
SECURITY AND PRIVACY OF CYBER AND PHYSICAL USER
INTERACTIONS IN THE AGE OF WEARABLE COMPUTING

A Dissertation by

Anindya Maiti

Master of Science, Wichita State University, 2014

Bachelor of Technology, Vellore Institute of Technology, 2012

Submitted to the Department of Electrical Engineering and Computer Science
and the faculty of the Graduate School of

Wichita State University
in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

May 2018

c© Copyright 2018 by Anindya Maiti

All Rights Reserved

SECURITY AND PRIVACY OF CYBER AND PHYSICAL USER
INTERACTIONS IN THE AGE OF WEARABLE COMPUTING

The following faculty members have examined the final copy of this dissertation
for form and content, and recommend that it be accepted in partial fulfillment of
the requirement for the degree of Doctor of Phylosophy with a major in Electrical
Engineering and Computer Science.

Murtuza Jadliwala, Committee Chair

Huzefa Kagdi, Committee Member

Sergio Salinas, Committee Member

Vinod Namboodiri, Committee Member

Jibo He, Committee Member

Accepted for the College of Engineering

Royce Bowden, Dean

Accepted for the Graduate School

Dennis Livesay, Dean

iii

DEDICATION

To my brother, Ananda. And my parents, Bhaswati and Chinmay.

iv

ACKNOWLEDGMENTS

I offer my sincere gratitude to my doctoral advisor, Dr. Murtuza Jadliwala, who

has supported me throughout my doctoral studies with his patience and knowledge

whilst allowing me to work in my own way.

I would like to thank the rest of my dissertation committee members: Dr. Huzefa

Kagdi, Dr. Sergio Salinas, Dr. Vinod Namboodiri, and Dr. Jibo He. Thank you for

your time and support with my research and graduate studies.

Graduate school experience can never be complete without labmates. I was for-

tunate to work alongside few of the most tremendous students in town. Thanks to

Oscar for making me work more than I was willing to, especially on Sundays. It was

also amazing to work with Kirsten, Chase, Ryan, Mohd, Arash, Nisha, and Raveen

on various projects.

Research reported in this dissertation was partially supported by the Division of

Computer and Network Systems (CNS) of the National Science Foundation (NSF)

under award number 1828071 (originally 1523960).

v

ABSTRACT

Wearable devices are a new form of technology that is quickly gaining popularity

among mobile users. These “smart” wearable devices are equipped with a variety of

high-precision sensors that enable the collection of rich contextual information related

to the wearer and her/his surroundings, which in turn enables a variety of novel

applications. The presence of a diverse set of zero-permission sensors on wearable

devices, however, also expose an additional attack surface which, if not adequately

protected, could be potentially exploited to leak private user information. The first

part of this dissertation aims to develop a comprehensive technical understanding

of the privacy risks associated with inference of private user interactions with other

cyber and physical systems, primarily using wrist-wearables. A detailed evaluation

of novel attack frameworks validate the feasibility of inference attacks on both cyber

interfaces, such as mobile keypads and computer keyboards, and on physical systems,

such as combination padlocks and safes.

In order to thwart these new privacy threats, effective and usable techniques for

detection and mitigation of wearable device misuse is critical and urgently needed.

Consequently, the second part of this dissertation aims to protect user interactions

by proposing new protection mechanisms, which take two different strategies. The

proposed design-time protection mechanism tries to prevent inference attacks by

altering the interaction interfaces, whereas the proposed run-time protection mecha-

nism utilizes contextual information to dynamically regulate zero-permission sensor

data when users are detected to be vulnerable to known inference attacks.

vi

TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION . 1

2. ATTACKS ON CYBER INTERACTIONS: MOBILE KEYPADS 3

2.1 Introduction . 3
2.2 Related Work . 4
2.3 Attack Description . 7
2.4 Classification-Based Attack Framework . 11
2.5 Evaluation of Classification-Based Attacks . 18

2.5.1 Experimental Setup . 19
2.5.2 Constructing and Testing the Classifiers . 20
2.5.3 Reduced Sampling Frequency: . 23
2.5.4 Comparison with Smartphone-Based Attacks 23
2.5.5 Combining Smartwatch and Smartphone Data 27
2.5.6 A More Realistic Setting: Natural or Non-Controlled

Typing . 28
2.5.7 Cross Device Performance . 30
2.5.8 Extending to QWERTY Keypads . 31
2.5.9 Variations of the SH-NHHT and SH-HHT Attack

Scenarios . 32

2.6 Relative Transitions-Based Attack Framework . 34
2.7 Evaluation of Relative Transition Based Attack . 39

2.7.1 Experimental Setup . 39
2.7.2 Constructing and Testing the Framework . 41
2.7.3 Combining Smartwatch and Smartphone Data 44
2.7.4 A More Realistic Setting: Natural or Non-Controlled

Typing . 46

2.8 Discussion . 46

2.8.1 Limitations . 46

vii

TABLE OF CONTENTS (continued)

Chapter Page

2.8.2 Defenses . 48
2.8.3 Enhancements . 48

2.9 Conclusion . 49

3. ATTACKS ON CYBER INTERACTIONS: EXTERNAL
KEYBOARDS . 50

3.1 Introduction . 50
3.2 Related Work . 50
3.3 Attack Description . 53
3.4 The Attack Framework . 56

3.4.1 Modeling Key Press Events . 57
3.4.2 Keystroke Inference Attack . 59

3.4.2.1 Learning Phase . 60
3.4.2.2 Attack Phase . 64

3.4.3 Experimental Setup . 67

3.5 Evaluation . 68

3.5.1 Feature Accuracy . 69
3.5.2 Basic Text Recovery . 69
3.5.3 Contextual Dictionary . 70
3.5.4 Typing Behavior and Speed . 71
3.5.5 Comparison to Previous Work . 73

