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Abstract

Cyber-physical systems (CPS) are engineered systems that are built from, and depend

upon, the seamless integration of computational algorithms and physical components. CPS

are characterized by a strong interconnection of various computing systems (and algorithms)

that are used to control, monitor, and interact with physical processes, thus improving the

overall capability, adaptability, scalability, resiliency, safety, security, and usability of

the associated engineered system. CPS technology has also enabled several critical

infrastruc-ture applications, such as smart grid and renewable energy systems, biomedical

and health-care, next-generation transportation, industrial automation, and defense

systems. However, such Critical-Infrastructure CPS (CI-CPS) are extremely vulnerable to

sophisticated cyber-attacks due to their interconnected nature. The consequences of

malicious attacks may range from minor variation in performance to absolute inability to

control the system, which may lead to catastrophic results for both the system operators

and users.

Ensuring security of system components, privacy of system or user data, and availability

of services (provided by the system), are some of the most vital requirements of a

CI-CPS.  Previous works in the literature proposed many solutions to improve security,

privacy and availability of CI-CPS. However, several critical open problems in these areas

remain unaddressed. In this direction, the first part of this dissertation addresses the problem

of securing location discovery of wireless and mobile components (of a CI-CPS) by

proposing a novel spread-spectrum-based approach to eliminate incorrect localization

data injected by malicious location anchors. The second part of this dissertation presents

a framework to increase the capacity (and consequently availability) of existing wireless

networks, by utilizing a secondary cognitive radio network based approach. The third part

and final part of this dissertation presents a novel framework to enable privacy-preserving

smart meter data reporting in a smart grid CI-CPS, with a minimal impact on data utility.

The efficiency and effectiveness of the proposed solutions are demonstrated by means of

analytical evaluations and empirical results. The outcomes of this dissertation will further

our current knowledge and understanding of the security, privacy and availability issues

in this upcoming and nationally important area of CI-CPS.
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CHAPTER 1
WHAT ARE CYBER PHYSICAL SYSTEMS AND WHY ARE

SECURITY/PRIVACY ISSUES IN THESE SYSTEMS
IMPORTANT?

Cyber-Physical Systems (CPS) are systems that are built from, and depend upon, the

seamless integration of computational algorithms and physical components. Such systems

are, in most cases, tightly integrated with the Internet and its users, and in some cases, with

a private communication networks. CPSs are characterized by a strong interconnection of

various computing elements (and algorithms) that are used to control, monitor, and interact

with physical processes, hence, improving the overall capability, adaptability, scalability,

resiliency, safety, security, and usability of the associated engineered system. Examples of

CPS include autonomous automobile systems, automatic pilot avionics, smart power grid,

medical monitoring, robotics systems, and process control systems.

As a result of the development of the aforementioned CPS technology, critical infras-

tructure applications, such as smart grid and renewable energy systems, biomedical and

healthcare, next-generation transportation, industrial automation, and defense systems have

become smarter and interconnected. In this work, we refer to these critical systems as Criti-

cal Infrastructure CPS (CI-CPS). Due to the critical nature of CI-CPS, all aspects of system

and data security and privacy must be studied in detail. Such systems can be vulnera-

ble to a variety of cyber-attacks due to their interconnected nature. The consequences of

malicious attacks may range from minor variation in performance to absolute inability to

control the system, which may lead to catastrophic results for both the system operators

and users. Hence, studying system and data security, privacy, integrity, and, availability is

of paramount importance.

Given the use cases of CI-CPS in monitoring, managing, and controlling critical infras-

tructure, understanding and protecting the following aspects of system and user privacy and

security is of utmost importance. i) Confidentiality: the data transmitted in such systems

1



should be accessible only by authorized parties. ii) Integrity: mechanisms should be devel-

oped to ensure that the critical data sent and received in these systems is not modified or

tampered. iii) Availability: data and systems in CI-CPS must be available at all times and

at an agreed service level in types of situations, i.e., ranging from normal through highly

abnormal (such as in the case of disasters).

An example or use case of such a CI-CPS is the upcoming paradigm of smart power grid or

smart grid. In order to provide power reliably and efficiently to consumers, information and

communication technologies are being merged into the traditional power grid. A Smart Grid

is an electrical grid that leverages communication technologies and information processing to

gather, process, and act on collected information to improve reliability, efficiency, economics,

and sustainability of the power grid in generation, transmission, and distribution. This

two-way communication system enables the utility companies to remotely gather power

consumption data from the users at short time intervals. This highly-granular power usage

data collected from the users’ smart meters will equip the utility companies with advanced

features such as real time monitoring, fault-detection, self-healing, load balancing, demand-

response, demand dispatch, and peak-shaving. The deployment of smart grid will save

energy, enable the use of dynamic pricing schemes, integrate renewable resources and electric

vehicles into the power grid, and provide greener and cleaner energy [21]. Despite the

tremendous promise, security and privacy issues continue to plague the effective operation

and adoption of this smart grid technology.In Chapters 3 and 4, we outline a few current

privacy and availability related issues in smart grid systems and propose novel approaches

in order to overcome them.

Components within a CI-CPS may contain computational entities that are mobile and

communicate with each other in a wireless fashion, thus, forming a mobile wireless network.

Localization or location discovery is an important protocol in such networks. Range-based

localization, where mobile nodes compute distances to static anchors to determine their

own location by using trilateration and multilateration techniques, is a well-known concept
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in mobile wireless networks extensively used in CI-CPS such as wireless e-health systems.

However, secure range-based location discovery in the presence of cheating or untrustworthy

anchors (or beacon nodes) is an important, and still open, problem in mobile wireless net-

works. In order to overcome this problem, earlier research efforts have mostly followed three

solution directions: (i) efficient detection and elimination of cheating anchors, (ii) range-

based localization without using anchors and (iii) range-based localization in the presence

of cheating anchors. On the one hand, despite results that guarantee an upper bound on

the localization error [110], the latter two approaches have not fared very well in terms of

localization accuracy. On the other hand, most of the malicious anchor detection techniques

are based on consensus building or statistical estimation, and are rather restrictive with high

false-positive or false-negative rate. Similarly, the issue of elimination of cheating anchors

from consideration (once detected) is non-trivial and has not been clearly addressed in the

literature. In Chapter 2, we present a novel and deterministic secure localization strategy to

overcome the cheating effect of malicious anchors. Our technique employs a “request confu-

sion” strategy in order to detect malicious or cheating anchors and a “DSSS or CDMA-based

jamming strategy” in order to eliminate the (effect of) cheating anchors. By means of sim-

ulation experiments, we validate the performance of our secure localization technique under

various adversarial strengths and network parameters.

As discussed earlier, the power industry is moving towards the next generation power

grid, i.e., the smart grid, by taking advantage of information and communication technolo-

gies. This information-based power grid is expected to change the way electricity is gener-

ated, distributed, and transmitted to the consumers by enhancing the reliability, efficiency,

sustainability, and economics of the grid. However, due to the high volume and high granu-

larity of the data generated by smart electricity meters, careful planning and management of

this communication network is necessary. Given the large scale future deployment of smart

grid, utility companies face possible network capacity constraints. Due to this scarcity, an

efficient spectrum allocation is often difficult, thus resulting in low overall bandwidth utiliza-

3



tion in smart grid networks. Hence, an efficient utilization of this communication network

should be studied. Cognitive Radio Networks (CRN) enable Secondary Users (SU) to coex-

ist with existing network infrastructures. Cognitive Smart Grid Networks (CSGN) use CRN

to optimize resource allocation in SGNs. However, efficient utilization of available channel

bandwidth by SUs, without interfering with the Primary Users (PU), remains an important

open problem in CSGN. In Chapter 3, we focus on CSGN as the Secondary Network (SN),

coexisting with a Primary Network, and outlining the applicability of Code Division Multiple

Access for overcoming the low Number of SUs (NSU) in SN. We propose a novel resource

allocation technique to improve NSU in CSGN by using a specific kind of Orthogonal Chip

Sequence (OCS) allocation in spread spectrum communications for SU transmissions. By

means of extensive simulations and analysis, we show that our technique improves NSU on

SN (or CSGNs) significantly.

The deployment of the smart grid also introduces privacy-related concerns as it can gather

highly-granular power consumption data which can reveal sensitive private information about

the lives of consumers. Perturbing the actual energy usage data before sharing it with the

energy company is a well-known solution to overcome privacy issues associated with smart

meters. The degree of correlation between the actual energy usage data and the perturbed

data produced by the perturbation technique typically characterizes the trade-off between

the privacy requirement (of the customer) and data utility or data usefulness requirement (of

the energy company). Our main goal in Chapter 4 is to propose a mechanism to minimize this

trade-off, i.e., provide both reasonable levels of privacy protection, as well as, data-utility.

We work towards this goal by proposing a novel two-level energy consumption prediction

scheme. The first-level prediction at the household level is performed by each SM, and the

predicted energy consumption pattern, instead of the actual energy usage data, is reported

to a cluster head (CH) or a neighborhood aggregator. Then, a second-level prediction at the

neighborhood level is done by the CH which predicts the energy spikes in the neighborhood or

cluster and shares it with the EC. Our two-level prediction mechanism is designed such that
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it preserves the correlation between the predicted and actual energy consumption patterns

at the cluster or neighborhood level and removes this correlation in the predicted data

communicated by each SM to the CH. This maintains the utility or usefulness of the cluster-

or neighborhood-level energy consumption data communicated to the EC while preserving

the privacy of the household-level energy consumption data against the CH (and thus the

EC). We further implement and evaluate our two-level prediction mechanism using real

smart meter data. Our evaluation results show that our proposed mechanism is successful in

hiding private consumption patterns at the household-level while still being able to accurately

predict energy consumption at the neighborhood-level.
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CHAPTER 2
LOCJAM: A NOVEL JAMMING-BASED APPROACH TO

SECURE LOCALIZATION IN WIRELESS NETWORKS

Distributed localization or location discovery in wireless networks is the problem of de-

termining the location (in a distributed fashion) of a (mobile) device in the network with

respect to some local or global coordinate system. Localization protocols in wireless net-

works can be categorized into two broad types: i) range-based and ii) range-free protocols

[99]. In range-based techniques, a node computes its location by first estimating distances

to neighboring nodes, whereas range-free techniques, typically, do not involve any distance

estimation by the target node. Range-based techniques can be further classified as (a)

anchor or beacon-based and (b) anchor-free protocols. Anchor-based algorithms such as

[250, 14, 185, 28, 175, 228, 32, 144], among others, need special beacon or anchor nodes that

are strategically placed in the network and know their own location (for example, by means

of GPS). The mobile target node first estimates its distance to a set of neighboring beacon

or anchor nodes by using well-known techniques such as Received Signal Strength Indicator

(RSSI) [159], Time of Arrival (ToA) [170], and Time Difference of Arrival (TDoA) [258].

The target node then applies constraint satisfaction or optimization techniques, such as,

trilateration or multilateration, in order to compute its location. A two-dimensional anchor-

based localization process by trilatering distance estimates to three anchor nodes is depicted

in Figure 2.1(a). Anchor-free schemes do not involve specifically marked anchor nodes.

Although anchor-based schemes are popular and generally perform well, a majority of

these techniques operate under the assumption that anchor nodes behave honestly during the

localization process. This assumption is not valid in non-trustworthy wireless environments

where anchor nodes could cheat by manipulating the distance estimation process, as shown

in Figure 2.1(b), and thus affecting the overall accuracy of the location estimated by the

target node. Numerous proposals for overcoming the problem of cheating in range-based
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Figure 2.1: Distance-based (range-based) localization (a) Trilateration (b) Cheating anchors.

localization protocols exist in the literature [139, 142, 143, 183, 242, 166, 204, 70, 74, 110, 210].

These proposals have primarily followed one of the following two approaches. The first

approach is to localize in the presence of cheating anchor nodes and securely verify that the

determined location is within some maximum error bound. The second approach calls for

efficiently detecting and eliminating measurements emanating from cheating anchors before

location determination. Localization schemes following the first approach often need to

satisfy certain necessary network conditions (e.g., in terms of the total number of malicious

anchors) and are constrained by the resulting large localization errors. Localization schemes

following the second approach suffer from the non-triviality of the detection and elimination

process in a distributed networking environment.

We are motivated by the fact that radio signal jamming has traditionally always been

considered as an adversarial tool that is used for disrupting network protocols. In this work,

we would like to follow a reverse ideology and use jamming in order to protect network

protocols such as location discovery. In this section, we propose a fresh approach to over-

come the problem of cheating anchors in distributed range-based localization protocols which

implements an asynchronous “request-confusion” mechanism for detecting cheating anchor
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nodes and a Direct-Sequence Spread Spectrum (DSSS) or Code Division Multiple Access

(CDMA) based jamming mechanism for eliminating range measurements from cheating an-

chors during location determination by the target node1. Distributed Spread Spectrum or

Code Division Multiple Access communications by using Orthogonal Chip Sequences (OCS)

have several advantages in wireless communications, including higher number of simultaneous

transmissions and low interference and data collision [40]. A few CDMA-based localization

approaches using OCSs have been proposed in the literature, but these efforts do not address

the secure localization problem and have considered a non-hostile networking environment

in their work [254, 30]. To the best of our knowledge, this is the first proposal that considers

a CDMA-based jamming strategy in order to secure anchor-based distributed localization in

wireless networks.

The rest of the chapter is organized as follows. Related work in the literature and

background on securing anchor-based localization is outlined in Section 2.2. The network

and adversary model assumed in this work is presented in Section 2.3. Our proposed secure

localization protocol using CDMA-based jamming is outlined in Section 2.4 and simulation

results are discussed in Section 2.5. We conclude the section with a summary of contributions

and results in Section 2.6.

2.1 Background and Related Work

In this section, we survey some earlier research efforts towards securing distance-based

localization schemes.

2.1.1 Detection and Elimination of Malicious Anchors

The first approach to secure distance-based localization is to detect cheating anchors

and eliminate them from consideration. Liu et al. [142] propose a technique for eliminating

malicious anchor data, called attack-resistant Minimum Mean Square Estimation (MMSE),

1The content of this chapter has appeared in [20].
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which leverages on the fact that malicious location references are usually inconsistent with

the benign ones. Sastry et al. [210] propose the Echo location verification protocol to se-

curely verify location claims by computing the relative distance between the prover and the

verifier node using the time of propagation of ultrasound signals. C̆apkun et al. [242] outline

various attacks on node localization and propose mechanisms such as authenticated distance

estimation, authenticated distance bounding, verifiable trilateration and verifiable time dif-

ference of arrival, in order to detect cheating anchors. Pires et al. [183] propose protocols

to detect malicious nodes in distance-based localization approaches by detecting message

transmissions whose signal strength is incompatible with its originator’s geographical posi-

tion. In another similar work by Liu et al. [143], the authors propose techniques to detect

malicious anchors by employing special detector anchors.

2.1.2 Secure Localization in the presence of Malicious Anchors

The second approach is to design techniques that are robust enough to tolerate the cheat-

ing effect of malicious anchors. Priyantha et al. [185] develop the CRICKET system that

eliminates the dependence on beacon nodes by using communication hops to estimate the

network’s global layout, and then apply force-based relaxation to optimize this layout. Li et

al. [139] utilize statistical methods, such as adaptive least squares and least median squares,

in order to make anchor-based localization attack-tolerant. Alternatively, Doherty et al.

[58] outline a secure range-based localization method that employs convex optimization on

a set of connectivity constraints. Liu et al. [142] design an intelligent voting-based scheme

for resisting cheating by anchor nodes during distributed anchor-based localization. In an-

other approach, Yi et al. [217] and Ji et al. [116] apply efficient data analysis techniques

such as Multi-Dimensional Scaling (MDS) using connectivity information and distances be-

tween neighboring nodes to infer target locations. Fang et al. [69] use Maximum Likelihood

Estimation (MLE) in order to estimate the most probable node location, given a set of

neighborhood observations. Lazos et al. [135] present a hybrid secure localization approach,
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called RObust Position Estimation (ROPE), which provides robust location computation

and verification without centralized management and vulnerability to jamming (from ma-

licious nodes). Misra et al. [166] propose a convex optimization based scheme to secure

the distance-based localization process by applying Barrier’s method in order to solve the

optimization problem. Recently, Jadliwala et al. [110] proved the necessary and sufficient

conditions for secure distance-based localization in the presence of cheating anchors and

defined a class of algorithms that bound the localization error under these conditions.

2.1.3 Localization using Coding Theory

Concepts from coding theory have also been used to secure distributed range-based lo-

calization. For example, Ray et al. [196] propose a framework for providing robust location

detection in wireless sensor networks using the theory of Identifying Codes (ID-Codes). In

this framework, high powered transmitters are fitted in such a way that each localizable

point on the terrain is covered by a unique set of transmitters. Each node localizes itself

by mapping the set of neighborhood transmitters to the corresponding location. Similarly,

Yedavalli et al. [262] have used the theory of Error Correcting Codes (ECC) for robust

localization in sensor networks. For each localizable point, the authors used distances from

a fixed set of neighboring nodes to that point as a “codeword” for that point such that the

“distance” between any two codewords is fixed. Thus, any cheating behavior by the partici-

pating nodes can result in an illegal codeword and can be detected and corrected. Contrary

to this, in our work, we use orthogonal codes or chips for only eliminating cheating nodes,

and not for detecting cheating. Cao et al. [30] outline an OCS and CDMA based technique

for mobile location discovery in Line Of Sight (LOS) and Non-Line Of Sight (NLOS) sce-

narios. In this technique, all anchors are assigned identifiers by using a set of orthogonal

codes that are broadcast periodically and synchronously. The mobile target detects the three

strongest broadcast signals and estimates its location by calculating the Time Difference of

Arrival (TDoA) with respect to these anchors. The authors showed that the use of OCS
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for localization helps to cancel the interference at the mobile target caused by simultaneous

transmission of the anchors. However, they do not address any security issues related to

cheating anchors.

