air Force
Research Lab - Information Institute in Rome, NY, USA from June-August
2015. His educational background includes a Bachelors degree in Computer
Engineering from Mumbai University, India and a Doctorate degree in
Computer Science from the State University of New York at Buffalo, USA.
His current research is focused towards overcoming security and privacy
threats in networked computer and cyber-physical systems.

ANINDYA MAITI is a Postdoctoral Fellow at the
University of Texas at San Antonio, USA. His cur-
rent research is primarily focused towards uncov-
ering and solving privacy and security problems in
smart home and other IoT devices. Previously, he
obtained a PhD degree in Electrical Engineering
and Computer Science, and a MS degree in Elec-
trical Engineering, from Wichita State University,
USA.

MAHDI FOOLADGAR is currently M.S. student
in software engineering at the Isfahan Univer-
sity of Technology, Department of Electrical and
Computer engineering, working under the super-
vision of Dr. Manshaei. He also accomplished his
B.S. in Software engineering at IUT, working on
Blockchain based voting protocols. His current
research interests include Blockchain, Game The-
ory, and Security Protocols.

VOLUME 0, 2018 13