3.6 Limitations . 74
3.7 Conclusion . 75

4. ATTACKS ON PHYSICAL INTERACTIONS: COMBINATION
PADLOCKS AND SAFES . 77

4.1 Introduction . 77

viii

TABLE OF CONTENTS (continued)

Chapter Page

4.2 Related Work . 79
4.3 Adversary Model . 81
4.4 Background . 83

4.4.1 Mechanical Combination Locks . 83
4.4.2 Combination Key and Wrist Movements . 85
4.4.3 Unlocking Activity Recognition . 88
4.4.4 Segmentation . 90

4.5 Deterministic Attack Framework . 92

4.5.1 Padlock Attack Model . 92
4.5.2 Safe Attack Model . 94

4.6 Probabilistic Attack Framework . 95

4.6.1 Ranking of Padlock Key Predictions . 95
4.6.2 Ranking of Safe Key Predictions . 97
4.6.3 Search Space Reduction . 97

4.7 Evaluation . 98

4.7.1 Experimental Setup . 98
4.7.2 Deterministic Attack Framework Results . 99

4.7.2.1 Results for Padlock . 99
4.7.2.2 Results for Safe . 102

4.7.3 Probabilistic Attack Framework Results . 104

4.7.3.1 Padlock Key Predictions (64K) 104
4.7.3.2 Padlock Key Predictions (4K) . 106
4.7.3.3 Safe Key Predictions (160K) . 107

4.7.4 Cross-Device Performance . 108
4.7.5 Cross-Hand Performance . 109

ix

TABLE OF CONTENTS (continued)

Chapter Page

4.7.6 Real-Life Detection and Prediction . 110

4.8 Discussions . 111

4.8.1 Characteristics of Inferred Combinations 111
4.8.2 Limitations . 112
4.8.3 Mitigations . 115
4.8.4 Other Attack Vectors . 115

4.9 Conclusion . 116

5. PROTECTING USER INTERACTIONS: DESIGN-TIME 117

5.1 Introduction . 117
5.2 RandomPad - Protecting Mobile Keypad Interactions 117
5.3 RandomPad - Attack Description . 120
5.4 RandomPad - Related Work . 122

5.4.1 Protection Against Side-Channel Attacks 122
5.4.2 Protection by Randomization . 123

5.5 RandomPad - Randomization Strategies . 124

5.5.1 Key Sequence Randomization . 124
5.5.2 Key Size Randomization (KSR) . 126
5.5.3 Keypad Location Randomization (KLR) . 127
5.5.4 Security Analysis . 127

5.6 RandomPad - Human Factors . 130
5.7 RandomPad - Study . 133

5.7.1 Participants . 134
5.7.2 Apparatus . 135
5.7.3 Session 1: Dictated Typing (DT) . 136

5.7.3.1 Task . 137

x

TABLE OF CONTENTS (continued)

Chapter Page

5.7.3.2 Part 1.1 – Default Keypad . 137
5.7.3.3 Part 1.2 – Randomized Keypad 138

5.7.3.4 Part 1.3 – Gray-scale Randomized Keypad 138

5.7.4 Session 2: Natural Typing (NT) . 138

5.7.4.1 Task . 139
5.7.4.2 Parts . 139

5.7.5 Procedure and Data Collection . 139

5.8 RandomPad - Results . 140
5.9 RandomPad - Discussions . 150

5.9.1 Privacy-Usability Trade-Off . 150
5.9.2 Recommendations to Developers . 151
5.9.3 Limitations . 152

5.10 RandomPad - Conclusion . 152
5.11 EyePad - Protecting External Keyboard Interactions 153
5.12 EyePad - Related Work . 156
5.13 EyePad - Adversary Model . 157
5.14 EyePad - Proposed Defense Model . 158

5.14.1 Randomization Strategies . 159
5.14.2 Security Analysis . 163

5.15 EyePad - Evaluation . 165

5.15.1 Study Design . 165
5.15.2 Results . 168

5.16 EyePad - Discussion . 171
5.17 EyePad - Conclusion . 173

6. PROTECTING USER INTERACTIONS: RUN-TIME 174

xi

TABLE OF CONTENTS (continued)

Chapter Page

6.1 Introduction . 174
6.2 Run-Time Protection for External Keyboards . 175

6.2.1 Typing Activity Recognition . 178
6.2.2 Protection . 181
6.2.3 Evaluation . 183
6.2.4 Discussions . 185

6.3 Conclusion . 186

7. CONCLUSION . 187

BIBLIOGRAPHY . 189

xii

LIST OF FIGURES

Figure Page

2.1 Smartwatch and smartphone on (a) Same Hand and Non-Holding
Hand Typing (SH-NHHT), (b) Same Hand and Holding Hand
Typing (SH-HHT), (c) Different Hand and Non-Holding Hand
Typing (DH-NHHT), (d) numeric keypad used in our
experiments. 8

2.2 Overview of the classification-based attack framework for SH-NHHT
and SH-HHT typing scenarios. 12

2.3 Time series of key press events in SH-NHHT, and their
corresponding effect on linear accelerometer samples. 13

2.4 The intuition behind our classification-based attack is that taps on
different locations of the smartphone screen produces
characteristically unique motions on the wrist. Accordingly, taps
on each number on the keypad should be identifiable based on
the uniqueness in the resultant wrist motion. 16

2.5 Ensemble classification scheme used in the attack phase is robust and
generally more accurate than a single classification algorithm. 19

2.6 Classification accuracy for One vs. One and One vs. Rest using two
different smartwatches (Samsung Gear Live and LG Watch
Urbane W150). 22

2.7 Classification accuracy dropped when sampling rate was reduced,
results averaged over all 12 participants. 24

2.8 Classification accuracy for One vs. One using smartphone data. 25

2.9 Classification accuracy for One vs. Rest using smartphone data. 26

xiii

LIST OF FIGURES (continued)