2.1.4 Discussion

Malicious node detection and elimination strategies, as discussed in Section 2.1.1, take

into account the inconsistency (caused by cheating behavior) in the measurement of a par-

ticular network parameter in order to detect cheating anchors. One shortcoming is that the

process of elimination of malicious anchors, once detected, is not clearly defined in most of

these approaches. Others [142] propose only passive approaches for detecting and eliminating

malicious anchors, for example, collaborative voting in order to blacklist malicious anchors.

Although these passive approaches are intuitive and easy to implement, they can be easily

circumvented. For example, cheating anchors can regularly change identifiers in order to

avoid detection and/or elimination during the localization process. Cheating anchors could

also deploy advanced hardware such as sectored antennas in order to avoid any collaborative

passive detection mechanism. Collaborative passive detection mechanisms also suffer from

an inherent weakness that requires a majority of the honest anchors to be able to detect and

verify the cheating behavior of the malicious anchors.

Secure localization schemes discussed in Section 2.1.2 attempt to improve the robustness

of distance-based localization procedure by minimizing the effect of inconsistent or erro-

neous localization data by cheating anchors. Some shortcomings of these solutions include

complexity, relatively higher localization errors and/or requirement of specialized hardware.

In this work, we overcome the problems discussed above by following a more active

approach to detection and elimination of cheating anchors in distributed distance-based

localization protocols. In our approach, we employ jamming as a security tool, as opposed

to its typical utility as an adversarial tool. Our approach is non-collaborative, and thus

does not require a consensus building phase among honest nodes for eliminating cheating
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beacons. Only a single honest node is required to eliminate the cheating effect of a malicious

anchor. Also, as our approach actively eliminates malicious ranging data, the target node

does not have to verify and eliminate these, thus improving the overall performance of the

localization process.

2.2 Network Configuration

2.2.1 Network and Communication Model

The network consists of a mobile device MT , also referred to as the mobile target node,

moving over an application area. MT wants to estimate its own location by using distance

estimates to a set of neighboring (and stationary) anchor nodes who know their own location.

In practice, there can be multiple target nodes, but we currently assume a single target node

in order to simplify the current exposition. The mobility of the target node is application

dependent and we only consider the movement of the target node over the application area.

Without loss of generality, we assume that MT is momentarily static during the localization

process. Deployed over the application area, are a fixed number (specifically, n) of station-

ary anchor nodes that know their own location and can assist the target node in its location

estimation. Let these nodes be denoted as B1, . . . , Bn. For simplicity, assume that the loca-

tions of the target node MT and the anchor nodes can be expressed in the two-dimensional

coordinate system as a vector (x, y) where, x, y ∈ R. Each of the anchor nodes and the MT

possesses an omni-directional radio transceiver.

All the anchor nodes in the network are assumed to be synchronized with each other

whereas the MT communicates with the anchors in an asynchronous fashion. All com-

munication takes place over two separate channels. The first channel is a CSMA-based

control channel for sending and receiving certain control messages and the second channel

is a CDMA-based data channel. Packets sent and received over this data channel are used

by the target node MT for estimating distances to the corresponding anchor nodes. The

chip sequences or OCSs for CDMA-based data transmission are generated using the Golay
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[40] code generation algorithm. Various other algorithms for OCS generation in wireless

networks also exist, for example, Walsh Hadamard, OVSF, Kasami, etc. [24]. The most

important characteristics of OCSs that should be taken into consideration are auto/cross

correlation, length of the generated OCSs versus the number of possible OCSs, error correc-

tion and fault tolerance. In some algorithms, for instance Walsh Hadamard, only the cross

correlation feature exists while in certain others, all features can be observed. One of the

advantages of OCSs generated by Golay is that the number of zeros and ones are equal in

all chip sequences. Golay OCSs are simple to generate recursively, as shown by the Golay

matrix representation in Eqn. 3.1.

CL =

[
CL

2
C̄L

2

CL
2
−C̄L

2

]
(2.1)

where, CL = [ AL BL ] , C̄L = [ AL −BL ] and C1 = 1

In Eqn. 3.1, L = 2M is the total number of available OCSs, where M ≥ 1 is the number of

bits in each OCS.

In our network model, we will use these chip sequences not only in the physical layer

for CDMA data transmission, but also in the data link layer as an identifier (ID) for the

corresponding anchor node. We assume that anchor nodes would be tessellated (discussed

in details in the following section) or divided into groups. Time can be divided into random

periods denoted by a random variable ψ. During each period, each group of anchors randomly

choose a subset of available OCSs for use in that period. The subset selected by each anchor

group consists of chip sequence with similar bit pattern and low distance. Such a group of

similar chip sequences is referred to as a flock in CDMA literature [40]. A group of anchors

using the same flock(s) of OCSs is called a Grid Cell (GC). As the number of available OCSs

is limited, flocks are reused throughout the network. A group of GCs in which the flocks

are not reused form a Cluster. Each anchor will use the OCS uniquely assigned to it in the
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time frame ψ in order to transmit data to the MT on the CDMA data channel. It should

be noted that it is possible for multiple nodes to use the same OCS for data transmission in

different parts of the network, henceforth referred to as Code Reuse Factor (CRF). A CRF

of r indicates that a total of r adjacent GCs in a cluster use different flocks of OCS. This is

possible if the OCS generation scheme generates OCSs that fall into r categories, 1
r

of which

will be assigned to each GC in a cluster of r adjacent GCs. The OCSs used by an anchor

group will be changed or refreshed after time ψ by the group head, which can be appointed

as discussed ahead.

Honest anchor nodes are pre-configured with appropriate message authentication and

encryption mechanisms for secure communications amongst each other. All honest anchor

nodes in the same GC send and receive data signed using a group signature [39, 200]. Hence,

each node is able to authenticate the source of any incoming message as being from the

same GC or not. We also assume that during each time period, the table of valid OCSs

(for that time duration) is exchanged among anchors in a distributed fashion. This can

also be accomplished by a group head that is selected in each time period for each GC by

using an appropriate group-head election algorithm. For a particular GC, an elected group

head during a time period k, denoted by pψk , is also responsible for identifying a flock of

OCS that does not conflict with the adjacent GCs. Group head selection is rotated within

the GC for both security and energy efficiency reasons. From all possible OCSs in the

flock, the group head randomly choose a portion of valid OCSs for the GC (as a function

of the number of anchors in that GC) and broadcast the list of valid OCSs to all other

anchors in the GC. Let Fg(ψk) be the subset of the OCS flock used by a GC g during

the time period k. These OCS advertisement messages are encrypted by using appropriate

symmetric encryption algorithms. Standard distributed secure key-exchange and symmetric-

key cryptographic algorithms can be used for this purpose.

Let us provide more details on the anchor communications over the CDMA data channel.

The main concept of CDMA is to spread an information signal with bandwidth δs over a
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larger bandwidth δ, where δ � δs and δ
δs

is the processing gain. This is achieved by encoding

each data symbol (or bit) using an OCS of length L. The OCS Oi(t) assigned to any anchor

Bi at any instant in time t can be represented as shown in Eqn. 2.2.

Oi(t) =
L−1∑
j=0

O(j,i)p(t− jTc) (2.2)

In Eqn. 2.2, p(t) is a rectangular pulse which is equal to 1 for 0 ≤ t < Tc and zero otherwise.

Tc is the chip duration of the OCS and O(j,i) is the jth bit (or chip) of the OCS assigned to

the anchor Bi (from the set of all OCSs CL). The signal generated after encoding a data

symbol of anchor Bi with the corresponding OCS is given by

xi(t) = fi

L−1∑
j=0

O(j,i)p(t− jTc), 0 ≤ t < Tf (2.3)

where, fi is the data symbol of anchor Bi that needs to be encoded and Tf = LTc is the

duration of the encoded data symbol or data frame. The inner product of the sent data

with the OCS is done bit-synchronously. Then, the overall transmitted signal x(t) of all n

anchors can be given by [40]:

x(t) =
n∑
i=1

xi(t) (2.4)

The received signal at the receiver (both the MT and the anchors) will be decoded using the

OCSs available in the receiver’s OCS table. It can be shown that it is impossible to decode

the individual signals correctly if atleast one of the signal in this overall transmitted signal

has all 1-bits and is encoded with an OCS code of all 1-bits. Such a signal is referred by us

as a jamming signal.

2.2.2 Network Tessellation

Network tessellation or anchor grouping is an important aspect of our scheme, which

we describe briefly in this section. There are many centralized or distributed algorithms
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Figure 2.2: Network Tessellation.

in the literature for tessellating distributed wireless networks [214, 19, 122]. Our network

tessellation algorithm is based on the Voronoi diagrams and is shown in Figure 2.2. After

node placement, we begin from a randomly selected and centrally-located initial anchor

node. This anchor sends an invitation message with specific fixed signal strength to all

neighboring nodes on the control channel. Nodes within the signal range become members

of that particular GC. The nodes at which the received signal strength is less than a given

threshold, can attempt to create new GCs and build next layers of GCs and continue to

tessellate the entire network. After tessellation, each independent GC is assigned a unique

GC number.

After the tessellation phase, the initial anchor can begin clustering the GCs. This is done

by placing all anchors who received the initial invitation (including the initial anchor) and

formed a GC into flock1. All other nodes that received the initial signal with RSS lower

than some threshold value, and therefore formed another GC, would be considered in flock

2 or flock 3. It should be noted that two neighboring GC’s cannot be in the same flock (or

have the same flock number). To prevent the nodes in neighboring flocks from having the

same flock number, every node that receives the signal weaker than the RSS threshold first
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registers a new flock number for itself and then broadcast this number to its neighbors. After

clustering and flock assignment, all OCSs from all flocks should be added to an OCS table

maintained by the MT . We assume that the network is tessellated once at the beginning

when the anchors are configured. It can be repeated every time the distribution of the

anchors changes significantly.

2.2.3 Adversary Model

We assume that, amongst a total of n anchors in the network, a maximum of a anchors

are malicious or cheating. The set of all the malicious anchors is denoted by A. All anchors

that are not malicious are assumed to be honest, i.e., they execute the proposed localization

protocol correctly. Although many types of attacks are possible in RF-based positioning

systems [242], in this work we focus on distance manipulation attacks. In these attacks, an-

chor nodes cheat by manipulating the distance between themselves and the target node, for

example, by either delaying or manipulating the signal strength of the localization messages

depending on the distance estimation technique used in the localization protocol. In addition

to acting independently, a malicious anchor can also collude with other malicious anchors.

In order to effectively communicate with the MT on the CDMA-based data channel, all

anchors (including malicious anchors) need to transmit localization messages by encoding

them using one of the OCS known to the MT . Coordinating with each other helps the ma-

licious anchors in selecting different OCSs for data transmission, thus avoiding interference

and data corruption at the target node. Malicious data transmitted using an incorrect OCS

will be directly discarded at the target, and thus not included in the location calculation

process. It is also reasonable to assume that the malicious anchors do not possess the secret

group keys and other cryptographic materials shared only by the honest anchors. Moreover,

the malicious anchors are not able to receive (and maintain) a table of OCSs valid during

a particular time period because the OCS updates are encrypted with a group key known

only to honest anchors. It is also reasonable to assume that there is no trust between the
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MT and the set of honest anchors, and so, even the MT does not know these details. From

the point of view of the MT , it will use all localization messages encoded with any OCS

(present in its table of known network OCSs) for determining its own location. In order

to successfully cheat, the malicious anchors (not belonging to the GC) must first guess a

set of all unused OCSs from a valid flock (otherwise the communication would be rejected

by the MT ) and then broadcast malicious localization data using these OCSs in order to

disorient the target node MT . We would like the readers to note that, although a variety of

Denial-Of-Service attacks are possible and can be executed by the malicious anchors, in this

section we focus on overcoming only those attacks where the malicious anchors attempt to

successfully disorient the target node MT .

2.3 Securing Localization using Jamming

2.3.1 Proposed Localization Protocol

We propose a simple request-response strategy in order to perform secure localization

in the presence of cheating anchor nodes. In our proposal, as discussed earlier, the MT

and anchors communicate on two separate channels. The MT asynchronously broadcasts

localization requests on the CSMA/CA control channel and receives responses from anchors

on the data channel that uses CDMA multiplexing. The request frames contain a randomly

generated request number (D) which is used by the MT to track the corresponding re-

sponses. All communications are broadcast and a fixed source address (for example, 0) is

used to maintain sender anonymity. Each time the MT needs to determine its location, it

periodically broadcasts request frames at random intervals of time (� current OCS validity

period ψ) each with a different radio power level (between some permitted Emin and Emax

mW) and with a different random request number. We will soon see how such a redundancy

in sending localization requests is useful towards securing localization in our proposal.

The (honest) anchors hear for localization requests on the CSMA/CA control channel

and broadcast responses on the CDMA data channel. These broadcast responses contain
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position information of the corresponding anchors (in the appropriate coordinate system)

which are used by the MT for its own location estimation. Response frames to a request

with request number D should contain a number D+ 1. This will help the MT identify and

only process responses corresponding to its own requests. Sender’s request anonymity is of

critical importance in our protocol in order to confuse the malicious anchors and to prevent

them from selectively targeting requests from the MT . We accomplish this by following an

intelligent “request confusion” strategy where dummy request frames, similar to the ones

sent by the MT , are periodically broadcast by all the anchors. A request frame similar to

the one sent by the MT is used in these dummy requests. Such a request confusion strategy

makes it extremely difficult for malicious anchors to distinguish valid requests sent by the

MT from the dummy ones sent by the honest anchors.

Location response frames sent by the anchors on the CDMA data channel are encoded

with the valid OCS assigned to each anchor (during that time period). Optionally, all

anchors could also sign their responses using the group signatures of their corresponding

GC, which could be verified by other anchors in their GC. On receiving a response, the

MT attempts to decode the received frame using an appropriate OCS (from the OCS table

stored in its memory). Response frames that cannot be decoded correctly (because of being

encoded with an OCS not in its table) or those that do not pertain to its own request are

immediately discarded by the MT . As discussed earlier, the MT sends consequtive requests

with different transmission power and each with a different request number. The MT waits

for atleast two responses encoded with the same OCS within a fixed time duration (Tres sec)

and from the same fixed location (i.e., from the same anchor) before estimating its distance

to each such anchor. We will later see how this will help the MT to avoid using coordinates

provided by malicious anchors. In our scheme, the MT uses a time-of-flight based approach

for location estimation. Time of Arrival techniques require that the MT is synchronized with

all the anchor nodes in the network, which seems difficult to achieve. To avoid the strict
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synchronization requirements, the MT employs multilateration by using TDoA estimates

which do not need knowledge of the absolute time of transmission.

Now, let us focus on how the malicious anchors would attempt to cheat in this protocol

and how this cheating can be overcome. Due to the “request confusion” strategy, where

both the MT and the anchors send similar requests with different power levels, malicious

anchors are unable to identify the source of the requests. Hence, malicious anchors cannot

distinguish if a request was from a MT and are unable to estimate their distance to the MT

just from the received location requests. Consequently, it is non-trivial for the malicious

anchors to selectively manipulate self location information in the response frames in order

to successfully disorient the target node. This leads to two types of cheating behavior by the

malicious anchors. First, where it will send random self-locations in the response frames.

Second, where it will send fixed false self-locations. It should be noted that the response

frames by the malicious anchors still need to be encoded by a valid OCS and we assume that

a part of the malicious anchor’s attack strategy is to be able to obtain such a valid OCS

known only to honest anchors.

Both these kinds of cheating behavior results in inconsistent location information which

can be easily detected by honest anchors that know their own locations. Examples of such

techniques exist in the literature [143, 183]. The protocol can be made further secure by

requiring all anchors to sign the response frames with their group key. Obviously, malicious

anchors not possessing the group key would be unable to produce the correct group signa-

ture, and thus, would be easily detected by the honest anchors. After cheating is detected,

honest anchors will selectively jam all future response packets encoded with that particular

OCS by broadcasting a jamming signal (of all 1-bits). We can achieve this by an accurate

reactive jamming strategy. Such a strategy prevents malicious anchors from sending multi-

ple responses with false location information encoded with the same OCS. As a result, the

MT will never be able to utilize the location information sent by the malicious anchors for
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location estimation because it requires atleast two responses encoded with the same OCS

(or from the same anchor) within a duration of Tres seconds.

Our proposed secure localization technique are outlined in Protocols 1, 2 and 3.

Algorithm 1 Parent Anchor in a GC.

Generate OCS table with Golay algorithm;
for each time period ψk do

Randomly select OCSs from the set of OCSs valid for the flock;
Prepare the valid OCS table for advertisement;
Sign and Encrypt (with a pre-shared group key) the OCS table;
Broadcast OCS table on the CSMA control channel;

end for

2.3.2 Analysis and Discussion

In this section, we analyze the security provided by our scheme and discuss some of its

shortcomings. First thing to note is that the current proposal does not provide any formal

guarantees or error bounds for the anchor-based localization process. Provided enough honest

anchors are available, such guarantees have been provided in the literature [110]. Rather,

our protocol aims to provide a mechanism to actively detect and disable a variety of location

or distance manipulation attacks originating from malicious anchors.