Figure Page

2.10 All vs. All classification accuracy for individual keys in SH-HHT
using smartphone data, results averaged over all 12
participants. 27

2.11 One vs. Rest classification accuracy using only gyroscope features,
and in combination with linear accelerometer features. Results
compared between smartwatch and smartphone. 28

2.12 An example where rebounding motion of a key press overlapped with
the next key press. 29

2.13 Variations of typing scenarios in Figures 2.1(a) and 2.1(b). 34

2.14 Overview of the relative transition-based attack framework for
DH-NHHT typing scenario. 35

2.15 Time series of key press events in DH-NHHT, and their
corresponding linear accelerometer readings. In DH-NHHT
scenario, the wrist (along with the smartwatch) continues to move
in between key press events. As a result, key press events cannot
be identified or characterized based on spikes in energy level. 37

2.16 An example of how bidirectional tracing drastically reduces the
possibilities of the key presses. First the forward tracing
eliminates incompatible transitions (in red) in chronological
order. Then the backward transition removes additional
incompatible transitions in chronologically reverse order. In this
example, we are able to uniquely identify the last 4 key-pairs
using bidirectional tracing, which allows unambiguous inference
of the last 5 key presses. 42

2.17 More ambiguously traced sequences require additional number of
trials (in the worst case). 45

xiv

LIST OF FIGURES (continued)

Figure Page

3.1 An exemplary setup where a person is typing on a QWERTY
keyboard, while wearing a Samsumg Gear Live smartwatch on
left hand. A similar setup is used in our experiments. 55

3.2 The keyboard is divided in to left (L) and right (R) halves, shown by
the solid red line. Examples of N, E, S, and W classification are
also shown. Each direction has 90 degrees field of view from
center of the key. Keys that fall on the boundary are categorized
in the direction where greater area of the key lies. 59

3.3 Learning Phase: A high level overview of the data processing
architecture used to train the neural networks. 61

3.4 Attack Phase: A high level overview of the data processing
architecture used to analyze keyboard input using the trained
neural networks. 63

3.5 Sentence 4 from List 6 of Harvard Sentences. The words ‘show’ and
‘sums’ have the same word-profile resulting in a collision in the
dictionary. 69

3.6 Contextual Dictionary: Percentage of words recovered per
participant, presented in descending order of typing speed of the
participants. 72

3.7 A comparison of accuracy of our attack with Marquardt et al. and
Berger et al. . Note that in spite of not having wrist movement
information available from the non-watch-wearing hand, our
results are roughly comparable for a very large (60,000 words)
dictionary. 73

4.1 Target mechanical combination locks. 78

xv

LIST OF FIGURES (continued)

Figure Page

4.2 (a) – Positive (blues) and negative (greens) angular displacements,
collected from three subjects; (b) Combined linear least squares
fitting. 86

4.3 Segmentation using a Gaussian filter. 92

4.4 Standard deviations in inference error for (a) – three padlock phases,
and (b) – four safe phases. 102

4.5 (a) − Top-r success probabilities for inferred padlock combinations
using 64K test combinations; (b) − Top-r success probabilities
for inferred padlock combinations using 4K test combinations; (c)
− Top-r success probabilities for inferred safe combinations using
160K test combinations; (d), (e), (f) − Success improvement
factors compared to random trials, for the padlock test set of
64K test combinations, padlock test set of 4K test combinations
and safe test set of 160K test combinations, respectively. 105

5.1 Default keypad. 121

5.2 A common typing scenario. 121

5.3 Examples of (a) RR, (b) CR, (c) IKR, (d) KSR and (e) KLR; (f)
The hidden 7× 6 grid layout used in KSR and KLR. 125

5.4 KSR and KLR on-screen key distribution possibilities on the hidden
7× 6 grid layout. 129

5.5 Aiding usability with contrast: Instance of IKR keypad in ascending
gray-scale. 134

5.6 Average time taken per key typed in Dictated Typing. 142

5.7 Average time taken per key typed in Natural Typing. 142

xvi

LIST OF FIGURES (continued)

Figure Page

5.8 Dictated Typing accuracy. 143

5.9 Natural Typing accuracy. 144

5.10 NATA-TLX scores for all the five randomization strategies. Dictated
and Natural Typing are combined. Lower scores signify lesser
workload for the user. 145

5.11 (a) Average fixation count and (b) average duration per fixation, for
Natural and Dictated Typing. Lower scores signify lesser
workload for the user. 145

5.12 SUS scores for all the five randomization strategies. Dictated and
Natural Typing are combined. Higher scores signifiy better
usability. 147

5.13 The proposed defense model, where the user wearing the augmented
reality device sees and types on the randomized augmented
keyboard. The eavesdropping adversary can observe only the
default QWERTY layout of the physical keyboard. 159

5.14 Assumed rows and columns for RS and CS strategies. 160

5.15 A QWERTY keyboard with alphabetic markers glued on top of the
corresponding alphabet keys. As a result, the keyboard can be
used both in the regular QWERTY or with the random
augmented layout. 161

5.16 Randomized augmented keyboard using the IKR strategy, as
observed by the typer on the EPSON Moverio BT-200. 161

5.17 Randomized augmented keyboard using the RS strategy, as observed
by the typer on the EPSON Moverio BT-200. 162

xvii

LIST OF FIGURES (continued)

Figure Page

5.18 Randomized augmented keyboard using the CS strategy, as observed
by the typer on the EPSON Moverio BT-200. 162

5.19 The experimental setup, where a participant is typing on the
randomized augmented keyboard. 165

5.20 Average time taken by the thirteen participants to type random
letters, familiar words, and password, using default QWERTY,
IKR, CS, and RS layouts. 169

5.21 Average typing accuracy achieved by the thirteen participants to
type random letters, familiar words, and password, using default
QWERTY, IKR, CS, and RS layouts. 170

5.22 Results from the NASA-TLX assessment, taken by participants after
completing the study. 171

6.1 The protection framework against keystroke inference attacks. Third
party applications get unrestricted access to motion sensors only
when rTAD reports that the user is not typing at the
moment. 176

6.2 From bottom to top, (1) the 10 second detection windows where
typing was detected are marked in red vertical lines, (2) when N
detections occurs within a minute, typing activity is recognized
for that 15 minute time segment, and (3) the ground truth collect
by prompting the participant. 177

6.3 Normalized true positive (TP), true negative (TN), false positive
(FP), and false negative (FN), along with precision and recall
values. 185

xviii

LIST OF TABLES

Table Page

2.1 Mean computation time observed in each training/testing scenario.
All measurements are in seconds. 22

2.2 Classification accuracy after combining features from both
smartwatch and smartphone, results averaged over all 12
participants. 29

2.3 Classification accuracy of the 26 alphabets (in percent), along with
two most confused keys predicted for each alphabet. Results
averaged over all 12 participants. 33

2.4 Classification of all 100 possible numeric transitions. 37

2.5 The 21 possible number sequences that satisfy the bidirectional
tracing obtained in Figure 2.16. 44

3.1 L/R classification of individual keys and N/E/S/W/O classification
of character-pairs, assuming smartwatch is worn on left hand. 60

4.1 Linear least-squares fittings for the padlock. 101

4.2 Linear least-squares fittings for the safe. 101

4.3 Popular padlocks and safes retailed by Amazon and Walmart. 114

5.1 Security assurance of the five proposed randomization strategies.
Lower rank is better security. 130

5.2 Demographics and preferences of participants. 135

xix

LIST OF TABLES (continued)

Table Page

5.3 Usability rankings of the five proposed randomization strategies
calculated using average typing speed (lower better; dictated and
natural typing combined), workload (lower better) and perceived
usability (higher better). Lower least rank is better usability. 151

6.1 The rTAD’s binary classification uses the following parameters. At
the end of each 10 second windows, if any of the features are
outside these parameter ranges, then non-typing activity is
identified, and vice versa. 180

xx

LIST OF ABBREVIATIONS

LED Light Emitting Diode

GPS Global Positioning System

SH-NHHT Same Hand and Non-Holding Hand Typing

SH-HHT Same Hand and Holding Hand Typing

DH-NHHT Different Hand and Non-Holding Hand Typing

SLR Simple Linear Regression

RF Random Forest

k-NN k-Nearest Neighbors

SVM Support Vector Machine

BDT Bagged Decision Trees

RR Row Randomization

CR Column Randomization

IKR Individual Key Randomization

KSR Key Size Randomization

KLR Keypad Location Randomization

SUS System Usability Scale

NASA-TLX NASA Task Load Index

RS Row Shifting

CS Column Shifting

AR Augmented Reality

rTAD Real-Time Typing Activity Detection

MSAC Motion Sensor Access-Controller

xxi

CHAPTER 1
INTRODUCTION

Wearables such as smartwatches and fitness bands are gaining tremendous popu-

larity among mobile users, and will continue to be a prevalent mobile technology in

the future [50]. These “smart” wearable devices are equipped with a variety of high-

precision sensors that can capture extremely rich and fine-grained contextual and

physiological information related to the mobile user and her/his surroundings. This

fine-grained data captured using on-board sensors can be used to augment knowledge

about the user (wearer) and facilitate learning about her/his activities, physiologi-

cal state and environment, which in turn, can enable several novel non-traditional

applications on, or by means of, these devices. The presence of a diverse set of zero-

permission sensors, however, also expose an additional attack surface which, if not

adequately protected, could be potentially exploited to leak private user information.

Weak or absent access control and security policies vis-á-vis some of these sensors

have further compounded this problem. Similar privacy threats that abuse access

privileges to smartphone sensors have already received significant attention in the

research literature [20, 102, 40, 125, 86, 98, 77, 9, 81]. Due to the upcoming and

evolving nature of wearable technology, compared to smartphone technology which

is significantly mature, privacy issues in wearables have not received similar scrutiny.

The distinctively unique design and usage of wearables also puts them at a signifi-

cantly higher risk. Contrary to smartphones, wearables are always carried by users

on their body and capture a continuous stream of contextual or activity-specific data,

1

access to which if not appropriately regulated, can be exploited to infer sensitive user

information. Thus, as wearable technology matures, it will be critical to thoroughly

investigate the privacy threats that become feasible due to the availability of rich and

diverse sensory data from these devices. As a matter of fact, privacy issues related

to wearables is predicted to be a major challenge in the coming years [58].

The first part of this dissertation aims to develop a comprehensive technical un-

derstanding of the privacy risks associated with inference of private user interactions

with other cyber and physical systems, primarily using wrist-wearables. A detailed

evaluation of novel attack frameworks validate the feasibility of inference attacks

on both cyber interfaces, such as mobile keypads (Chapter 2) and computer key-

boards (Chapter 3), and on physical systems, such as combination padlocks and

safes (Chapter 4).

In order to thwart these new privacy threats, effective and usable techniques for

detection and mitigation of wearable device misuse is critical and urgently needed.

Consequently, the second part of this dissertation aims to protect user interactions

by proposing new protection measures, which take two different strategies. The pro-

posed design-time protection measures tries to prevent inference attacks by altering

the interaction interfaces (Chapter 5), and run-time protection measures use contex-

tual information to dynamically regulate zero-permission sensor data when users are

detected to be vulnerable to known inference attacks (Chapter 6).