Malicious anchors in our protocol could either be outsiders, i.e., not belonging to a

particular GC or insiders, i.e., belonging to a particular GC at network initialization. As

malicious outsiders do not possess the shared OCS table currently being used, they first

need to determine the valid OCS for the flock they intend to cheat in. The probability of

choosing the right flock by the uncoordinated outsider adversary depends on the CRF. This

probability decreases as the CRF becomes smaller. The likelihood of picking a valid OCS

also depends on the length L and the number of OCSs used in that specific GC. Thus, in

a GC g with a current valid OCS table of Fg(ψk), during any time period k, and an OCS

length of M , this probability is |Fg(ψk)|
2M

or |Fg(ψk)|
L

. By using an OCS currently used by another

malicious anchor or an honest anchor will corrupt the data received at the MT and cannot

be used to disorient it. As the OCSs used by honest beacons are changed periodically, a

21



Algorithm 2 Honest Anchors.

while data on CSMA control channel do
if data is from parent anchor then

Verify group signature and decrypt data;
Identify an OCS to use from the table of valid OCSs;
Save the table of valid OCSs for the current time duration;

else if data is a localization request then
Create and ansynchronously send a dummy location request on the CSMA control channel
with some probability p;
Let D be the request number in the received request;
Create a response packet with response number D + 1 and containing self location coor-
dinates;
Optionally, sign the packet with group key;
Encode packet with the chosen OCS (bit-wise inner product);
Synchronously send response packet on CDMA data channel;

else
drop the data;

end if
end while
while data on CDMA data channel do

if data contains location responses then
if cheating detected in location responses then

Create a jamming signal (packet consisting of all 1’s);
Broadcast the jamming signal on CDMA data channel;

else
Drop the packet;

end if
end if

end while

brute force type of attack by the adversary would slowly become infeasible. Moreover, as the

MT transmits the requests with multiple power levels that extend beyond the current flock

or GC, it provides some robustness against the scenario where all OCSs in a particular flock

or GC are compromised. Optionally, cryptographic techniques, such as group signatures,

can also be used to detect and disable communications from malicious outsiders.

Malicious insiders will be able to effectively communicate with the MT using a valid OCS,

but would be easily detected by the honest anchors based on the discrepancy of the location

information transmitted in the response packet. The honest anchors will use the proposed

CDMA-based jamming approach to prevent further malicious responses from these insiders.

Readers should note that even if the malicious outsiders are able to obtain valid OCSs for
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Algorithm 3 Mobile Target (MT ).

while data on CDMA data channel do
Decode the packet or data frame, i.e., calculate inner product using all valid OCSs;
if (location response packet) and (flock# and GC# match network plan) then

if another response encoded with same OCS and from same coordinates received no earlier
than Tres seconds then

Save anchor coordinates
end if

else
Drop the packet;

end if
end while
Select atleast three coordinates;
Perform Multilateration;

communication with the MT , discrepancy in location information can be easily verified at

the honest anchors who will jam future responses originating from these compromised OCSs.

2.4 Evaluation

In this section, we present simulation results for our proposal on securing anchor-based

localization.

2.4.1 Simulation Setup

In our simulations, we consider a 1000m×1000m network area where anchor nodes (both

honest and malicious) are distributed uniformly over the network area. One such distribution

of 200 honest and 200 malicious anchors used in our experiments is shown in Figure 2.3. The

position of the MT is chosen randomly from the network area. Table 2.1 outlines the various

network and protocol parameter values used in our simulations. After deployment, we first

tessellate the network and cluster the honest anchors based on the technique outlined in

Section 2.2.2. After network tessellation, the MT begins the location discovery process by

sending two initial requests on the control channel, and then additional ones as needed. For

location computation, we use multilateration by estimating the time difference of arrival of

valid coded bits from the various anchors.
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Figure 2.3: Distribution of Anchors in the network.

2.4.2 Simulation Results and Discussion

We evaluate our proposed secure localization protocol under several different network

conditions. In our first set of experiments, we deploy 200 honest anchors and 200 malicious

anchors (as shown in Figure 2.3). Our first goal is to verify the effectiveness of our protocols in

eliminating the cheating effect of malicious anchors. One of the first observation that we make

is that, in all our simulation runs, all malicious or cheating anchors are successfully jammed,

thus preventing them from disorienting the MT during the multilateration procedure. With

only the data received from the honest anchors, the MT is able to accurately localize itself.

Thus, we can conclude that the localization error (Euclidean distance between the calculated

location and MT ’s real location) observed in our simulations is not because of the cheating

effect of the malicious anchors, but is rather due to the use of CDMA for communication

between the anchors and the MT .

On varying the OCS length (OCSL), we observe that the localization error decreases

considerably when the OCS length used by the anchors increases (Figure 2.4 (a)). The

localization error is relatively high, for example, roughly 37 meters, when a 4 bit-OCS is

used. On increasing the OCS length to 2048 bits, the localization error decreases to less

than 2 meters, which is a significant improvement. This behavior is due to the fact that
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Table 2.1: Simulation Parameters for LOCJAM

Parameter Value

Simulation area 1000m2

Tx power on CSMA/CA-based control chan-
nel

Emin = 1mW to Emax = 15mW

Tx power on CDMA-based data channel 15mW
# of honest anchors 200
# of malicious anchors 200− 300
Carrier frequency 2.4− 2.48GHz (Zigbee)
Bit rate 250Kbit/sec
Packet rate 5208Packet/sec
Orthogonal Chip Code generator Golay
Chip Code Size Varies between 4 to 2048bits - Asynchronous

OCS
CRF 1

3

Radio propagation model Free Space
Maximum delay spread 3µsec
Bandwidth Efficiency 84 %
Cluster layout (Honest and Malicious An-
chors)

3 GCs

Tc 0.1× 10−3timeslots

a smaller OCSL means more interference between the communicating anchors, resulting

in a relatively larger error in the data received at the MT . This translates to a larger

localization error. We can conclude that by choosing an OCS of appropriate length, fairly

accurate multilateration-based localization of the MT is possible. However, the number of

attempts, defined as the number of distinct localization requests sent by the MT , required

by the MT inorder to overcome the cheating effect of malicious anchors and to compute

its position does not depend on the OCSL, as seen in Figure 2.4 (a). We also observe that

the total number of requests needed by the MT is minimum. The responses from the third

request is not even used during the location computation.

When the number of malicious anchors increases and the distribution of the honest an-

chors is the same, we can see from Figure 2.4 (b) that, for a particular OCSL (512-bits in

this case), the increase in the number of malicious anchors has no effect on the localization
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(a)

(b)

Figure 2.4: Simulation Results (a) Localization Errors versus OCS Length and (b) Localiza-
tion Errors versus Number of Malicious Nodes.

accuracy and the number of requests needed for secure localization. This also shows that in

our scheme, a smaller number of honest anchors can successfully disable a relatively larger

number of malicious or cheating anchors, further proving its robustness in highly unsecure

environments.

While the above results are for a single distribution of honest and malicious nodes, we did

run our simulations for multiple iterations and distributions of honest and malicious anchors.

In our next set of experiments, we simulated 10 different uniform distributions of honest and

malicious anchors where each distribution was simulated 100 times. In these simulations,

we considered an OCSL of 512 bits and the total number of honest and malicious anchors

were fixed at 200. In these simulations, we observed that the average localization error was

4.36m and the average number of MT requests before localization was around 4, which is

very similar to the earlier results (Figures 2.4 (a) and (b)). These average results show that
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our scheme consistently peforms well under various distributions of honest and malicious

anchors.

In summary, our simulation results confirm that localization schemes on DSSS or CDMA-

based communication schemes are efficient and reactive jamming is an effective strategy to

disable cheating anchors in such anchor-based localization schemes, and its effect on the

overall localization accuracy is minimal2.

2The content of this chapter has appeared in [20].
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CHAPTER 3
OPTIMAL RESOURCE ALLOCATION IN COGNITIVE

SMART GRID NETWORKS

Utilizing information and communication technologies, the power industry is moving

towards the Smart Grid. This next generation power grid is expected to improve the way

electricity is generated, distributed, and transmitted to the consumer by enhancing the

efficiency, reliability, sustainability, and economies of the power grid. However, due to the

high volume and high granularity of the data generated by smart home appliances and

smart electricity meters, careful planning and management of the communication network is

necessary. Utility companies either lease the communication network [86] or build their own

network infrastructure [127]. From utilities’ perspective, both bandwidth and network are

expensive resources. Thus, researchers have been attracted to the applicability of Cognitive

Radio Networks (CRN) recently, to overcome the problem of bandwidth scarcity [263, 81,

248, 264, 18, 186, 104, 27, 7]. Instead of having a dedicated communication backhaul, and

hence, dedicated bandwidth, Cognitive Smart Grid Networks (CSGN) co-exist with existing

Primary Network (PN). For instance, Super WiFi or IEEE 802.22 [227] can be used as the

Secondary Network (SN). CSGN is also able to transmit as a SN simultaneously with the

PN.

Existing static spectrum management and utilization policies in wireless networks do not

efficiently utilize the available spectrum and have resulted in acute spectrum shortage for

upcoming wireless devices and applications [73]. In the last few years, we have witnessed

a tremendous rise of interest in cognitive radio technology or CRN, where the Secondary

Users (SU) enabled with cognitive radio selectively or opportunistically communicate over

certain bandwidth allocated entirely to Primary Users (PU). Cognitive radio technology has

the potential of enabling dynamic spectrum access in wireless networks, thereby increasing

the capacity and utilization of wireless communications. In CRNs, the PUs that are licensed
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to access a certain frequency band, have unconditional access to these bands without any

interference from other users, but they might be willing to share their licensed spectrum

with the unlicensed SUs.

Based on the channel access and transmit strategies of the PUs and SUs, CRNs can be

classified into three broad groups: 1) interweave CRNs, 2) overlay CRNs, and 3) underlay

CRNs. In the interweave mode [267, 145, 239], each SU senses for gaps in the spectrum used

by a PU and opportunistically uses these gaps to send its own data. In the overlay mode

[62, 271, 34], SUs have knowledge of PUs channel access strategy and pattern. The SUs

then use this knowledge to transmit data on the shared channel when it is not being used

by the PUs. Finally, in the underlay mode [44, 165, 34], SUs access the channel in parallel

with the PUs by appropriately adjusting certain SN transmission parameters in order to

avoid any interference with PUs in the PN. Recently, CRNs have received a lot of attention

from researchers, who primarily focus on secure and efficient techniques for SUs in different

network areas to co-exist with PUs without interference and with desired QoS guarantees

(for both PUs and SUs). Despite the plethora of proposed access strategies for CRNs, how

to improve the Number of Secondary User (NSU) of SNs while maintaining a desired level of

QoS for the PUs as well as other users in SN, remains an important open research problem.

Ideally, we would like to improve NSU without any reduction in QoS of the PUs in a PN.

As a part of Internet of Things (IoT), by 2020, we expect to have more than 800 mil-

lion Smart Meters (SM) and smart appliances globally [89]. Since the number of smart

appliances, SMs and other devices with communication capabilities continues to grow, and

the necessity to assign available bandwidth for their communication, we need to optimize

the network resources. In this section, we propose a novel CDMA-based channel access and

resource allocation scheme for static CSGN that improves the NSU in the SN without result-

ing in high end-to-end Bit Error Rate (BER) in the non-CDMA based PN1. Our proposed

1The content of this chapter has appeared in [21].
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method that utilizes a hierarchy of SUs consist of smart appliances (lowest hierarchy), SMs,

Gateways (GW) and Super Gateways (SGW) (highest hierarchy). Additionally, we assume

that our SUs are capable of CDMA communication. Our novel architecture assigns carefully

chosen orthogonal codes to the SUs in the lowest hierarchy. Then, it assigns substrings of

the Orthogonal Chip Sequences (OCS), which have adequate level of orthogonality, to the

other SUs in CSGN. Our proposed method, which uses substring of the chip code, to im-

prove the NSU, relies on the fault-tolerance property of CDMA channel multiplexing. Due

to this fault-tolerance property, receivers are able to correctly decode the received waveforms

despite of errors [21]. Compared to previous studies, where transmission power manipulation

and code assignment methods are used to increase NSU, our method provides an improved

NSU in the presence of PUs communicating on PN carriers with acceptable BER and inter-

ference level. Additionally, SUs in our method would send the data with same bit rate by

modulating different length OCSs in proposed SN hierarchy in a shared timeslot.

The rest of the section is organized as follows. Background and related work is described

in Section 3.2. Network and system model is outlined in Section 3.3. The Proposed hierarchi-

cal resource assignment in SN is represented in Section 3.4. The proposed method’s design is

discussed in Section 3.5, and evaluated through simulations. The section is concluded with

a summary of results and contributions in Section 3.6.

3.1 Background and Related Work

Earlier research on improving number of SUs in a CRN and using CRN in SGNs employ

a variety of techniques. Here, we study approaches that are related to our work.

Amin et al. [7] improve data rate for real-time and best effort traffic in CSGNs, utilizeing

a global resource controller. Qiu et al. [186] analyze several hardware requirements to achieve

secure data communications in CSGNs. Ghassemi et al. [81] propose a WAN communication

scheme on CSGNs backhaul to make a fault tolerant and reliable infrastructure on TV

primary network. Also, the authors investigate coverage extension mechanisms on their
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proposed method. Yu et al. [263] improve QoS level using a hybrid spectrum access model

on licensed and unlicensed bands in CSGN. Cost saving in spectrum leasing and network

interference optimization are considered in the above-mentioned method. The authors also

propose a network scale performance optimization and hierarchical dynamic spectrum access

model to share white or free bands in different hierarchies of CSGN [264]. Wang et al. [248]

study the technical challenges and solutions in multimedia data transmission in CSGNs for

network monitoring. Bicen et al. [18] utilize cognitive sensor networks in CSGNs to build

a reliable and low cost remote monitoring system. Huang et al. [104] propose a priority-

based traffic scheduling algorithm to decrease spectrum sensing error and system utility

optimization performance in CSGNs. In this method, using a differential service algorithm,

packets are divided into different groups of priority and are sent based on their priorities. Bu

et al. [27] propose a green CSGN using small cells for dynamic pricing optimization, energy

efficient power allocation, and interference management.

Dashti et al. [55] study utility-based fairness criteria for radio recourse allocation in

underlay SNs by proposing a joint rate and power allocation algorithm. Li et al. [138] intro-

duce a transmission power and code allocation method using a blind identification scheme

in a CDMA-based underlay SN. Zhang and Su [267] propose an opportunistic spectrum

sharing scheme to improve channel utilization in infrastructure-based CRNs where the SUs

can adaptively select either an interweave or underlay mode of operation to transmit data.

While operating in the underlay mode, the SUs adapt their transmit power such that the

interference caused by these transmissions is below the tolerable noise floor of the spectrum

in a PN. CDMA enables PUs and SUs in CRNs to simultaneously co-exist on the same fre-

quency band [40, 12, 247, 203, 187]. Chang [35] propose an efficient code assignment scheme

in a hierarchical MC-CDMA-based Cognitive femtocell system for achieving high spectral

efficiency and lower interference with PUs.

In this chapter, we propose a novel hierarchical communication architecture for stationary

or non-mobile CSGNs. Our main idea is to use an OCS and substring of OCS, called sub-
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OCS, in underlay SNs while TV network is transmitting its data as PN to its users as

PUs. To the best of our knowledge, this is the first work that leverages a sub-string of

OCSs to improve the number of supported SUs. Also, we leverage on the power control

techniques to further decrease interference and noise ratio, and further improve the number

of supported SUs. Hence, utilizing sub-OCSs along with proper power control techniques

form the foundation of our architecture towards increasing NSU in CSGNs.

3.2 System Description: Network Model and Configuration

The network model that we consider in this work is shown in Fig. 3.1. We assume that

SMs are tessellated into clusters of m SMs per cluster. Every cluster includes a GW which

is responsible for gathering the data of the SMs within that cluster. This data gathering

can include aggregation, concatenation, or any other kind of operation desired by the utility

company. Every k cluster form a Supercluster, represents a residential neighborhood. Figure

3.1 represents a supercluster with k = 7, where there are seven clusters per supercluster.

The data of all the k GWs within a supercluster are gathered at the SGW. This SGW is one

of the existing k GWs in a supercluster such that it is within the transmission range of the

k−1 other GWs. SGW is responsible to transmit the data to Utility Control Centers (UCC).

This tessellation process for a supercluster can continue to cover an entire urban area. In

this work, we elaborate our protocol for one supercluster. Without the loss of generality,

rest of the superclusters operate reusing the same protocols and procedures.

Our underlay CSGN scenario consists of a SN of SUs operating alongside a PN of PUs.

The SN always operates in the infrastructure mode. In other words, the SN uses a coordina-

tor or Gateway for session setup and data transmission. The SN will choose an appropriate

parameter for data transmission, independent of the PN, as explained in Section IV. SUs

use an out-of-band dedicated two-way Control Channel (CC) to coordinate the transmission

channel and interference avoidance. We assume that the SN is a CDMA-based network

employing Direct Sequence Spread Spectrum (DSSS)[40], i.e., the transmitted data is modu-
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Backhaul (WAN) Link

NAN link (SM-GW), L2=32

Super Gateway 

HAN Link (APP-SM), L1=128

UCC

Figure 3.1: Cognitive Smart Grid Network Architecture.

lated or spread using a transmitter-specific spreading code or OCS and the PN is considered

to be TV network although it can be any non-CDMA based network. Also, we are using

four CDMA communication links in our architecture. APP-SM link, is a link to connect

appliances to a SM in a Home Area Network (HAN). To form a connection between SMs

and GWs in the Neighborhood Area Network (NAN), we utilize SM-GW links as the sec-

ond hierarchy in our model. In the third hierarchy, GW-SGW links form an inter-cluster

connection between GWs and SGW.

3.3 Proposed Hierarchical Resource Allocation in CDMA-based

CSGNs

If standard CDMA-based communication is used in CSGN, the number of supported SUs

are limited to the maximum number of available OCSs or the OCS length L [40]. In other

words, with an OCS of length L, a total number L SUs can transmit simultaneously. In this

work, we plan to increase this restriction of number of OCSs or NSU by reusing substrings

of already used OCSs in a hierarchical fashion. In our proposed approach, OCSs of length

L are assigned for the data transmission of smart home appliances. Then, substrings of
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these OCSs are used on the next levels of our hierarchical design by SMs, GWs, and SGWs.