2

CHAPTER 2
ATTACKS ON CYBER INTERACTIONS: MOBILE KEYPADS

2.1 Introduction

In this chapter, we evaluate the feasibility of side-channel security vulnerabil-

ities in smart wearables by investigating motion-based keystroke inference attacks

using smartwatches. More specifically, we evaluate the feasibility and effectiveness of

keystroke inference attacks on smartphone numeric touchpads by using smartwatch

motion sensors as a side-channel. Numeric touchpads are typically targeted by ad-

versaries for obtaining sensitive information such as security pins and credit card

numbers. We propose multiple attacks suitable for three popular typing scenarios.

In typing scenarios where key press events can be identified based on surge in motion

sensor activity, we use supervised learning to infer the key presses. This attack com-

prises of first training appropriate classification models to learn the uniqueness in

wrist motion caused during individual keystrokes depending on known relative loca-

tion of the key on the screen, and then using the trained classifiers to infer unlabeled

(or test) keystrokes. During preliminary experiments, we observed that keystroke

induced motion data captured by smartwatch and smartphone sensors differ signif-

icantly. Consequently, we thoroughly assess how significantly smartwatch motion

sensors elevate the threat of keystroke inference, compared to similar attacks using

only smartphone motion data [20, 86, 118]. We also evaluate the case where the

adversary may have gained access to motion sensors on both the smartwatch and

smartphone, to see how our attack will perform when motion data from both devices

3

are combined. For the typing scenario where key press events cannot be identified

based on the uniqueness of motion sensor activity surge (corresponding to a key

press), we present a novel scheme to infer a sequence of key presses based on the

transitional movement between individual key presses. We evaluate the proposed

attacks in both controlled and realistic typing scenarios. We also briefly discuss pos-

sible protection measures against such inference attacks that employ motion sensors

as side-channels.

The remainder of this chapter is structured as follows: First we discuss simi-

lar side-channel attacks in the literature in Section 2.2. Then we give an overview

of the threat and adversary model in Section 2.3. In Section 2.4 we describe the

classification-based keystroke inference framework, followed by its evaluation in Sec-

tion 2.5. In Section 2.6 we describe the relative transitions-based keystroke inference

framework, followed by its evaluation in Section 2.7. Finally, we discuss implications,

limitations and potential future research directions.

2.2 Related Work

Inference of private information from various forms of side channels has been an

active area of research in the community. Electromagnetic signals emanating from

devices have been used to infer private data stored on Smart Cards [89], data trans-

mitted on RS-232 cables [99] and content being played on CRT and LED monitors

[112, 61]. Recently, Hayashi et al. [42] showed that it is also possible to remotely

reconstruct and eavesdrop on flat panel displays on tablets via measurement of elec-

tromagnetic emanations. Similarly, optical emanations from monitors [60] or from

4

eyes [10] have also be used to infer information such as content being displayed or

watched. Acoustic or sound signals emanating from devices such as printers have

also been used to infer the content being printed on certain models of dot-matrix

printers [11].

Availability of several high-precision sensors on modern mobile cyber-physical

systems such as smartphones have given rise to additional side-channels [110], thus

increasing the risk of private information leakage through such side-channels. Past

research efforts have shown how malicious applications can misuse their access rights

to these sensors in order to execute various imperceptible side-channel attacks by

stealthily capturing information from the physical environment. For example, smart-

phone cameras can be accessed in an unauthorized fashion to infer sensitive informa-

tion from user keystrokes [33, 98]. Unauthorized microphone recordings of ambient

sound [94] provide a rich source of information that can be used to infer sensitive

information about a person’s daily life. Activities and locations can be inferred based

on characteristic ambient sound patterns, e.g. walking on the streets, or eating in

a restaurant [91]. Unauthorized access to GPS sensors can pose obvious risks re-

lated to loss of location privacy, such as revealing home/work locations, stalking and

location-targeted advertisements [51]. Advanced learning-based techniques were also

proposed for predicting users’ future movements from previous tracking records of

their location activities [84, 108, 36, 29]. Security and privacy risks associated with

front-end sensors, such as, microphones, cameras and GPS, have been comprehen-

sively studied because of the hazards apparent to users.

5

However, security risks due to sensors obscured from users (e.g., accelerometer,

gyroscope, and magnetometer) have largely been overlooked until recently. After

modern mobile operating systems introduced user-managed access control on front-

end sensors, adversaries shifted attention to sensors which cannot be disengaged by

users. It has been shown that malicious applications can track users’ movements

[40, 43] and activities [78, 124, 63] by using only smartphone accelerometer readings.

It has also been shown that, with the help of standard signal processing and machine

learning techniques, it is possible to recognize speakers and parse speech by using

gyroscopes on modern mobile devices to measure acoustic signals [79].

Keystroke inference attacks using side-channel information have received signif-

icant attention due to their potentially dangerous consequences. Electromagnetic

emanations from external keyboards (both wired and wireless) have been used in

the past to infer user keystrokes [113]. However, the requirement of extensive setup

and expensive monitoring hardware prevents less sophisticated adversaries from car-

rying out such attacks. Keystroke inference attacks using audio or acoustic signals

[8, 16, 127, 38, 126], on the other hand, have also received significant attention in

the literature. Such attacks have proven to be very successful and can be carried out

using modest off-the-shelf hardware (e.g., any microphone equipped device). Due to

the ubiquitous nature of modern smartphones that are equipped with high-precision

microphones, such attacks are much more practical than previously argued.

However, as touchscreen key press events emanate very weak acoustic signals, in-

ference attacks using them is very difficult. Additionally, requirement of undisturbed

eavesdropping is another major obstacle in using electromagnetic and acoustic em-

6

anations for such attacks. As a workaround to the above limitations, smartphone

motion sensors have been used to recover keystroke events on the device. For in-

stance, TouchLogger [20] and TapPrints [81] utilize change in orientation angles of

the smartphone, as captured by its accelerometer, to extract appropriate features for

keystroke inference. Similarly, ACCessory [86] also attempts to infer keystrokes using

the smartphone accelerometer data by employing multiple supervised learning tech-

niques. Alternatively, TapLogger [118] automates the training and logging phases

and attempts to work stealthily on the smartphone. Smartphone motion sensors

have also been used to detect keystroke events on other external devices/keyboards

in proximity [77]. Despite these research efforts, side-channel privacy threats (espe-

cially, keystroke inference attacks) posed by wearable devices such as smartwatches

have received far less attention. Recently, Wang et al. [115], Liu et al. [70], and

Wang et al. [114] have explored new attacks to infer user keystrokes or key presses on

external physical keyboards/keypads by using smartwatch motion sensors. In con-

trast to these research efforts, our work in this chapter focuses on keystroke inference

on hand-held mobile keypads by employing smartwatch motion sensors.

2.3 Attack Description

In this research effort, we focus on three of the most popular typing (or tapping)

scenarios in mobile hand-helds or smartphones [111]. We consider a user typing on

a smartphone’s numeric touchscreen keypad while wearing a smartwatch on one of

his/her hand. In the first case, smartwatch and smartphone are on the same hand

and the user types with the hand not holding the smartphone (see Figure 2.1(a)),

7

(a) (b) (c) (d)

Figure 2.1: Smartwatch and smartphone on (a) Same Hand and Non-Holding Hand
Typing (SH-NHHT), (b) Same Hand and Holding Hand Typing (SH-HHT), (c) Dif-
ferent Hand and Non-Holding Hand Typing (DH-NHHT), (d) numeric keypad used
in our experiments.

also referred by us as SH-NHHT scenario. In the second case, smartwatch and

smartphone are again on the same hand and the user types with a finger (generally,

thumb) of the smartphone holding hand (see Figure 2.1(b)), also referred by us

as SH-HHT scenario. In the above two scenarios, the action of tapping a key on

the smartphone keypad results in a unique motion of the wrist (on the smartphone

holding hand) for each keystroke, which can be captured by the motion sensors (e.g.,

accelerometer and gyroscope) of the smartwatch and used to identify the tapped

keystroke. In the third case, smartwatch and smartphone are on different hands and

the user types with the hand not holding the smartphone (see Figure 2.1(c)), also

referred by us as DH-NHHT scenario. Unlike the previous two scenarios, each key

tap does not produce a unique motion signature on the wrist of the typing hand

(where the smartwatch is situated), and thus it cannot be used to infer the exact

keystroke in a fashion similar to the previous two cases. However, assuming that the

relative position of keys on the keypad as per the standard layout shown in Figure

8

2.1(d) is known and remains static, we can use the relative transitional movement

between taps to infer a (sub)sequence of the tapped keys.

In addition to the above three, other typing scenarios are also possible, for ex-

ample, typing with both hands and holding (the phone) and typing with non watch

wearing hand. However, in order to limit the scope of our study and to clearly

demonstrate the keystroke inference threat posed by smartwatches, we only consider

the above three typing scenarios (i.e., SH-NHHT, SH-HHT and DH-NHHT) in this

work, which also happen to be very widely adopted by smartphone users. We fur-

ther justify our focus on these three typing scenarios by more precisely determining

the percentage of users that employ these typing methods, and as a result, are im-

pacted by the proposed inference attacks. Based on the data available from a study

concerning users’ smartphone holding and usage behaviors [111], 32.83% of all users

hold and use the phone as shown in Figure 2.1(b), 28.44% of users hold and use the

phone as shown in Figure 2.1(a), while only 2.11% of users hold and use the phone as

shown in Figure 2.1(c). In this work, we also investigate two variations of scenarios

in Figures 2.1(a) and 2.1(b), where the phone is held in the other hand as shown

in Figures 2.13(a) and 2.13(b) respectively. Based on [111], 16.17% of all users hold

and use the phone as shown in Figure 2.13(b), while only 7.56% of users hold and

use the phone as shown in Figure 2.13(a). It should be noted that [111] does not

provide any data on which hand (left or right) the smartwatch is traditionally worn,

so the above only represents percentages of users based on the hand in which the

phone is held and the hand used to type or tap. Now even if the phone holding

scenario of Figure 2.1(c) is ignored (due to its low usage percentage), our framework

9

can potentially impact at least 44.61% of users who wear the smartwatch on the

left hand, i.e., those who type as shown in Figures 2.1(a) and 2.13(b). Similarly,

at least 40.39% of users wearing the smartwatch on the right hand are impacted by

our keystroke inference framework, i.e., those who type as shown in Figures 2.1(b)

and 2.13(a)). Moreover, we also show in Section 2.5.9 that the performance of our

framework does not vary significantly between a particular typing scenario and its

variation (say, between Figure 2.1(b) and 2.13(b)). This shows that a significant

percentage of users have the potential of being impacted by the proposed keystroke

inference framework.

Threat Model: We assume an adversary whose goal is to infer a target’s

keystrokes on a generic smartphone numeric keypad (as shown in Figure 2.1(d)),

based on the wrist movements perceptible by the target’s smartwatch motion sen-

sors. The adversary may gain access to the target’s smartwatch by installing a

malicious application on it which records the activity of the on-board accelerome-

ter and gyroscope sensors. This step can be achieved by exploiting known software

vulnerabilities or by tricking the victim into installing malicious code, e.g., using a

trojan software. Based on the fact that most common smartwatch operating systems

(e.g., Google’s Android Wear, Apple’s watchOS, etc.) do not implement access con-

trol and/or user notification for motion sensor usage, the malicious application may

have unrestricted and undetected access to the on-board accelerometer and gyro-

scope. As a result, the compromised smartwatch can act as an eavesdropping device

which the targets’ themselves may place on their wrist, and unsuspectingly have it

on their wrist while typing on a smartphone. The malicious application may also

10

maintain a covert communication channel [28] with the adversary, and periodically

upload the collected wrist motion data on some adversarial server by means of this

channel. The use of a covert channel by the trojan is optional. However, if a covert

channel is not used, there is a possibility of this information transfer being easily

detected and the trojan being inactivated. We assume that the adversary also has

sufficient off-site storage and computational resources to download the raw sensor

data, extract significant keystroke events, and execute standard machine learning

algorithms in order to classify the keystrokes. For comparison with attacks based

on smartphone data, we assume similar adversarial capabilities and actions for the

smartphone.