These sub-OCSs are then selected such that they do not interfere with the transmission of

other nodes that are simultaneously transmitted with longer OCSs in the SN. Also, utilizing

specific power control mechanisms, we can guarantee that SUs in SN will not interfere or

collide with the transmission of PUs in the PN.

3.3.1 Generating sub-OCSs and resource allocation in proposed CSGN

We generate the OCSs for the Spread Spectrum Communications (SSC) on the SN using

Golay [40] and Persian Chip Code (PCC) [24] algorithms. PCC is an optimized variant

of the Golay. The Golay OCS generator algorithm uses the following recursive generator

matrix [40]:

CL =

[
CL

2
C̄L

2

CL
2
−C̄L

2

]

CL = [ AL BL ] , C̄L = [ AL −BL ] and C1 = C̄1 = [−1] (3.1)

where, L = 2M is the total number of available OCSs, M ≥ 1 is the number of iterations in

OCS generation algorithm, AL=

[
CL

2
CL

2

]
and BL=

[
C̄L

2

−C̄L
2

]
. OCSs of 16-chip length generated

using Golay are shown in Fig. 3.2-a. In recursive OCS generation algorithms such as Golay

(or PCC), OCSs can be organized into groups called flock based on chip pattern similarity

and chip distance between OCSs. In Fig. 3.2-a, we can see different flocks for 16-chip OCSs,

where each flock size is 1
4

th
of the set of all (sorted) OCSs of a particular length.

Both Golay and PCC algorithms are able to produce L OCSs with a length of L-chips.

The PCC generator matrix is shown in Eqn. 3.2. Correspondingly, OCSs of 16-chip length

generated using PCC are shown in Fig. 3.2-b.
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Figure 3.2: a) A 16-chip Golay OCS matrix, solid lines are repetitive patterns and dashed
lines are selected sub-OCSs. b) A 16-chip PCC OCS matrix, dotted lines are inverted OCSs
after column shifts and dashed lines are sub-OCSs.

P4n =



P4n−1 P4n−1 P4n−1 −P4n−1

−P4n−1 P4n−1 −P4n−1 −P4n−1

P4n−1 P4n−1 −P4n−1 P4n−1

P4n−1 −P4n−1 −P4n−1 −P4n−1



∀n ≥ 1, P1 = [−1] (3.2)

OCSs generated by PCC have equal number of 1’s and -1’s, in contrast to OCSs generated

by Golay. This property makes data transmission using PCC more fault tolerant than Golay.

Among all OCS generator algorithms, PCC and Golay are preferred because of equality in

OCS length and number of generated OCSs, and high level of orthogonality. The length of
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OCS, Length 256 chips (First or Lowest hierarchy)

Sub-OCS(Third hierarchy),  Length 16 chips
Sub-OCS(Forth or Highest hierarchy),  Length 4 chips

Sub-OCS(Second hierarchy),  Length 64 chips

4 16 64 256

Figure 3.3: One appliance (using OCS with 256 chips length) and three SUs (using sub-
OCSs) in three hierarchies in each flock.

OCSs to be used in SSCs depends on various factors such as the number of users, noise, and

interference in the network. Golay and PCC have excellent fault-tolerance properties, which

increases with the length of the code. The fault-tolerance capabilities of both codes can be

shown to be around 37.5%, i.e., the receiver is able to decode the transmitted bit even if the

amplitude of received signal is 37.5% less (or more) than the defined thresholds. An analysis

of this property is presented in Section 3.3.3.

In our proposal, for each OCS of length L assigned to and used by an appliance (lowest

hierarchy SU in CSGN), we assign a substring of those OCSs of length at most L
4
, also called

sub-OCS, for simultaneous use by a SU in a higher hierarchy of CSGN. Sub-OCSs can be

assigned and used in a hierarchical fashion as shown in Fig. 3.3, where the first level sub-

OCS of an OCS of length L could be of length L
4

and then decreasing by a factor of four. For

example, Fig. 3.3 illustrates a 256-chip OCS that is used by a smart appliance in the HAN

and a three level hierarchy of available sub-OCSs that can be simultaneously used by higher

hierarchies of SUs. As we can see in Section 3.3.3, every time the OCS length is divided by

four (to generate a new level of sub-OCSs), the transmission power amplitude is doubled.

Due to the fault tolerance property of the chip codes used, the upper levels of this chip

code hierarchy, with longer OCSs (or sub-OCSs), can tolerate the interference caused by

the parts of waveforms that are used by the chip codes in the higher levels SU. However,

transmitting with these OCSs and sub-OCSs will impose a tolerable interference on the PN,

if the interference is lower than the interference threshold [72]. Also, SU receivers will be

able to decode their received data by these signal amplitude increments irrespective of the

effect of the lower hierarchies SUs’ transmission. Thus, bad effects of sub-OCSs that are used
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Table 3.1: Number of Extra Sub-OCSs in PCC and Golay codes

sub-OCSs’ Hi-
erarchy(H)

Length of
OCS

Number of Golay
Extra SUs by sub-
OCSs

Number of PCC
Extra SUs by sub-
OCSs

7, Highest H 16 42
4 42

4

6 32 82
8 N/A

5 64 44
4 + 162

16 = 20 44
4 + 162

16 = 20
4 128 84

8 + 322
32 = 40 N/A

3 256 48
4 + 164

16 + 642
64 = 84 48

4 + 164
16 + 642

64 = 84
2 512 324

32 + 1282
128 = 160 N/A

1, Lowest H 1024 416
4 + 168

16 + 644
64 +

2562
256 = 340

416
4 + 168

16 + 644
64 +

2562
256 = 340

by higher hierarchies SUs impose a tolerable interference on lower hierarchies SUs. Selected

Golay and PCC sub-OCSs for a 16-chip OCS are as shown in Fig. 3.2-a and Fig. 3.2-b by

dashed lines. These selected sub-OCSs will have the lowest interference rate among all other

sub-OCSs that reside in the same column and are chosen due to the fact that they have

equal number of 1’s and -1’s in each flock.

The total number of extra SUs that can be supported purely based on the sub-OCSs

selected from fixed-length OCSs are shown in Table 3.1. The number of extra users is denoted

as ℵδ%, where ℵ is the number of usable sub-OCSs of length %, and δ-times bigger signal

amplitude compared with the original OCSs’ amplitude. As implied earlier, the number of

extra SUs supported in our network is equivalent to the number of employed sub-OCSs. It

should be noted that, if one sub-OCS in a flock of Golay is used in a CRN, it interferes with

particular chips (as shown by solid lines in Fig. 3.3-a) of other OCSs in all flocks. Contrary

to Golay, in PCC, sub-OCSs do not interfere, more than the threshold floor, with other

OCSs in the same or different flocks. This is because, unlike Golay, corresponding chips in

all flocks are not identical, which will result in less interference at the receiver. Thus, the

Golay OCSs will reduce the efficiency of our CRN architecture as the interference would be

higher. In the proposed method, all SUs are able to generate PCC OCSs and sub-OCSs

independently.
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Let us explain this further by means of a simple example. Based on Fig. 4.1, assume all

appliances send their data to SM on L1 (APP-SM link). Then, SM forwards the received

data to GW on L2 (SM-GW link). Also, in the next hierarchy, GWs send the gathered data

from the SMs to SGW on L3 (GW-SGW link). Based on these hierarchies in the network,

we can allocate OCSs and sub-OCSs as follows. Connections on L1 between appliances and

SMs use OCSs with length L = 128 with minimum required power on one of the TV bands

[72, 152]. SUs in proposed CSGN can utilize an adaptable transceiver on different hierarchies

with different level of Tx power. For instance, “LC169TR-1” transceiver chipset supports

adjustable Tx powers in range of 5mW − 750mW on TV bands (IEEE 802.22)[152]. SGW

and GW are responsible for sensing the channel and allocating available frequency bands to

SMs [263, 264, 104]. Using lower transmission power, e.g. V1 = 5 mW , PUs will be able

to transmit simultaneously on the PN [152]. This power generates small and tolerable noise

on the PN in the vicinity of the transmitter. Therefore, if SGWs and GWs coordinate on

recognizing and allocating OCSs and sub-OCSs, they can reuse these OCSs and sub-OCSs

in other parts of the neighborhood and network. If we assume L1 = 128 , each SM can have

128 connections to appliances at the same time. All the SMs are able to reuse OCS, because

of low transmission power on L1 where we cannot reuse sub-OCSs on L2 and L3 because of

shared mediums on L2 and L3. Thus, we should utilize a unique sub-OCS on each link on L2

and L3 in a cluster of GWs in range of one SGW. Based on Table 3.1, if we have OCSs with

length L = 128 on L1 in lowest hierarchy, and L2 in the second hierarchy, we can have 32

orthogonal sub-OCSs with length L = 32 and transmission power V2 = 10 mW [152]. These

sub-OCSs can be used to transmit simultaneously and without interference on the network.

On the highest hierarchy, for GW-SGW communications and based on Table 3.1, GWs and

SGWs should encode their data utilizing sub-OCSs with length L3 = 8 and V3 = 20 mW .

Also, sub-OCSs on L2 and L3 connections are orthogonal and unique for each of connections.

Transmission power on L2 and L3 are higher than transmission power on L1. Hence, if

sum of transmission power on L2 and L3 is smaller than the tolerable noise or noise margin
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in PN (Based on FCC(DT-LIC), TV network which is lower than 54.8 dB or 2.511 Watt

[72]), all transmitted data on proposed CSGN are delivered to destinations without collision

or interference on the PN [72]. Therefore, all the communicating nodes in our proposed

CSGN can co-exist with PN on used TV bands using three levels of hierarchical OCSs and

sub-OCSs, simultaneously. Also, each SM’s, GW’s, and SGW’s coverage area is related

to their transmission power on that network. In high density CSGNs, GW and SGW can

allocate longer OCSs to appliances to make connection to SMs. Thus, the proposed model

can increase OCSs’ length proportional to the number of SMs in each cluster. In the above

example, each SM can handle 128 Appliance-SM connections and 32 SM-GW connections

in each neighborhood when the CSGN is able to support 8 GW-SGW connections in the

proposed cluster. Therefore, based on Table 3.1, GW and SGW are able to choose the right

length of OCSs on L1 proportional to the number of SMs in each cluster. This selection, in

addition to increasing the number of OCSs on L1, can increase the number of sub-OCSs on

L2 and L3. For instance, for OCSs with length L1 = 256, our proposed CSGN can support

256 Appliance-SM connections, 64 SM-GW connections, and 16 GW-SGW connections.

3.3.2 Transmission Parameters

In this section, we summarize physical layer properties of a CDMA-based CSGN and

clarify the received signal and its shape at the receivers. Also, the processing gain, which is

directly affected by the number of supported users in our method, is described in this section.

The received signal without considering multipath fading is shown in Eqn. 3.3, where r(t)

is the received signal at time t, and τ is the decoding delay at the receiver.

r(t) =
NSU∑
i=1

Si(t− τi) + η(t) (3.3)

Si(t) in Eqn. 3.4 denotes the shape of the spread received signal (spread by the ith appliance’s

OCS), and in Eqn. 3.5, Śi(t) illustrates the shape of the spread received signal coded by the

corresponding sub-OCS of the ith SU. ES is the energy symbol in the ith SU for full length
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OCSs and ÉS is the energy symbol in the ith SU for sub-OCSs. Also, di(t) is the data sent

by the ith user which will be spread either by an OCS or sub-OCS. OCSi(t) and subOCSi(t)

represent the ith SU’s OCS and sub-OCS at time t. fc is carrier frequency and 1
Tc

is the chip

rate.

Si(t) =

√
2ES
TS

di(t).OCSi(t). cos(2πfct+ θi) (3.4)

Śi(t) =

√
2ÉS
TS

di(t).subOCSi(t). cos(2πfct+ θi) (3.5)

Eqn. 3.7 represents the spreading factor, which happens to be equal to OCS length (L) in

our architecture, when Tc and Ts are chip duration and symbol duration, respectively.

L ,
number of chips

symbol size
=

1
Tc
1
Ts

(3.6)

Spreading factor = PG =
BSS

B
=

1
Tc
1
Ts

=
Ts
Tc

= L (3.7)

Sub-OCSs in the proposed method, by design, are employed on the same bandwidth as the

PN and do not require increasing CRN’s bandwidth and carrier capacity. Thus, it will be

able to increase NSU while the processing gain PG in SSC remains the same as shown in Eqn.

3.7. The processing gain in Eqn. 3.7 represents the number of available OCSs per symbol

where BSS is one-sided system bandwidth of spread spectrum signal on overall bandwidth

and B is the minimum required bandwidth to spread the data and BSS � B [182].

In the next Section, we will use one level of Signal-to-interference-plus-noise ratio (SINR)

in our simulation. Based on the analysis of the fault-tolerance property in Section 3.3.3, the

desired SINR of SUs to correctly decode the required bit is calculated by Eqn 3.8. In this

equation gρji indicates the gain of the uplink (ρ), between the jth SU (transmitter) and ith BS

(receiver). Also, ηi is the interference plus noise power in the network and SINRi represents

the SINR in the ith SU. The SINRi must be greater than Q∗(t) (the required link quality

at SN at time t) to be able to decode SU’s waveform in the SU receiver. Q∗(t) could be set
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by the SUs based on the environmental noise, given a SINR threshold. P S
G = PG.γ, where γ

is a factor that increases the SUs’ gain in order to compensate the use of sub-OCSs.

SINRi = P S
G

Pig
(ρ)
i,i

NS∑
j=1, j 6=i

Pjg
(ρ)
j,i + ηi

≥ Q∗(t) (3.8)

3.3.3 Fault tolerance threshold in CSGNs

The fault tolerance threshold depends to the model of data transmission in CSGNs.

The data transmission models on spread spectrum are synchronous or asynchronous. Since

in synchronous data transmission model all senders spread their data on channel at the

same time, synchronous data transmission can handle more fualt than asynchronous data

transmission model.

3.3.3.1 Fault tolerance threshold in synchronous CSGNs

In this section, we explain the fault tolerance property thresholds in SSC that we as-

sumed in our proposed CSGN. Garg [119] shows that DS-CDMA receivers will interpret any

amplitude between [0+ε,A] as 0 and [-A,0 − ε] as 1. Hence, their scheme will tolerate up

to length of OCSs minus noise power, or L − ε, fault without considering idle senders (As

we will show, L is proportional to A). Gerakoulis [80] also elaborates that orthogonal Gold

codes can tolerate up to 50% of the OCS length of jitter. We are assuming that the sender

can be silent at times. Thus, our scheme consists of three voltage levels representing the

sender sending 1, nothing, and -1 respectively. Based on what we will show in this analysis,

the receiving node will be able to tolerate an error of lower than 37.5% (of the received

decoded value) in asynchronous and 50% in synchronous transmissions.

In the following equations in this section, C(t) is the channel state in the synchronous

CSGN at time t and bi represents the desperad signal using ith OCS by a smart appliance

in the synchronous CSGN. Also, η(t) represents AWGN at time instant t. The Ai(t) and

Ag(t) represent the amplitude share of the data spread by the ith OCS and the gth sub-OCS,
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respectively at time t. Let bi represent the received despread decoded bit in the ith receiver.

OCSi(t) shows the tth spreading chip in the ith OCS.

C(t) =
L∑
i=1

Ai(t) +

NSU=(log4L)−1∑
g=1

Ag(t) + η(t) (3.9)

bi =

OCSLength=L∑
t=1

C(t).OCSi(t). (3.10)

Let Q∗(t) represent the defined threshold of the required A in a synchronous CSGN at

time t. Thus, in Eqn. 3.11 A represents the maximum signal amplitude (voltage) in the

receiver that will be proportional to L or length of the OCSs in the maximum state when

all appliances in CSGN are using their OCSs. Maximum peak-to-peak amplitude can be 2A

while A is proportional to L. Thus, if we want to define a threshold, we can decode the

despread bit bi to 1 in the ith receiver, if bi is greater than A
2

, and to -1, if bi is smaller than

−A
2

. Q∗(t) represents this threshold in a synchronous transmission when the receiver is able

to decide for choosing 1 or -1 where the despread waveform is greater or smaller than 50%

of the maximum amplitude A. Figure 3.4-a illustrates the case of the synchronous CSGN.

if



+A
2
< bi < +A bi = +1

−A
2
≤ bi ≤ +A

2
bi = 0

−A < bi <
−A
2

bi = −1

(3.11)

Hence, based on Eqn. 3.11, in order to decode a despread signal correctly in synchronous

CSGN, the maximum fault that can be tolerated at the receiver in terms of A is:

Q∗(t) = |1− bi| ≤
A
2
. (3.12)
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-A +A0 +A/2-A/2

-A +A0 +A/2-A/2
iSUb

iSUb

Figure 3.4: Convert received despread amplitude to bit in receiver in a) synchronous CSGN,
b) asynchronous CSGN.

3.3.3.2 Fault tolerance threshold in asynchronous CSGNs

However, in an asynchronous mode shown in Fig. 3.4-b, using the proposed sub-OCSs

will cause, at most, A
4

of the amplitude to be altered in a time instant. This will affect

both positive and negative amplitudes equally (A
8

or 0.125A in positive voltages and A
8

or 0.125A in negative voltages). This effect, which is indicated by the interferer voltage

by asynchronous OCS and sub-OCSs at time instant t in the figure, makes the acceptable

decoding amplitude interval smaller, from 50% in the synchronous mode, to 37.5% in the

asynchronous mode.

In the asynchronous CSGN, all the symbols and notations used are similar to the syn-

chronous case except for the term Ap(t) that represents the interference caused by asyn-

chronous transmission, where Nasy represents the number of nodes causing jitter interference.

Throughout the proposed CSGN, the noise power is assumed to be 1 (Fig. 3.4-b).