2.4 Classification-Based Attack Framework

The linear accelerometer motion sensor found on smartwatches measures the three

dimensional acceleration experienced by the device, excluding the omnipresent force

of gravity. During preliminary experimentation with SH-NHHT and SH-HHT sce-

narios, we observed that key press events can be accurately detected using the surge

in linear acceleration during a key press. Based on the observation that taps on dif-

ferent locations of the smartphone screen produces characteristically unique motions

on the wrist, our attack framework leverages on supervised machine learning to di-

rectly classify the detected key presses. The attack framework (Figure 2.2) consists

of a learning phase followed by an attack phase. Both phases go through similar steps

of data collection followed by feature extraction, with the learning phase culminating

in training (the classifiers), while the attack phase in classification (using the trained

11

Figure 2.2: Overview of the classification-based attack framework for SH-NHHT and
SH-HHT typing scenarios.

classifiers from the training phase). Next, we describe in detail each component of

the proposed framework.

Data Collection and Pre-Processing: We developed an application for An-

droid Wear that continuously samples linear accelerometer measurements on the

smartwatch, and runs in the background during experiments. Details of the data

collection experiments and technical specifications of the hardware used for the ex-

periments are outlined later in Section 2.5.1. The smartwatch data collection appli-

cation communicates the linear accelerometer measurements to the host smartphone

(with which the watch is paired) using Andorid Wear’s Wearable Data Layer API.

On the smartphone, another Android application displays a keypad to the users to

type sequences of numbers. In the background, the smartphone application chrono-

logically logs all accelerometer measurements received from the smartwatch and any

12

Figure 2.3: Time series of key press events in SH-NHHT, and their corresponding
effect on linear accelerometer samples.

key press events registered on the displayed keypad. It logs two data-streams: (i)

timestamped readings of the smartwatch’s linear accelerometer (A); and (ii) times-

tamped key press labels (L). Both A and L are stored locally on the smartphone

(which is also paired with the smartwatch) during the data collection process and re-

trieved later for offline evaluation. Note that in the attack phase of our experiments

we use L only to verify the classification accuracy.

Due to the absence of labeled data, the attack phase requires an additional key

press event detection mechanism. Figure 2.3 shows a portion of a raw linear ac-

celerometer data-stream, spanning four key press events in the SH-NHHT scenario.

As evident from the graph, each tap agitates the linear accelerometer sensor readings

on the three axis, with more prominence along the Y-axis and Z-axis than X-axis.

SH-HHT data also exhibits similar traits. We apply this observation to model an

13

algorithm for automating the process of key press event detection. Algorithm 1 se-

quentially examines the “energy” of each sample i in A as the sum of acceleration

on the three axis (Equation 2.1). The energy value calculated in Algorithm 1 is then

used in Algorithm 2 to determine keystroke events.

Energy[i] =
∣∣∣∣∣A[i][X]

∣∣+
∣∣A[i][Y]

∣∣+
∣∣A[i][Z]

∣∣∣∣∣ (2.1)

Algorithm 1 Key Press Detection Algorithm

function KeyPress Detection(ATarget)
KeyPresses = {∅}
Threshold = Set Threshold()
for i = 1 to N (N samples in A) do

if Energy[i] ≥ Threshold then
ThisKeyPress = A[i− 3] to A[i+ 15]
Insert ThisKeyPress into KeyPresses
i = i+ 15

end if
end for

end function

Algorithm 2 establishes the threshold value as the average peak energy values

observed in the time-stamped training set. In the attack phase, once the energy level

surpasses the empirically learned threshold (from Algorithm 2), a key press event is

recognized and a “keystroke-record” is saved. Each keystroke-record is intended to

represent the wrist motion pattern of a key press event, and consists of few linear ac-

celerometer readings immediately before and after the key press event is recognized.

We empirically observed that the movement due to a key press subsides after approx-

imately 350 msecs. Thus, a keystroke-record of eighteen samples (at 50 Hz sampling

frequency) sufficiently captures all motion features related to a keystroke. Taking

14

into consideration some of the milder initial motion, we form each keystroke-record

as follows: the sample to surpass the energy threshold is preceded by three samples

and followed by fourteen samples, chronologically from A. After a key press event is

recognized and the corresponding keystroke-record is saved, the key press detection

algorithm resumes its search for next key press. As multiple samples during a key

press may cross the energy threshold, ignoring the fourteen samples following the

last keystroke-record ensures that the same key press is not recorded multiple times.

Algorithm 2 Determining Energy Threshold

function Set Threshold(ATraining, LTraining)
Threshold = 0
KeyPressT ime = 0
for j = 1 to M (M key presses in L) do

KeyPressT ime = L[j][time]
ThisKeyEnergy =
{Energy[KeyPressT ime− 1] +
Energy[KeyPressT ime] +
Energy[KeyPressT ime+ 1] +
Energy[KeyPressT ime+ 2]}/4
Threshold = Threshold + ThisKeyEnergy

end for
Threshold = Threshold/M

return M
end function

Feature Extraction: Our proposed attack infers the numeric key that was

pressed based on features of the underlying physical event of wrist motion caused

during typing (or tapping) on a smartphone. The features of a keystroke-record

must be able to capture as many attributes as possible about the underlying three-

dimensional movement caused by a key press. A properly designed feature vector

15

Figure 2.4: The intuition behind our classification-based attack is that taps on dif-
ferent locations of the smartphone screen produces characteristically unique motions
on the wrist. Accordingly, taps on each number on the keypad should be identifiable
based on the uniqueness in the resultant wrist motion.

should be similar with other feature vectors of the same key, simultaneously being

distinguishable between feature vectors of other keys. We observed that, based on

the location of a key on the screen, the degree of movement caused by a tap varies on

each of the X, Y , and Z axis of the linear accelerometer (Figure 2.4). Interestingly,

this movement remains fairly consistent for the same key.