C(t) =
L∑
i=1

Ai(t) +
NSU=(log4L)−1∑

g=1

Ag(t)

+

Nasy∑
p=1

Ap(t) + ηt (3.13)

bi =

OCSLength=L∑
t=1

C(t).OCSi(t). (3.14)

Let fminbi
denote the minimum required amplitude in an asynchronous receiver to decode the

data bits from the despread signal correctly. Then,
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fminbr
= bi +

Nasy∑
p=1

Ap(t) = 0.5A+ 0.125A

= 0.50A+ 0.125A = 0.625A. (3.15)

Let Q∗(t) denote the maximum fault tolerance in an synchronous transmission. Then,

if


0.625A < bi < +A bi = +1

−0.625A ≤ bi ≤ +0.625A bi = 0

−A < bi < −0.625A bi = −1

(3.16)

Thus, based on Eqn. 3.16, considering time shift and jitter in OCSs and sub-OCSs, a

despread signal can be decoded at a receiver in an asynchronous CSGN, if the fault is

bounded by Eqn. 3.17 in terms of A.

Q∗(t) = |1− bi| ≤ 0.375A. (3.17)

To bring up a tangible example, assume that sending a data symbol with an OCS of

length L results in an amplitude of A or −A at the receiver. Then, any corruption in a

pattern of L will result in a change in A, relative to the corrupted fraction of L. There

is a linear relation between L and A. Additionally, as we have seen, there is a way for

the primary and secondary receivers to decode the received signal if the total noise and

interference result in atmost 37.5% corruption of the decoded waveform (or 37.5% of the

chip length), based on the fault-tolerance threshold presented above. In other words, if the

decoded value (the value which is decoded at the receiver from the received signal) is between

(A− 0.375A, A+ 0.375A), it will be interpreted as A providing an error tolerance of 37.5%

of the OCS length. For instance, if A = 256, any decoded value at the receiver ranging

from (A− 0.375A)= 160 to (A + 0.375A) = 352 will be interpreted as 256 at the receiver.

Likewise, any decoded value ranging from (−A− 0.375A) = -352 to (−A+ 0.375A) = -160

will be interpreted as -256 at the receiver. In case of getting a decoded value between -160 to
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160, the receiver will ignore the received data (equivalent to receiving 0) assuming that the

sender has been silent (the received signal could be generated due to environmental noise).

It should be noted that any value more than (A+0.375A) or less than (-A−0.375A) will be

mapped to +A and −A, respectively. It is worth mentioning that similar orthogonal codes,

such as Gold, can also tolerate a timing jitter of 50% of the OCS length [80].

3.4 Evaluation

3.4.1 Network Setup

In this section, we evaluate the proposed scheme for improving number of SUs in underlay

CSGNs by considering non-CDMA-based PNs. In the proposed CSGN simulation, all SMs

are static and are equipped with omni-directional antennas with radius r in a square planar

area. It is also assumed that SMs are randomly placed based on a uniform probability

distribution function with a planar node density χ, where χ is the number of SMs per square

meter. We also know that the number of SMs (n) in an area of πr2 square meters has a

Poisson distribution of [246]:

p(χ, n, r) =
(χπr2)

n
e−χπr

2

n!
(3.18)

When a communication channel in the PN is being utilized by a PU, the SUs have to

spread their data by utilizing full OCSs or sub-OCSs with a power below the PUs’ tolerable

noise floor. Thus, the sum of the SUs’ transmission power should be in the noise margin of

TV which is lower than 2.511W [72, 152]. When the PN is considered non-CDMA-based, it

can use any multiplexing scheme such as TDMA or FDMA. It goes without saying that, as

PN is not CDMA-based, PUs do not use OCSs or sub-OCSs for data transmission. Therefore,

all OCSs and sub-OCSs will be available to be utilized by the SUs, resulting in considerably

more supported SUs. Each SN’s GW selects an available OCS or sub-OCS for each SU

in the respective hierarchies. Lower hierarchies are locally significant and each SM adjusts
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appliances’ transmission power based on its distance to appliances which should be less than

5 mW . This level of power would be enough to transmit data between appliances and SM

in indoor environments [152]. SUs can set their transmission power during the coordination

phase on the CC based on the attenuation of the received signal [263, 264, 104]. Despite the

challenge of power control in CDMA-based communication [182], we will show by means of

our simulation results that the NSUs can be increased by utilizing multi level of power in a

hierarchical structure of SN.

SMs assign one OCS to each appliance to prevent interference. Also, in second hierarchy

GWs assign one sub-OCS, from existing sub-OCSs in second hierarchy, to each SM. In a

same way, SGWs assign one sub-OCS to each GW. Hence, there is a particular synergy in

OCS and sub-OCS assignment to devices in each supercluster.

3.4.2 Simulation Results

We evaluate our proposal in an underlay CSGN that supports TV network as a PN. We

would like to argue that the number of SUs, and consequently the number of OCSs and sub-

OCSs, are independent from the infrastructure and are solely bounded by the parameters

of the proposed architecture. The OCS length used by SUs will determine the hierarchy

of possible sub-OCSs in the SN. However, in order for SUs not to interfere with PUs, SUs

transmission power plays a key role [101]. The task of assigning an OCS or sub-OCS to a

SU, which is done independently by SM or GW, will add extra set up and processing time

on the network. GW assigns a unique sub-OCS to each SM periodically when SM has data

to send to higher hierarchy in each time interval. As each SM in a cluster is assigned a

unique sub-OCS by the GW, there is no interference among SM communications within the

cluster. Also, neighboring GWs collaborate with each other but duplicate sub-OCSs are not

assigned to neighboring clusters.

We evaluate our proposed CSGN architecture using MATLAB simulations under several

different network conditions. In one set of experiments, we simulate our network in a 1000m

46



Table 3.2: Simulation Parameters for Proposed SU

Parameter Value

Simulation area 1000 m × 1000 m
GWs’ sensing range radius 100 m
SUs’ power control model Out-band CC
Tx power on CSMA/CA-based CC Coordinated model by GW and SGW
Tx power on CDMA-based data chan-
nel

V1 ≤ 5mW (3kbps in building), V2 ≤
10mW (5kbps, ≤ 100 m), V3 ≤
20mW (5kbps, 100-200 m)[152]

Number of available secondary users in
CSGN

L+
(log4L)−1∑

i=1

L
4i

Carrier frequency TV band (VHF), 54-72 MHz, 76-88
MHz

Channel bandwidth 18 MHz
Bit rate on shared network 64 Kbps
Bit rate for each connection 3 kbps
Orthogonal Chip Code generator PCC and Golay (Asynchronous OCSs)
OCS and sub-OCS Size in CDMA
based SN, non-CDMA based PN

Varies from 4 to 1024 bits

Node Placement Random
Radio propagation model Free Space
ReceiverGWs hight hr = 8m
Maximum PN Interference tolerance 3.2(log10(11.57(hr)))

2 − 4.97 dB
TV Noise Margin (tolarable noise floor) < 2.511 W
Number of iterations 100

× 1000m area. Our first goal is to verify the effectiveness of our approach in increasing the

number of supported SUs. Simulation parameters can be found in Table 3.2 and results are

available in Fig. 3.5-a and Fig. 3.5-b. For simplicity, we currently only assume the free

space propagation model.

As the hierarchical organized SN is CDMA-based, while the PN is not CDMA based,

SUs are able to utilize all OCSs (=L) and sub-OCSs (=
(log4L)−1∑

i=1

L
4i

). Thus, the total NSU in

the proposed method is L+
(log4L)−1∑

i=1

L
4i

.

Our simulation results for NSU and delay in the proposed CSGN consider three different

time synchronization states that have an effect on interference on SN’s channels: 1) All data
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transmissions on SN are synchronous. 2) All data transmissions on SN are asynchronous. 3)

All data transmissions on SN are asynchronous with a cyclic shift of OCSs and sub-OCSs.

More synchronization difference creates more interference in the SN. Each state is analyzed

with SINR = 20 dB and four different OCS lengths 16, 64, 256, and 1024. Simulation

results confirm our analysis in Section 3.3.3 showing that using sub-OCSs by SUs will not

increase BER on SUs’ transmission in lower hierarchies that are using longer OCS or sub-

OCSs. It can be seen from the simulation results that asynchronous transmission by SUs

in different hierarchies will impose more interference on the SN than the interference caused

by synchronous data transmission by SUs. Figure 3.5-a illustrates the average number of

secondary users in our proposed underlay CSGN in synchronous, asynchronous, and asyn-

chronous with cyclic shift for 100 times iteration when SINR = 20 dB. Each average value

contains information about NSU for all iterations with SINR = 20 dB. In Fig. 3.5-b,

number of dropped packets is shown when fixed number of SUs (NSU = L +
(log4L)−1∑

i=1

L
4i

,

SINR = 20 dB) are utilizing SN for data transmission. Number of dropped packets (in all

synchronous, asynchronous, and asynchronous with cyclic shift states) in PCC and Golay

algorithms as shown in Fig. 3.5-b are simulated for full load of data in SCGN. In fully

loaded simulation scenarios, all OCSs and sub-OCSs are utilized by SUs. Thus, results in

the figure indicate the number of dropped packets when all OCSs and sub-OCS are used

by SNs in the proposed CSGN. For instance, when L = 1024, CSGN has 1024 active OCSs

and 340 active sub-OCSs when different scenarios have various numbers of dropped packets.

In Fig. 3.5-b, we can see the number of dropped packets is increased when we increase the

length of OCSs. The interference among OCSs and sub-OCSs is the reason for increase in

the dropped packets, because there are more simultaneous SUs transmissions. As shown in

the Fig. 3.5-b, the number of extra sub-OCSs that are generated by longer OCSs is always

bigger than number of dropped packets. Thus, increasing the length of OCS in SNs that

need to support more SUs, provide more resource in SNs.
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(a) (b)

Figure 3.5: a) Number of SU (OCSs plus sub-OCSs) in synchronous SN, asynchronous SN,
and asynchronous SN with cyclic shifts in SUs’ data transmissions. b) Number of dropped
packets when NSU is same (NSU=L) with and without utilizing proposed CSGN.

Low latency for CSGN data transmission is an important feature of Quality of Services

(QoS) in future smart grid networks. Real-time communications and transmitting large data

are requirements in future SGNs, although these requirements will increase data transmis-

sion latency in SNs, concurrently [248]. Thus, latency can be one of the drawbacks in such

networks that is increased with size of data transmission and QoS requirements. All SUs

who utilized OCSs and sub-OCSs in proposed underlay CSGN are able to spread data simul-

taneously. Thus, increasing NSU and parallel transmission on SN decrease the latency by

means of parallel transmission on the same channel. Also, this simultaneous data transmis-

sion makes channel available to other users when SUs have already transmitted their data

in the same time. In this part of simulation we assume that the number of SU in CSGN is

fixed. Also, CSGN utilized sub-OCSs or extra SN’s capacity to transmit data by the existing

SUs instead of using sub-OCSs to increase NSU. Therefore, each round of simulation, for

various numbers of SUs, is simulated with and without utilizing sub-OCSs. For instance,

when CSGN has 1024 SUs and each SU wants to transmit ten megabyte of data simulta-

neously with other SUs, CSGN without sub-OCSs has 1024 OCS (1024 simultaneous SUs).

Therefore, in proposed CSGN, SN is able to use 340 sub-OCSs, when L = 1024, to increase

bit-rate in SNs. The increasing bit-rate in SNs’ data transmission will relatively decrease

the propagation delay. Therefore, the extra 340 sub-OCSs will share among all SUs and
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Figure 3.6: The comparision on saved time in proposed CSGN with utilizing and a plain
CDMA-based SN without utilizing sub-OCSs to send 10 megabyte of data by SM to UCC.

approximately each sub-OCS will be shared among three SUs to transmit data and decrease

the propagation delay for a fixed amount of data. In this part of simulation, we assume the

bit-rate in each connection from appliances to UCC is 3 kbps on CSGN CDMA-based chan-

nel. Figure. 3.6 illustrates the time saved using the proposed method without considering

environmental noise to reduce latency and sending ten megabyte of data from appliances to

UCC when network is worked fully loaded.

Based on Fig. 3.5-b and Fig. 3.6, we can see the propagation delay will be much better

in all situations even as the number of dropped packets increases. However as the value of

L increases, there is an increase in the number of dropped packets which in turn affects the

transmission rate resulting in an increased propagation delay even when sub-OCSs are used.

We would remark that our proposed method increases NSU by the number of utilized

OCSs and sub-OCSs, and it does not depend on the network infrastructure. Changing the

carrier will not affect the number of SUs although it might alter the noise and the interference

level2.

2The content of this chapter has appeared in [21].
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CHAPTER 4
SEER GRID: PRIVACY AND UTILITY IMPLICATIONS OF

TWO-LEVEL LOAD PREDICTION IN SMART GRIDS

As part of the future smart electricity grid initiative, a smart grid communication network

(SGN) is a large-scale integration of information and communication technologies within the

electricity generation, transmission, and distribution systems of the traditional electricity

grid. A combination of various smart technologies at different levels of the SGN promotes

efficiency, reliability and stability in operations of the smart grid. One indispensable piece

of technology in a SGN is a smart meter (SM) which collects and periodically reports the

energy usage or consumption information of the customers to the electric (a.k.a. utility)

company (EC), which in turn facilitates highly efficient energy generation and distribution

and helps the EC to cope with changes in energy demand and supply. The monetary and

natural resource savings due to the improved efficiency is a major factor in the fast growing

adoption of SMs, with predictions that about 800 million SMs will be in use globally by

2020 [232]. Despite their tremendous importance in a SGN, SMs can also be easily exploited

by malicious adversaries (including the EC) who may attempt to infer private customer

information from reported energy consumption patterns, such as occupancy of the house

[129], specific appliances being used [253], and even daily routine of the residents [202][141].

Various techniques for overcoming privacy issues due to the energy usage information

generated and shared by SMs have been proposed in the research literature, and these so-

lutions have primarily followed one of the following two approaches: (i) completely obscure

the individual SM data from the perceived adversary, or (ii) hide privacy-sensitive signa-

tures or patterns from the individual SM data by perturbation or down-sampling. In the

first direction, protocols that take advantage of the homomorphic properties of public-key

cryptographic algorithms to perform neighborhood-level aggregation of SM data have been

proposed in the literature [137][78]. These protocols enable the EC to learn the actual aggre-
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gated energy consumption information (at a neighborhood level) without leaking individual

customer-specific information to the aggregator. In the second direction, many approaches

have been proposed to efficiently perturb energy consumption data in order to meet certain

privacy requirements. In-residence storage batteries have been employed to flatten or mask

variances in the load or electricity usage information [120][162]. Similarly, controlled pertur-

bation [98][191][207] and down-sampling [59][160] of the energy consumption data to mask

specific load signatures of appliances have also been attempted.

However, as pointed out by [207] and [59], the degree of correlation between the actual

energy consumption and the data output by a privacy-preserving technique typically char-

acterizes a trade-off between privacy and utility (or usefulness). Higher correlation with the

actual ground-truth makes the perturbed data more useful but reveals private information,

whereas lower correlation (or increased perturbation) is good for privacy but reduces data

usefulness or utility. As protocols following the first approach do not really perturb the elec-

tricity consumption data, the utility of the data (or any function computed from the data)

is high. Also, as this data is cryptographically obscured from the aggregator, there is no

leakage of private customer information. However, protocols using public-key cryptography

are non-trivial to implement in practice and have very high computation and communication

overhead [56]. Perturbation mechanisms, such as the ones using storage batteries [120][162],

are effective in masking private usage patterns, but installing and maintaining large capacity

batteries in every household is shown to be economically non-viable [9]. Similarly, Dong et

al. [59] show that performance of smart grid operations can degrade due to reduction in

sampling frequency. Other perturbation mechanisms, such as [207], that attempt to strike a

good balance between privacy and data-utility by masking or suppressing specific appliance

signatures assume that individual appliance electricity consumption information is readily

available (or can be easily separated from the overall data) which may not always be feasi-

ble. Given the above state-of-the-art, we feel that both data hiding and data perturbation
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approaches have inherent limitations, which motivates us to explore alternate paradigms

(beyond hiding and perturbation).

Our goal in this work is to explore alternate practical designs for privacy-sensitive gener-

ation and sharing of energy consumption information from the SMs to the EC which enables

effective operation of the EC in terms of accurately predicting future demand and electricity

generation and distribution. In order to achieve this goal, we move away from the classical

perturbation/data-hiding techniques and use learning-based prediction mechanisms to gen-

erate (or predict) energy consumption patterns shared by SMs. Our prediction mechanism

will replace variances in the individual household-level actual energy consumption patterns

(which is typically indicative of loads) with relatively smoother patterns that are free of

load signatures but accurate enough to be useful in predicting energy consumption at the

neighborhood level (which is the one that is actually used by the EC). Due to this, privacy-

sensitive inference attacks will be much harder on the household-level data shared by the SM

without significantly impacting the demand-response and electricity generation/distribution

calculations at the EC.

With Seer Grid1, we propose a household-level prediction scheme comprising of a statis-

tical learning algorithm (trained using past consumption pattern of the household) which

predicts an entire day’s electricity consumption pattern one day in advance2. This prediction

can be performed locally on the SM, on a local energy management unit or on a computing

device that connects to such a unit. The household electricity consumption pattern pre-

dicted locally at the SM, with the load or appliance signatures masked or flattened, is then

reported to an aggregator or data concentrator (referred here as a cluster head or CH) at

the beginning of each day. All SMs within a neighborhood or cluster report their energy

consumption predictions to their respective CH who in turn forwards an aggregated pre-

1According to Oxford Dictionary, seer is “a person who is supposed to be able, through supernatural
insight, to see what the future holds.” Through two-level energy prediction we enable insight into future
demands, while simultaneously promoting consumer privacy.

2The content of this chapter has appeared in [23].
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diction (as described below) to the EC. As our localized prediction flattens or eliminates

sharp variations (which may indicate load signatures) in the predicted consumption at the

SM or household level, this difference can add up significantly while aggregating predictions

for multiple households in a neighborhood or a cluster. This can reduce the accuracy of

the aggregated prediction, thereby adversely impacting its utility or usefulness to the EC.

In order to restore this utility lost due to prediction at the SM level, we introduce a second

level of energy load prediction at the CH for compensating the difference in the aggregate

of predicted and actual energy usage of individual SMs in the cluster. CH performs the

spike prediction based on past energy consumption pattern of the entire neighborhood or

cluster, and then reports the result of the second level prediction, in addition to summation

of first level predictions, to EC just before beginning of each day. EC can then use this

cluster or neighborhood-wide load prediction to efficiently control electricity generation and

distribution. To ensure fail-proof operation of the SGN in case of major prediction errors,

we also incorporate a privacy-preserving reporting of the aggregated variance between actual

and predicted energy consumption of all SMs in the cluster. Also, the entire framework is

computationally efficient, allowing it to work in real-time (we assume intervals of 5 minutes

for SM reporting, but can be easily applied to shorter intervals).

Seer Grid’s two-level prediction mechanism offers several advantages over traditional

privacy-preserving energy data reporting schemes in the literature. Unlike data hiding

schemes that require several encryption operations at the SM or household level per day

(once every reporting interval), our prediction and reporting operation is performed just

once per day. Moreover, Seer Grid is communication-efficient (as no additional data or

overhead needs to be communicated), does not require any specialized hardware (e.g., stor-

age batteries) and does not need access to appliance-level consumption patterns. In rest of

the chapter, we first describe the generic SGN architecture and capabilities of the assumed

adversary in Section 4.2. In Section 4.4, we discuss the details of the proposed Seer Grid

architecture and it’s operation. In Section 4.5, we evaluate the Seer Grid architecture by
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performing extensive experimental simulations using real smart meter data. We empiri-

cally measure the correlation between predicted and actual consumption patterns at each

level, using standardized metrics, to support our proposition of a practical SGN architecture

which improves both privacy and utility of SM data. Comparative evaluation shows that

Seer Grid’s two-level prediction provides better privacy and utility, compared to just SM

level perturbation techniques.

4.1 Related Work

Multiple schemes have been proposed for short term [37] [112][111] and long term [132]

load prediction at cluster level. Sevlian and Rajagopal [216] proposed short term electricity

load forecasting on varying levels of aggregation, and concluded that aggregating more cus-

tomers improves the relative forecasting performance only up to a specific point. Recently,

smart meter based short-term load forecasting was proposed [82][224], as a household’s his-

toric energy consumption pattern is a better predictor of peak load than any other observable

variables. In contrast, Seer Grid uses two level of prediction to retain the privacy benefits of

aggregation, and utility benefits of individual household prediction.

There have also been extensive research efforts that attempt to address privacy issues re-

lated to SM data release. Li et al. [137] proposed using Paillier cryptosystem’s homomorphic

property for distributed energy consumption data aggregation from SMs, where the EC is

able to know only the aggregated data upon decryption of the aggregated cipher. Garcia and

Jacob [78] proposed the combination of additive secret sharing algorithms and cryptosystems

with homomorphic property, in order to compute the aggregated energy consumption of a

given set of users (for example, in a cluster) in a privacy preserving fashion. However, cryp-

tosystems with homomorphic properties induce a large computational overhead on the SMs,

and real-time reporting in short time interval is impractical [56]. Alternatively, McLaughlin

et al. [162] proposed a non-intrusive load leveling model by using large capacity batteries.

Large capacity batteries smoothen the energy consumption pattern and effectively help in
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hiding load signatures contained in actual consumption pattern. However, large batteries

are economically inconvenient [9] due to their high capital cost and low energy-efficiency.

Privacy through anonymization tries to unlink the energy usage data from individual

SMs [61]. However, anonymization may turn out to be ineffective, as Jawurek et al. [115]

and Faisal et al. [68] demonstrated the feasibility of using household anomaly detection

and behavior pattern to de-anonymize SM data. With limited computational capabilities

and practicality in mind, researchers suggested the use of perturbation techniques for hiding

load signatures. Consumer privacy can be preserved by deliberately introducing error into

the energy usage data [98][191][161][219], and such perturbation techniques often try to

achieve differential privacy in order to reduce the privacy-utility trade-off [207]. However,

the privacy-utility trade-off of SM data perturbation techniques can still be significant [211],

which may not be admissible to ECs. In this chapter, the proposed Seer Grid architecture

aims to decrease the privacy-utility trade-off by using a two-level prediction scheme.

4.2 The Traditional SGN Architecture

We base our work on one of the most popular SGN architecture consisting of a three-

level hierarchical network (Figure 4.1). At the lower level are the SMs, physically located

in households of end-users or customers. At the middle level, each neighborhood has a

CH, and SMs report energy consumptions to CH. Situated at the higher level is the EC, to

which all CHs report aggregated load of their respective neighborhood. The load reporting

from all CHs aids EC in optimizing generation and distribution of electricity. In real-life

implementation, CH may be owned and operated by a third party or by the EC itself.

We assume a passive adversary who may try to infer personal information of customers

based on accessible energy consumption data. Motivations can vary widely, such as financial

gain from advertising agencies, health insurance companies trying to find unhealthy lifestyle

of insurees, etc. If given access to actual energy consumption data, the adversary is compu-

tationally capable of carrying out inference attacks by analyzing the data. We also assume
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Figure 4.1: Traditional SGN architecture on the left, and our proposed SGN architecture
(details in Section 4.4) on the right.

that the adversary can access energy consumption data reported to the CH and/or to the EC.

However, CH and EC must be honest and cooperative for the protocol to function properly.

Thus, CH and EC can be considered as honest but curious adversaries. We also consider

any eavesdropper (eavesdropping communication between SM and CH, or CH and EC) as

an adversary. All SMs are assumed to honestly and correctly follow the proposed protocol.

As a result, we do not consider collusion attacks between SMs and CH, or between SMs and

EC.

4.3 Technical Background

We carefully analyzed various statistical learning algorithms for predicting energy con-

sumption patterns, in order to identify the algorithm apposite for preserving only the desired

characteristics of the consumption pattern data. In this section we first detail the constituents

and properties of the consumption pattern data, followed by a discussion on how we select

prediction algorithms for SM and CH.

4.3.1 Prediction at SM Level

Traditional SMs report energy usage data to EC in short time intervals, where each

reporting conveys the energy used since last reporting. Let us denote the actual daily SM
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Figure 4.2: Interaction between a(τi) and OTτi is 2-way. Interaction between a(τi) and DTWτi

is also 2-way. And there exists a 3-way interaction between a(τi), OTτi and DTWτi . The
prediction model must learn these interactions in order to make effective predictions.

energy consumption pattern of a household hk as Ahk = {a(τ1), a(τ2), · · · , a(τn)}, where a(τi) is

the energy consumed since a(τi−1). The goal of using a prediction model at the SM is to predict

a pattern Φhk
dayj

= {p(τ1), p(τ2), · · · , p(τn)}, such that there is a high overlap between Φhk
dayj

and

Ahkdayj , but Φhk
dayj

is free of specific load signatures (such as spikes and plateaus). Predictive

modeling leverages statistics to predict outcomes, i.e., the forecast of a day’s consumption

pattern is based on collection of past Ahk (let’s say for m days). After analyzing various

factors that affect consumers’ energy usage, we identified the input variables critical to the

outcome of the prediction model as [i] power usage history in each time interval (a(τi)), [ii]

outdoor temperature in each interval (OTτi), and [iii] day and time of the week (DTWτi).

Each day of the week is considered differently so as to improve prediction based on weekly

routines [235]. All interactions present between these three variables is represented in Figure

4.2.

Popular time series forecasting uses a statistical model for predicting future values based

on previously observed values. However, basic time series forecasting does not capture the

complex interaction between different input variables, resulting in inferior forecasting. Due to

the highly complex interactions and some dependencies between input variables, multi-class

classification and regression analysis will also result in non-optimal prediction. To achieve

better prediction results, we employ structured prediction using supervised machine learning

techniques. Among candidate machine learning techniques for structured prediction, we

decided to use multi-layered perceptron (MLP) because it is specifically designed to discover
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Figure 4.3: The abstract structure of the MLP used of learning and prediction. a
(τi)
W−1, a

(τi)
W−2

and a
(τi)
W−3 is the power usage in the τith interval from last 3 weeks; DTWτi represents day

and time of the week,; and OT
(τi)
W−1, OT

(τi)
W−2 and OT

(τi)
W−3 are the outdoor temperature (in

Fahrenheit) in the τith interval from last 3 weeks.

the complex interactions among input variables. MLP is a feed-forward artificial neural

network (ANN) model that uses a nonlinear activation function to map sets of input data

onto a set of appropriate outputs. MLPs consisting of three or more layers (input, output,

and one or more hidden layers) is called a deep neural network, where each node in one

layer connects with a certain weight wpq to every node in the following layer. The error in

output of a node q in the nth training data point is represented as eq(n) = dq(n) − yq(n),

where d is the target value and y is the value produced by the perceptron. The calculated

error for each training data point is used to make corrections to the weights of the node

as E(n) = 1
2

∑
q e

2
q(n), which in turn minimizes the error in the entire output of the ANN.

Change in each weight during an epoch is calculated as ∆wqp(n) = −η ∂E(n)
∂vq(n)

yp(n), where yp

is the output of the previous neuron and η is the learning rate.

In the learning phase of our MLP execution, for each epoch we input power usage history

of last three weeks recorded in 5 minute intervals. Outdoor temperature for the corresponding

interval and day of the week is also fed in each epoch (Figure 4.3). The output of the ANN

is a structured object (Y ) containing multiple possible Φhk
dayj

for next day. Given that the

next day’s temperature forecast and day of the week is known, the structure object is parsed
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for the matching Φhk
dayj

. More details about the MLP specifications used in our simulation

experiments can be found in Section 4.5. Additionally, we use a low-pass filter over SM

training data which shaves any load pattern for energy consumption above 4kW. Shaving

spikes in the energy consumption pattern eliminates outliers in the training data.

4.3.2 Prediction at CH Level

The purpose of using prediction at SM is to remove specific load signatures (such as

spikes and plateaus) from Ahkdayj . Although the missing spikes and plateaus from the SM of

one household represent a minuscule amount of energy for the grid, spikes and plateaus from

multiple households in a cluster can add up to a significant amount of unpredicted energy,

which can endanger proper functioning of the electricity grid. Thus, we introduce another

level of statistical prediction at the CH based on historical load profile of the cluster, while

also factoring in individual predictions from all SMs in the cluster {Φh1
dayj

,Φh2
dayj

,Φh3
dayj

, . . .}.

The proposed algorithm (Algorithm 5) uses average of difference between past load pre-

dictions and actual loads of the entire cluster (Λdayd = {λ(τ1), λ(τ2), · · · , λ(τn)}), in order to

complement missing loads. The output of the algorithm Ψdayj = {ψ(τ1), ψ(τ2), · · · , ψ(τn)}

is the prediction for the whole cluster reported to CH, where ψ(τi) = δ(τi) +
∑

k p
(τi) and

δ(τi) =
∑d=j−1
d=j−m{λ

(τi)

dayd
−
∑
k p

(τi)

dayd
}

m
. Although trivial, the algorithm can achieve high accuracy.

4.4 Seer Grid

The primary distinction between the traditional SGN and Seer Grid is that, in Seer

Grid SMs never report their actual energy consumption data; they report predicted energy

consumption pattern instead. Similar to the traditional SGN architecture, Seer Grid also

consists of a three level hierarchical network (Figure 4.1). At the lower level are the SMs,

physically located in households. At the middle level, each neighborhood has a CH, and SMs

report next day’s predicted energy consumption patterns to CH. A second level prediction

is performed by CH on the aggregated predicted patterns reported by all SMs belonging
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Algorithm 4 Prediction algorithm executed by CH.

Prediction Function (for day j)

Define new Ψdayj = {ψ(τ1), ψ(τ2), · · · , ψ(τ288)}

for k = 1 to K (K households in the cluster) do∑
p

(τi)
dayj

end for

for i = 1 to 288 (5 minutes time intervals for 24 hours) do
for d = 1 to m (m days to historical data) do

δ(τi) = λ
(τi)
dayd
−∑k p

(τi)
dayd

end for
δ(τi) = δ(τi)

m

ψ(τi) = δ(τi) +
∑

k p
(τi)

end for

Report Ψdayj to CH

to the cluster. At the higher level is the EC, to which all CHs report the second level

predicted energy forecast for their respective neighborhood. The predicted forecast from all

CHs aids EC in optimizing generation and distribution of electricity. We assume that the

CH is capable of measuring the actual electricity usage of the whole cluster for a given time

interval3, which is used to the form statistics used in the cluster level prediction. This is

a reasonable assumption because all cluster level energy forecasting schemes [37] [112][111]

[132] rely on readings from a cluster level electricity meter. We also consider billing once as

a month event, which can be done independently.

We carefully analyzed various statistical learning algorithms for predicting energy con-

sumption patterns, in order to identify the algorithm apposite for preserving only the desired

characteristics of the consumption pattern data. We first detail the constituents and prop-

erties of the consumption pattern data, followed by a discussion on how we select prediction

algorithms for SM and CH. Readers should note that we use the following prediction algo-

3CH is assumed to be equipped with a cluster level meter which measures energy being withdrawn by
the entire cluster. When CH measures the electricity usage of the entire cluster, it does not violate privacy
of individual household because of aggregation.

61



rithms as an example, in order to demonstrate the benefits of Seer Grid. Other suitable

prediction algorithms can be used as well.

4.4.1 Prediction at SM Level

In a traditional SGN, SMs report energy usage data in short time intervals, where each

report conveys the energy consumed since the last reporting. Let us denote the actual

daily SM energy consumption pattern of a household hk as Ahk = {a(τ1), a(τ2), · · · , a(τn)},

where a(τi) is the energy consumed since a(τi−1). In Seer Grid, the goal of using a prediction

model at the SM is to predict a pattern Φhk
dayj

= {p(τ1), p(τ2), · · · , p(τn)}, such that there is

a high overlap between Φhk
dayj

and Ahkdayj , but Φhk
dayj

is free of specific load signatures (such

as spikes and plateaus). Predictive modeling leverages statistics to predict outcomes, i.e.,

the forecast of a day’s consumption pattern is based on collection of past Ahk (let’s say for

m days). After analyzing various factors that affect consumers’ energy usage, we identified

the input variables critical to the outcome of the prediction model as [i] power usage history

in each time interval (a(τi)), [ii] outdoor temperature 4 in each interval (OTτi), and [iii] day

and time of the week (DTWτi). Each day of the week is considered differently so as to

improve prediction based on weekly routines [235]. All interactions present between these

three variables is represented in Figure 4.2.

Classical time series forecasting techniques [25] use a statistical model for predicting fu-

ture values based on previously observed values. However, such basic time series forecasting

does not capture the complex interactions between different input variables, thus resulting

in inferior forecasting. Due to the highly complex interactions and some dependencies be-

tween input variables, multi-class classification and regression analysis will also result in

non-optimal prediction. To achieve better prediction results, we employ structured pre-

diction using supervised machine learning techniques. Among candidate machine learning

4Many older SMs are not equipped with temperature sensors. In such cases, appropriate outdoor tem-
perature values can be provided by the CH or EC.
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Figure 4.4: Proposed SM data flow.

techniques for structured prediction, we decided to use multi-layered perceptron (MLP) be-

cause it is specifically designed to discover the complex interactions among input variables.

MLP is a feed-forward artificial neural network (ANN) model that uses a nonlinear activa-

tion function to map sets of input data onto a set of appropriate outputs. MLPs consisting

of three or more layers (input, output, and one or more hidden layers) is called a deep neural

network, where each node in one layer connects with a certain weight wpq to every node

in the following layer. The error in output of a node q in the nth training data point is

represented as eq(n) = dq(n)− yq(n), where d is the target value and y is the value produced

by the perceptron. The calculated error for each training data point is used to make cor-

rections to the weights of the node as E(n) = 1
2

∑
q e

2
q(n), which in turn minimizes the error

in the entire output of the ANN. Change in each weight during an epoch is calculated as

∆wqp(n) = −η ∂E(n)
∂vq(n)

yp(n), where yp is the output of the previous neuron and η is the learning

rate.

In the learning phase of our MLP execution, for each epoch we input power usage history

of past three weeks recorded in 5 minute intervals. Outdoor temperature for the correspond-

ing interval and day of the week is also fed in each epoch (Figure 4.3). The output of the

ANN is a structured object (Y ) containing multiple possible Φhk
dayj

for next day. Given that

the next day’s temperature forecast and day of the week is known, the structure object

is parsed for the matching Φhk
dayj

. More details about the MLP specifications used in our
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simulation experiments can be found in Section 4.5. Additionally, Connor et al. [49] demon-

strated that neural networks trained on filtered data can perform better predictions than

neural networks trained on unfiltered time series. Therefore, we use a low-pass filter over

SM training data which shaves any load pattern for energy consumption above 4kW. The

value 4kW was empirically determined based on the observation that in our training data,

more than 94% of data samples are lower than 4kW.

A distributed model of SMs is used in our proposed SGN model, where the first level

prediction is performed independently on all SMs belonging to the SGN. The prediction

algorithm running inside the SM of a household hk locally stores a small database (Figure

4.4), containing actual consumption patterns Ahk and outdoor temperature measurements

OTi from last m days. Each day, the Ahk and OTi values are used to train the MLP and

predict the Φhk
dayj

for next (j-th) day. Also, at the end of a day, that day’s actual consumption

pattern Ahkdayj−1
is inserted into the queue of the database and the oldest actual consumption

pattern Ahkdayj−m+1
is removed. As mentioned before, Φhk

dayj
is computed and reported only

once (before beginning of) each day. All communications between SM and CH for reporting

Φhk
dayj

are assumed to be symmetrically encrypted, for example, by using AES [53].

4.4.2 Prediction at CH Level

The purpose of using prediction at SM is to remove specific load signatures (such as

spikes and plateaus) from Ahkdayj . Although the missing spikes and plateaus from the SM

of one household represent a minuscule amount of energy for the grid, spikes and plateaus

from multiple households in a cluster can add up to a significant amount of unpredicted en-

ergy. This accumulated error in prediction can affect processes that would use the predicted

data, for example, intelligent electricity distribution, demand-response, etc. Therefore, we

introduce another level of statistical prediction at the CH based on historical load profile

of the cluster, while also factoring in individual predictions from all SMs in the cluster

{Φh1
dayj

,Φh2
dayj

,Φh3
dayj

, ...}.
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As mentioned earlier, the CH is assumed to have load measurement capability to measure

total energy consumption in it’s neighborhood. The meter measures the energy injected into

the entire cluster, without having access to actual individual SM readings at any point.

As a result, CH can easily calculate the difference between the aggregated predicted values

which are gathered from SMs and the measure of actual total energy consumption in the

cluster. The proposed algorithm (Algorithm 1) uses average of difference between past load

predictions and actual loads of the entire cluster (Λdayd = {λ(τ1), λ(τ2), · · · , λ(τn)}), in order

to complement missing loads. The output of the algorithm Ψdayj = {ψ(τ1), ψ(τ2), · · · , ψ(τn)}

is the prediction for the whole cluster reported to CH, where ψ(τi) = δ(τi) +
∑

k p
(τi) and

δ(τi) =
∑d=j−1
d=j−m{λ

(τi)

dayd
−
∑
k p

(τi)

dayd
}

m
.

Algorithm 5 Prediction algorithm executed by CH.

Prediction Function (for day j)

Define new Ψdayj = {ψ(τ1), ψ(τ2), · · · , ψ(τ288)}

for k = 1 to K (K households in the cluster) do∑
p

(τi)
dayj

end for

for i = 1 to 288 (5 minutes time intervals for 24 hours) do
for d = 1 to m (m days to historical data) do

δ(τi) = λ
(τi)
dayd
−∑k p

(τi)
dayd

end for
δ(τi) = δ(τi)

m

ψ(τi) = δ(τi) +
∑

k p
(τi)

end for

Report Ψdayj to CH

For the second level prediction, the CH accumulates all Φhk
dayj

in the cluster, adds the

calculated δ(τi) to
∑

k p
(τ) for each time interval (τ), and reports the resulted pattern Ψdayj

to the EC. CH also stores a database of past Λ and
∑

k p
(τ) values from last m days, which

is updated at the end of each day (Figure 4.5).
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4.4.3 Privacy Preserving Real-time Monitoring

The predicted pattern Ψdayj is a refined estimate of next day’s energy consumption at

the cluster level, as compared to individual SM predictions Φhk
dayj

. However, unexpected

events may occur which are not captured by the input variables of our prediction system, for

example severe weather conditions, natural disasters, etc. To ensure proper functioning of

SGN in case of an unexpected power demand, we incorporate a real-time reporting system

in our architecture to measure the difference in actual and predicted energy consumption of

all households. But, directly reporting difference in actual and predicted energy consump-

tion pattern to CH defeats our goal of privacy, because CH can add back the difference to

predicted pattern to obtain the actual pattern of individual SMs. So, the real-time reporting

system uses a “token chain” mechanism to aggregate the difference in actual and predicted

energy consumption pattern for all SMs in the cluster. The token chain design can be based

on existing energy-efficient token passing mechanisms designed for ad-hoc wireless sensors

networks [154] [233] and smart grid networks [190]. In the logical chain of all SMs belonging

to a cluster, a token is circulated across all SMs (as shown in Figure 4.1) for aggregation

of difference in actual and predicted energy consumption of the cluster. The difference in
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aggregated actual and predicted energy consumption θ(τ) =
∑

k(p
(τ) − a(τ)) in each time in-

terval τ , can be used to handle unexpected demand events in real-time. Due to aggregation

of the difference in actual and predicted energy consumption, individual household privacy

is not compromised. Figure 4.4 illustrates how each SM adds their difference in actual and

predicted energy consumption to the token. The final token value containing the aggregated

difference in actual and predicted energy consumption of the cluster is reported to EC (via

CH) for regulating generation and distribution, if necessary. To protect the token chain

against eavesdropping inference attacks, all SMs symmetrically encrypt (and decrypt for ad-

dition) the token using a shared secret, obtained by using a suitable key exchange protocol,

such as the Diffie-Hellman protocol [57].

4.5 Evaluation

In order to validate the benefits of our proposed Seer Grid architecture, we conduct

extensive experimental simulations using real smart meter data. In this section we present

our experimental setup followed by results.

Table 4.1: Neural network training parameters.

Parameter Value

Number of SMs in cluster (assumed neighborhood) 5
Training period 3 weeks (21 days)
Testing period 3 day
Number of predicted data points a day 288
Number of ANN Inputs 9
ANN Proto 50
Number of ANN hidden layers 3
Number of nodes in each hidden layer 10
Number of ANN output 1
ANN Learn Rule Ext DBD
ANN transfer mode Sigmoid
Epoch 288*21=6048
Number of iterations 106
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Figure 4.6: Comparison of Dp and Dq over a test day. The lower values of Dp means P is
relatively “smoother”.

4.5.1 Experimental Setup

We use real SM data collected from residences equipped with BS EN62053− 21002003

smart meters. The data was recorded in East Midlands, UK in the year 2008 [199]. The

fabricated cluster we consider for evaluation consists of 5 households, each having one smart

meter. Envisioning the limited memory that SMs may have, we limit the use of historical

data in our experiments to three weeks, i.e, m = 21. Longer training period not only takes

more storage space, but also makes less significant contribution in the prediction because of

changing conditions (such as temperature) throughout the year. The ANN prediction algo-

rithm is trained with data from past 21 days to predict the energy consumption for a test

day. Every day, the last day’s energy consumption information is added to the training set,

and the oldest (22nd) day’s energy consumption information is removed from the training

set. This helps account for changing seasons, and at the same time, limits memory require-

ments. The training data itself consists of eight variables: interval number and target date

as indexing variable, 3 power usage measurements in the interval from last three weeks, and

3 outdoor temperature measurements in the interval from last three weeks. More specific
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(a) Winter (b) Spring

Relative Entropy Between Dp and Dq (Average of three Test Days)
Relative Entropy Between Dg and Dq (Average of three Test Days)

(d) Summer (e) Fall

Figure 4.7: Relative entropy between Dp and Dq compared with relative entropy between
Dg and Dq, where Dg is the series of differences between successive power measurements in
GRN induced energy consumption data.

details of the parameters that we use to train our ANN prediction mechanism can be found

in Table 4.1.

4.5.2 Privacy Implications

To evaluate the privacy implications of Seer Grid, we conduct two different experiments

at the SM level. Both the experiments are designed to observe and compare the amount of

information that can be inferred from Seer Grid’s predicted energy consumption time series

data, versus time series data of actual energy consumption. We define P = {p1, p2, . . . , pn}

as the Seer Grid’s predicted energy consumption time series and Q = {q1, q2, . . . , qn} as the

actual energy consumption time series, where pt, qt : 1 6 t 6 n are the energy consumptions
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Figure 4.8: Number of clusters in Dq, Dp, and Dg, and percentage of distance in each cluster.

for each time interval. We also calculate difference between successive power measurements

in P and Q, symbolized as Dp = {dp(1), . . . , dp(n)} and Dq = {dq(1), . . . , dq(n)}, where

dp(i) = pi − pi−1 and dq(j) = qj − qj−1. Dp indicates the changes in energy consumption

load, which is important to understand privacy leaked through load signatures. We plot Dp

and Dq in Figure 4.6 to visualize how much Seer Grid indeed suppresses load differences.

It can be observed that Seer Grid has consistently less changes in energy consumption load

throughout the test day, indicating consistent privacy protection. This motivates us to

further analyze Dp with respect to Dq, and compare privacy leakage of Seer Grid with

another well-known protection mechanism in the following two experiments.

D(A‖B) =
∑
i

A(i) log
A(i)

B(i)
(4.1)

Relative Entropy: In our first experiment, we try to quantitatively compare Dp and

Dq over four seasons (each with 21 training and 3 test days): winter (January 1 to 24),

spring (April 1 to 24), summer (July 1 to 24), and fall (October 1 to 24). Let A and B be

the probability distributions of Dp and Dq, respectively. We use the well-established relative

entropy metric (Equation 4.1) as a non-symmetric measure of difference between the two
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Figure 4.9: Cluster forms on Dq, Dp, and Dg. The experiment is performed with 21 training
(January 1 to 21) and 3 test days (January 22 to 24). The results are averaged over 3
consecutive test days.

probability distributions A and B. Due to the premetric property of relative entropy, the

larger the relative entropy D(A‖B), the higher the level of protection offered.

In order to understand the level of privacy protection offered by Seer Grid, we compare

it’s relative entropy with a widely accepted perturbation technique - introduction of Gaussian

random noise (GRN)[207]. Introduction of GRN adds or subtracts random values in each

reported energy consumption interval, in order to mislead an adversary. However, completely

random noise will reduce data utility adversely. Therefore, we use past energy consumption

data features to set a level of noise which balances between privacy and utility, as proposed

by [207]. Figure 4.7 shows the relative entropy values for Seer Grid and GRN, for the five

smart meters under evaluation. From the results, we observe that the relative entropy of
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Seer Grid is generally higher compared to relative entropy of GRN, which indicates that Seer

Grid may offer better privacy protection.

Clustering: As a second metric to evaluate privacy of Seer Grid, we apply a clustering

technique to recover activity information of consumers. Clustering creates groups of similar

levels of energy consuming intervals. More number of the clusters can leak more granular

information (spikes, switching on/off, and consumption pattern) in each household. In other

words, higher number of clusters inferred by an adversary reveals more private information

about appliances and activity within the household. We use the Self Organizing Map (SOM)

algorithm [130] to create clusters on successive energy difference time series. The interesting

aspect of SOM is that it learns to cluster data without supervision. In our application, SOM

groups input values into n clusters such that the difference between power consumption values

across clusters is minimized. We use the Viscovery tool [244] to apply SOM and calculate the

optimum number of clusters for successive energy differences in actual, Seer Grid predicted

and GRN perturbed time series (Figure 4.8). As defined before, Dq, Dp, and Dg denote the

successive differences in actual, Seer Grid and GRN energy time series, respectively. Figure

4.9 visualizes the clustering done by the SOM algorithm on the three series, for each of

the five SMs. Each sub-figure in Figure 4.9 is clustered into specific distances between the

cluster members, where the distance is varied from zero to the maximum in the time series.

As evident from Figure 4.8 and 4.9, Seer Grid generally has the lowest number of clusters,

and thus, reveals least information compared to actual and GRN induced energy time series.

Figure 4.8 also illustrates clusters and distribution of cluster population within each cluster.

Because Seer Grid prediction results in a “smoother” pattern, we observe a high population

in the low distance clusters.

Comparison with SARMA [224]: Singh et al. proposed the use of Seasonal Auto

Regressive Moving Average (SARMA) for household load prediction. We compare our house-

hold level prediction with SARMA by recreating their experiments for our earlier defined

test days across four seasons. Figure 4.10 shows the root mean square error and normalized
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Figure 4.10: Root mean square error (RMSE) and normalized mean square error (NMSE)
percentage in predicted household loads by SARMA and Seer Grid. Results are averages of
the five test SMs.

mean square error percentage in the predicted loads. Higher error percentage means that the

prediction is further off from the actual load values, implying more privacy against inference

attacks. It is observed that Seer Grid’s household level prediction has an overall higher error

percentage compared to SARMA, which means Seer Grid offers more privacy than SARMA.

However, it should be noted that SARMA was designed to have low error percentage in

household level prediction, so as to improve utility. On the other hand, our primary goal for

the household level prediction is to improve privacy. However, the error percentage should

not be very high, otherwise the cluster level prediction may suffer loss of data utility. We

evaluate the utility of the cluster level prediction below, to validate that data utility is in fact

not significantly compromised in Seer Grid, even when there exists relatively higher error

percentage in household level prediction.

4.5.3 Data Utility

In this section we empirically evaluate the utility implications of Seer Grid using the well-

accepted squared correlation metric [207, 120]. We conduct experiments over four seasons:

winter (January 1 to 24), spring (April 1 to 24), summer (July 1 to 24), and fall (October 1
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to 24). The results, averaged over the 3 test days, are presented in Table 4.2. The squared

correlation between actual and predicted energy consumption patterns of SM vary between

51.07% and 80.09%, and averages at 62.10% across all 5 SMs. As an example, Figure 4.11(a)

shows the actual and predicted energy consumption pattern for a SM on 22nd January, and

Figure 4.11(b) shows the squared correlation between them. The squared correlation between

actual and predicted energy consumption pattern for CH vary between 89.95% and 91.15%,

and averages at 90.60%. Figure 4.11(c) shows the actual and predicted energy consumption

pattern for CH on 22nd January, and Figure 4.11(d) shows the squared correlation between

them. Evidently, SM prediction is less correlated than CH prediction by a clear margin,

as seen in Table 4.2. We also check the standard deviation of the test days to verify there

does not exists any bias. Standard deviation values appear random, without any visible

connection with the squared correlation results, leading us to believe that our results are

unbiased.

Table 4.2: Squared correlation coefficient (R2) between predicted and actual energy con-
sumption patterns for each SM and CH, and the standard deviations of the 3 test days.

Season SM1 SM2 SM3 SM4 SM5 CH

Winter, R2: Actual vs Predicted 0.5715 0.5529 0.7793 0.6421 0.5772 0.9098
Winter, 3 Test Days Std Deviation 0.1240 0.0618 0.1470 0.0901 0.0187 0.0118

Spring, R2: Actual vs Predicted 0.5107 0.5627 0.8009 0.6687 0.5799 0.9115
Spring, 3 Test Days Std Deviation 0.0728 0.1236 0.1588 0.0459 0.1868 0.0095
Summer, R2: Actual vs Predicted 0.5888 0.5341 0.6322 0.6439 0.6528 0.8985

Summer, 3 Test Days Std Deviation 0.1775 0.1366 0.0922 0.0479 0.1855 0.01725
Fall, R2: Actual vs Predicted 0.6195 0.6025 0.6477 0.6450 0.6072 0.9041

Fall, 3 Test Days Std Deviation 0.0572 0.1412 0.0284 0.0808 0.1074 0.0102

Comparison with Jain and Satish [111]: Jain and Satish proposed the novel use of

support vector machines (SVM) to perform short-term load forecasting at cluster level [111].

To better understand how our cluster level prediction would perform, we do a comparative

analysis with [111] by recreating their experiments, in the same period of our earlier defined

test days across four seasons. Figure 4.10 shows the maximum percent error and average
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(a) (b)

(c) (d)

Figure 4.11: Exemplary results from 22nd January 2008, showing the correlation between
actual and predicted energy consumption patterns at different levels of Seer Grid. (a) Actual
and predicted energy consumption patterns for one of the SMs, (b) Correlation between
actual and predicted energy consumption patterns for the same SM, (c) Actual and predicted
energy consumption patterns for CH, (d) Correlation between actual and predicted energy
consumption patterns for CH.

percent error in cluster level load prediction for Jain and Satish, and Seer Grid. In this

case, lower percent error in prediction implies better utility for EC. Seer Grid’s cluster level

prediction has marginally lower percent error in winter and fall, marginally higher percent

error in spring, and a significantly lower percent error in summer. Overall, we can conclude

that Seer Grid’s utility is similar to [111], if not better. Readers should note that [111]’s SVM

based load forecasting at cluster level is only a single level prediction, where the prediction

model is trained with actual data from past. Whereas, in case of Seer Grid, the cluster level

prediction is primarily based on the household level prediction, which provides better privacy
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as seen earlier. Therefore, Seer Grid having similar utility as other cluster level prediction

schemes is very promising.

4.6 Discussions

4.6.1 Smart Meter Performance Analysis

Although Seer Grid uses complex prediction schemes, it does not suffer from significant

computational and communicational bottlenecks. As the prediction is once a day event,

SMs have an entire day to compute for next day, which should be sufficient even for less

powerful computing systems. Reporting the predicted data is also an once-a-day event, and

SMs can avoid network congestion if they report using a multiplexed (time, frequency, or

code sharing) channel with other SMs. Among all SM privacy preserving frameworks, the

most closely resembling (in terms of resource requirements, architecture, and assumptions

made) frameworks are based on homomorphic cryptography [17]. So, we compare the com-

putational complexity of Seer Grid versus frameworks based on homomorphic cryptography.

Seer Grid’s household level prediction through multilayer perceptron has a time complexity

of O(x2) [125], while the one based on Paillier cryptographic protocol has time complexity

of O(y3) [17]. Therefore, time complexity of homomorphic cryptography based SM privacy

frameworks is O(y3t) while Seer Grid’s time complexity is O(x2t), where x and y are the size

of input in Seer Grid and homomorphic (Paillier) cryptosystem [17], respectively, with x� y,

and t is the number of daily samples in both schemes. In other words, Seer Grid’s asymp-

totic time complexity is lower than similar aggregation frameworks based on homomorphic

cryptography.

4.6.2 Implications

The Importance of Two Level Prediction: One may think that only a single level

of prediction may achieve the same results as two-levels, but a single level of prediction has

some inherent drawbacks. If the prediction is done only at the CH level (where households
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Figure 4.12: Maximum percent error (MPE) and average percent error (APE) in cluster
level load prediction for Jain and Satish, and Seer Grid. Results are averages of the five test
SMs.

report their actual consumption to CH), we lose privacy at the SM level. Whereas, if

prediction is done only at the SM level, the cluster-wide difference between actual and

predicted consumption data will be larger, resulting in data utility loss.

Training Parameters: In our experiments, we took a heuristic approach for determin-

ing the training parameters (epochs, iterations, learning rule, etc.) for the ANN used by

SMs. The parameters were chosen in such a way that it satisfies our goal of optimizing both

privacy and utility of SM data. From the experimental results we observe that the corre-

lation between actual and predicted energy consumption pattern varies moderately across

households and seasons. This is primarily because of different characteristics of the training

data (actual energy consumption for last 21 days) leading to differently converged prediction

model in each SM. In future, we plan to develop a unified prediction framework for the

SMs which will analyze characteristics of the training data, and accordingly govern learning

rate such that prediction accuracy remains below a privacy preserving threshold with high

likelihood. Unlike this work, where all SMs use the same prediction parameters, the unified

framework will adapt to the characteristics of local training data of individual SMs. As a
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result, the convergence in learning will be more uniform across SMs and seasons, thus offer

a more stable privacy guarantee.

Privacy due to Uncertainty: Uncertainty in next day’s energy consumption provides

user privacy in Seer Grid, which is similar to how uncertainty in location data provides

spatio-temporal privacy [164]. The naturally occurring irregularities in consumers’ day-to-

day schedule results in smoother household prediction patterns (that hides load signatures),

which also means that the predicted energy pattern cannot be used to determine temporary

house unoccupancies with complete confidence.

Larger Cluster: We consider a very small scale cluster in our experiments, and yet

achieve considerably high prediction accuracy at the cluster level. As evident from previous

cluster level prediction schemes [255], accuracy tends to dramatically improve with increasing

cluster size. Thus, we think our results are highly encouraging for large scale implementation.

4.6.3 Dishonest and Malfunctioning Smart Meters

SMs are often the target of bad data injection attacks, primarily due to monetary in-

centives [163][88]. However, it is critical for ECs to prevent such attacks, not only to avoid

financial losses, but also to ensure proper distribution of electricity. Previous efforts in

this direction suggested the use of embedded sensors for ‘Trusted Metering’ [188], having

a centralized or dedicated detection system, or a hybrid system of embedded sensors and

centralized detection[88]. In Seer Grid, as the CH collects predicted energy consumption

data of individual smart meters in advance, existing anomaly detection mechanisms can be

effectively applied on the predicted energy consumption data reported by individual smart

meters.

In real deployment, SMs and/or communication links can also experience failures, due to

which they may be unable to report the predicted energy consumption information. Similar

challenge is also faced by existing SMs (and many proposed aggregation schemes), and can

be a non-trivial issue to address. If a negligible number of SMs (belonging to the same
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energy company) are unresponsive, the effects most likely will be unnoticeable. However, if

a large number of SMs are unresponsive, the effects can be significant. In Seer Grid, such

cases of malfunctioning SMs can perhaps be handled more efficiently than other aggregation

schemes, due to the readily available past prediction data. For example, if the next day’s

predicted energy consumption data is not reported by a SM, the cluster head can simply

substitute it with the same week-day’s prediction of that SM from last week. The intuition

behind this exemplary approach is that households generally have similar usage pattern for

each day of the week [215].

4.6.4 Deployment Barriers

Smart meter deployment presents EC with many logistical, technical and commercial

challenges. The primary incentive for ECs to deploy SMs is efficiency and thus savings over

time. Conventional SMs, already deployed in many places, perfectly serve this commercial

benefit. However, these SMs were not designed to provide privacy for consumers. As a

result, any new framework designed to enable consumer privacy will require modification or

re-deployment by the EC, which will require additional investment from ECs. Because this

new investment does not add any additional efficiency improvements, ECs might be reluctant

in deploying any privacy preserving add-ons to existing SMs. This is a major limitation faced

by many novel privacy preserving frameworks proposed for smart grids [33]. Cavoukian and

Dix [33] pointed out that privacy by design is the best approach. Therefore, deployment of

Seer Grid can be easier in new localities (without existing smart metering infrastructure),

than to implement in localities where smart metering is already in place. Given that Seer

Grid will require additional hardware and software to function, below are the few directions

we think can aid deployment:

• Add-On Service: ECs can offer SMs with Seer Grid’s prediction framework as an add-on

service. That is, privacy-aware consumers can opt in for the privacy preserving frame-
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work, by paying an one time fee, which would cover the cost of additional hardware

and software installation.

• Off-Loading Computation: Instead of adding a computing unit (for performing the pre-

diction operations) built inside the SMs, it may be beneficial to off-load the operations

to a household computer. For example, the prediction operations can be undertaken by

a paired (using low energy communication protocols, such as Bluetooth) smartphone

or PC, once per day. The prediction results can be communicated back to the SM for

reporting to EC. Also, future upgrades may be easier for consumers, as smartphones

and PCs are more frequently upgraded [243].

Alternatively, privacy issues can result in poor SM adoption in privacy-aware communities

[156]. By addressing privacy issues in a way that does not hamper utility too much, ECs

can increase SM adoption. This can be an incentive for ECs to participate in implementing

frameworks like Seer Grid5.

5The content of this chapter has appeared in [23].
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CHAPTER 5
CONCLUDING REMARKS AND FUTURE

RECOMMENDATIONS

In this dissertation, security, privacy, and seamless network availability are investigated

in CI-CPS. CI-CPS are smart systems which collaborate to do computations for critical in-

frastructures. Critical infrastructures can be a part of wireless mobile networks, monitoring,

controlling structures, decision makers and actuators. Different proposed methods in each

chapter of this dissertation presents different solutions to overcome existing drawbacks and

vulnerabilities in CI-CPS.

In this direction, Chapter 2 addressed the problem of securing location discovery of wire-

less and mobile components (of a CI-CPS) by proposing a novel spread-spectrum-based

approach to eliminate incorrect localization data injected by malicious location anchors.

Chapter 3 presented a framework to increase the capacity (and consequently availability)

of existing wireless networks, by utilizing a secondary cognitive radio network based ap-

proach. Chapter 4 presented a novel framework to enable privacy-preserving smart meter

data reporting in a smart grid CI-CPS, with a minimal impact on data utility.

Chapter 2 presented a new approach for securing localization in anchor-based localization

protocols. The proposed approach implements a request confusion strategy in order to

anonymize localization requests, and a reactive jamming strategy on the CDMA response

channel to actively disable malicious or cheating anchors. Simulation results showed that if

appropriate parameters are chosen, the proposed technique is effective in eliminating cheating

anchors in localization protocols, with significant accuracy. An extensive literature review

shows that our technique is one of the first such techniques that deploys jamming on a

DSSS or CDMA communication channel for actively securing location discovery in wireless

networks.
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Chapter 3 introduced an optimal resource allocation for improving NSU supported in

an underlay CSGN, based on the requirements to transmit huge traffic on the future smart

grid network. Our approach is, to the best of our knowledge, the first scheme utilizing

sub-OCSs to improve number of SUs in CSGNs. We have investigated, through extensive

simulations and analysis, the maximum possible error (due to the co-existence of SUs and

PUs in our CDMA-based CSGN) that can be tolerated by primary users of the network. Our

scheme dedicates a substring of OCSs used by Smart Appliances, referred as sub-OCS, to

SUs in higher hierarchies in the proposed CSGN which enables all SUs and PUs to transmit

simultaneously. This will result in low, and tolerable, error in the received data for PN (TV

network) and negligible error for SN. As a result, PUs and SUs (using OCSs and sub-OCSs)

will be able to transmit at the same time. Simulation results prove that our proposed method

has insignificantly impact on both PN and SN, with a considerable increase in additional

SUs supported.

In Chapter 4, we proposed Seer Grid, an alternate SGN architecture aimed to reduce the

privacy-utility trade-off faced by SMs. As a result of two-level energy load prediction in Seer

Grid, there exists high correlation between predicted and actual energy consumption pat-

terns at cluster level, which indicates excellent utility preservation. However, the correlation

between predicted and actual energy consumption patterns of individual SM is weak, which

indicates good privacy preservation for households. Evaluation results strongly support our

proposition of Seer Grid.

5.1 Future Research Challenges

Thanks to the numerous benefits of deploying Smart Meters (SM) in Smart Grid Networks

(SGN), such as real-time demand-response, efficient power distribution, and dynamic pricing,

SMs are gaining rapid popularity [114]. However, one of the most criticized aspects of SMs

is the lack of privacy for households equipped with SM, due to which many communities

have even declined to adopt SMs [114]. Privacy of household energy consumption data is
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essential for preventing inference attacks based on load signatures [207]. As a result, various

privacy-preserving protocols for SM reporting were proposed by researchers [45, 237, 46, 85].

These protocols enable reporting of SM data to the Energy Company (EC) in an anonymous

fashion, thereby preventing inference attacks on the energy consumption data of individual

households. If such anonymous SM reporting protocols are implemented by ECs, it can

encourage the adoption of SMs and enable the benefits of SGNs.

However, anonymous SM reporting protocols introduce a new problem of false data re-

porting. As privacy-preserving protocols remove the linkability of the reported energy con-

sumption data (through aggregation, encryption, blind signatures, etc.) with the actual

energy consumption, residents or remote adversaries can now tamper with the SM reporting

system without facing any consequences. One of the primary motivation for reporting false

energy consumption data can be to trick a dynamic pricing system for lower energy costs

[66, 231]. Another motivation can be to sabotage the normal operations of the electricity

grid, by an remote adversary using distribute false data reporting attacks [105]. Therefore,

false data reporting attacks can jeopardize the quality of service expected from a SGN. Fur-

thermore, any losses incurred by the EC due to undetected ‘cheating’ will indirectly lead to

higher energy prices for all customers of EC. This may in turn encourage honest customers

to cheat as well, causing severe loss of SM data utility.

As newer SMs are becoming capable of directly communicating with EC over the Internet

[108, 223], several recent works proposed the use of blind signatures to facilitate anonymous

SM reporting over the omnipresent Internet [38, 45, 237, 46, 85]. With our view that anony-

mous SM reporting over the Internet will eventually become more widely adopted, a naive

approach to detect cheating by maintaining a history of reported energy consumption data

for each SM (and checking if certain SMs fall outside an usual threshold) will not work, due

to the security properties of blind signatures. Blind signatures based SM reporting ensures

that reported data is from an authenticated SM, but does not allow EC to link it back to

a SM. Moreover, multiple reports from the same SM over a period of time are not linkable,
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making it harder for the EC to even maintain pseudonymous history. To be best of our

knowledge, the problem of detecting and mitigating cheating in anonymous SM reporting

has not been addressed until now.

As privacy-preserving SM reporting can ensue in false data injection attacks, the EC

would prefer to have a protocol which preserves SM privacy and simultaneously prevents

cheating. To mitigate the problem of cheating in blind signatures based SM reporting, we

require a framework to gracefully de-anonymize cheating SMs, while maintaining anonymity

of all other honest customers. Repetitive cheaters should be identified after a certain num-

ber of cheatings, and the EC may penalize the cheating SMs so as to discourage cheating.

While such a framework should be able to mitigate cheaters, it also leads us to several open

questions, such as how much of cheating goes undetected, how anonymity is affected at each

level of the iterative scheme, or what should be the appropriate penalty for cheating such

that the reparations of cheating outweighs the incentives? As part of our future works, we

will model a two-player non-cooperative game between the EC (trying to maximize revenue)

and cheating customers (trying to trick the EC for lower electricity bills). Game-theoretic

results obtained by solving the game can lead us to the optimal answers to these questions,

which should be used by EC while implementing such a framework.
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[242] S. Čapkun and J. P. Hubaux. Secure Positioning in Wireless Networks. IEEE Journal
on Selected Areas in Communications (JSAC), 24(2):221–232, 2006.

102



[243] V. S. Venkitachalam, V. Namboodiri, S. Joseph, E. Dee, and C. A. Burdsal. What,
why, and how: Surveying what consumers want in new mobile phones. IEEE Consumer
Electronics Magazine, 4(2):54–59, Apr 2015.

[244] Viscovery SOMine Tool. Data mining suite, eudaptics software gmbh.
https://www.viscovery.net, Date Accessed Nov 2016.

[245] R. Vogt, I. Nikolaidis, and P. Gburzynski. Divalia: a practical framework for anony-
mous peer-to-peer file exchange in wireless ad-hoc networks. In IEEE CNSR ’06, pages
8 pp.–156, May 2006.

[246] S. Vural and E. Ekici. On multihop distances in wireless sensor networks with random
node locations. Mobile Computing, IEEE Transactions on, 9(4):540–552, Apr 2010.

[247] B. Wang and D. Zhao. Performance analysis in cdma-based cognitive wireless networks
with spectrum underlay. In IEEE GLOBECOM ’08, pages 1–6, Nov 2008.

[248] H. Wang, Y. Qian, and H. Sharif. Multimedia communications over cognitive radio
networks for smart grid applications. Wireless Communications, IEEE, 20(4):125–132,
Aug 2013.

[249] W. Wang, G. Duan, J. Wang, and J. Chen. An anonymous communication mechanism
without key infrastructure based on multi-paths network coding. In IEEE GLOBE-
COM ’09, pages 1–6, Nov 2009.

[250] R. Want, A. Hopper, V. Falcao, and J. Gibbons. The Active Badge Location System.
ACM Transaction on Information Systems, pages 91–102, Jan 1992.

[251] T. Wauters, F. D. Turck, and C. Develder. Overlay networks for smart grids. IEEESTD
’13, page 223, 2013.

[252] Y. Wei, Z. Yu, and Y. Guan. Location Verification Algorithms for Wireless Sensor
Networks. In ICDCS ’07, page 70, Toronto, Canada, 2007.

[253] M. Weiss, A. Helfenstein, F. Mattern, and T. Staake. Leveraging smart meter data to
recognize home appliances. In IEEE PerCom ’12, pages 190–197. IEEE, 2012.

[254] T. Wigren. Adaptive Enhanced Cell-ID Fingerprinting Localization by Clustering of
Precise Position Measurements. IEEE Transactions on Vehicular Technology, Sep
2008.

[255] T. K. Wijaya, S. Humeau, F. R. J. Samuel, M. Vasirani, and K. Aberer. Individual,
Aggregate, and Cluster-based Aggregate Forecasting of Residential Demand. Technical
report, Lausanne, Switzerland, 2014.

[256] X. Wu. Applying pseudonimity for anonymous data delivery in location-aware mobile
ad hoc networks. Vehicular Technology, IEEE Transactions on, 55(3):1062–1073, May
2006.

103



[257] Y. Wu. A novel anonymous communication strategy based on structured peer-to-peer
overlay networks. In IEEE ISITAE ’07, pages 581–585, Nov 2007.

[258] J. Xiao, L. Ren, and J. Tan. Research of TDOA Based Self-localization Approach in
Wireless Sensor Network. In IEEE IROS ’06, pages 2035–2040, Beijing, China, Oct
2006.

[259] Y. Xiao. Security and Privacy in Smart Grids. CRC press Taylor and Francis Group,
2014.

[260] Y. Xu, G. Chen, J. Ford, and F. Makedon. Critical Infrastructure Protection, IFIP
International Federation for Information Processing, volume 253/2007, chapter Detect-
ing Wormhole Attacks in Wireless Sensor Networks, pages 267–279. Springer Boston,
2007.

[261] F. Ye, H. Luo, S. Lu, and L. Zhang. Statistical en-route filtering of injected false data in
sensor networks. IEEE Journal on Selected Areas in Communications, 23(4):839–850,
2005.

[262] K. Yedavalli, B. Krishnamachari, S. Ravula, and B. Srinivasan. Ecolocation: A Se-
quence Based Technique for RF-only Localization in Wireless Sensor Networks. In
IPSN ’05, Los Angeles, CA, USA, Apr 2005.

[263] R. Yu, C. Zhang, X. Zhang, L. Zhou, and K. Yang. Hybrid spectrum access in cognitive-
radio-based smart-grid communications systems. Systems Journal, IEEE, 8(2):577–
587, Jun 2014.

[264] R. Yu, Y. Zhang, S. Gjessing, C. Yuen, S. Xie, and M. Guizani. Cognitive radio based
hierarchical communications infrastructure for smart grid. Network, IEEE, 25(5):6–14,
Sep 2011.

[265] J. Zhang and H. Chen. Efficient provable secure id-based anonymous signcryption
scheme. In IEEE PACCS ’09, pages 415–418, May 2009.

[266] J. Zhang, H. Duan, W. Liu, and J. Wu. Analysis of anonymity in p2p anonymous
communication systems. In IEEE WAINA ’10, pages 860–865, Apr 2010.

[267] X. Zhang and H. Su. Opportunistic spectrum sharing schemes for cdma-based uplink
mac in cognitive radio networks. Selected Areas in Communications, IEEE Journal
on, 29(4):716–730, Apr 2011.

[268] Y. Zhang, W. Liu, and W. Lou. Anonymous communications in mobile ad hoc net-
works. In IEEE INFOCOM ’05, volume 3, pages 1940–1951 vol. 3, Mar 2005.

[269] S. Zhong, M. Jadliwala, S. Upadhyaya, and C. Qiao. Towards a Theory of Robust
Localization Against Malicious Beacon Nodes. In IEEE INFOCOM ’08, pages 1391–
1399, Phoenix, AZ, USA, Apr 2008.

104



[270] R. Zhou, X. li, V. Chakravarthy, B. Wang, and Z. Wu. Inter-Carrier Interference Self-
Cancellation in Synchronous Downlink MC-CDMA System. In ACM IWCMC ’09,
Germany, Jun 2009.

[271] H. Zhuang, Z. Luo, J. Zhang, and H. Yanikomeroglu. Hierarchical and adaptive spec-
trum sensing in cognitive radio based multi-hop cellular networks. In VTC ’10, pages
1–6, Sep 2010.

105