In our preliminarily work [74], we used 54 basic time domain features of the

accelerometer data to identify the uniqueness of each key (and the corresponding

key press event), and found those features to be reasonably useful for keystroke in-

ference. Later we expand that to a more comprehensive set of features, employing

both time and frequency domain features, with a total of 155 different features in

our feature vector for each key. We continue to use time domain features of indi-

vidual axis such as minimum and maximum magnitudes, squared sum of magnitude

data below 33 percent and above 67 percent of maximum magnitude (to measure

16

the duration of major and minor movements), position of maximum and minimum

magnitude samples, mean, median, variance, standard deviation, skewness (measure

of any asymmetry) and kurtosis (to measure any peakedness), raw accelerometer

readings, and their first order numerical derivatives (to measure the rate of change

of energy). We also use inter-axis time domain features to capture the correlation

between movement on the three axis, such as minimum and maximum magnitudes

across all three axis, Frobenius norm, Infinity norm, 1-norm, Euclidean norm, and

axis with highest and lowest magnitude for each time sample. Along with the time

domain features, we also capture frequency domain features by computing the Fast

Fourier Transform (FFT) of individual axis readings of the keystroke-record. The

frequency domain features are necessary to identify the different rebounding (or os-

cillatory) motion of the wrist. Note that in the learning phase, the feature vectors

are also labeled, using the timestamped key press labels (L) recorded by the data

collection application.

Training and Classification: We model the keystroke inference problem as a

multi-class classification problem. Labeled feature vectors are used to train classifiers

in the learning phase, whereas unlabeled feature vectors are mapped to the “closest”

matching class by the already trained classifiers during the attack or test phase. To

train our classifiers, we initially tested five different classification algorithms that are

appropriate given the properties of our features: (i) simple linear regression (SLR),

(ii) random forest (RF), (iii) k-nearest neighbors (k-NN), (iv) support vector machine

(SVM), and bagged decision trees (BDT). However, each of these classification tech-

niques has its own advantages and shortcomings, leading us to adopt an ensemble

17

classification approach. Ensemble approaches have proven to be more accurate and

robust than any single classification algorithm [24, 54]. We consider an extremely

broad set of classification algorithms in our ensemble method, as a result of which,

the errors made by constituting classifiers are highly uncorrelated. We include para-

metric algorithms (SLR, SVM), as well as non-parametric algorithms (k-NN, RF,

BDT). Our ensemble method involves both linear (SLR, SVM) and non-linear (k-

NN, RF, BDT) techniques. Moreover, RF and BDT are strong ensemble classifiers

in themselves which makes our classification framework even more robust. Such a

diverse set of classification algorithms increases the likelihood of improvements in

classification accuracy over a single algorithm.

During the training phase, multi-class classifiers of each constituting classifica-

tion algorithm are trained separately using the labeled training data. After all the

classifiers have been trained using the labeled data, feature vectors of unlabeled

keystroke-records are classified using these trained classifiers (in the attack phase)

using an ensemble strategy. Finally, a majority wins ensemble strategy is used to

determine the final classification result (Figure 2.5).

2.5 Evaluation of Classification-Based Attacks

In this section, we present the findings from our evaluation of the classification-

based attack framework.

18

Figure 2.5: Ensemble classification scheme used in the attack phase is robust and
generally more accurate than a single classification algorithm.

2.5.1 Experimental Setup

Our initial data collection experiments involve 12 participants, aged between 19-

32 years. The identity of these participants are anonymized as P1, P2, . . . , P12. We

employ a Samsung Gear Live smartwatch equipped with an InvenSense MP92M 9-

axis Gyro + Accelerometer + Compass sensor. Smartwatch was worn on left hand

for SH-NHHT (Figure 2.1(a)) and on right hand for SH-HHT (Figure 2.1(b)). Par-

ticipants use the virtual numeric keypad of a Motorola XT1028 smartphone (Figure

2.1(d)) for typing. Linear accelerometer of the smartwatch was sampled at 50 Hz.

We used the Weka 3.7.12 [39] libraries for both training and testing the classifiers.

MATLAB R2014a was used to compute most of the time and frequency domain

features.

19

We also evaluate the performance of our keystroke inference framework in sev-

eral additional settings: (i) a more natural or uncontrolled typing scenario (Section

2.5.6), (ii) using a different smartwatch hardware (Section 2.5.7), (iii) employing an

additional type of motion sensor, i.e., gyroscope (Section 2.5.4), and (iv) typing on

a QWERTY or alphabetic keypad (Section 2.5.8). For these last four experimen-

tal settings, we collected additional data from different sets of participants, and in

certain cases using a different smartwatch and/or smartphone hardware. The partic-

ipant and data collection procedure details for these additional experimental settings

appear in their respective sections.

2.5.2 Constructing and Testing the Classifiers

We construct our classifiers based on different training datasets of labeled keystroke-

records generated by the participants. An audio stream of uniformly distributed ran-

dom numbers between 0 to 9 guided the participants in typing. To prevent fatigue,

participants were given optional breaks, during which they were allowed to set down

the phone on the table and some participants even went out of the room. However,

they returned to approximately the same holding position after the break. We com-

paratively evaluate the classification accuracy (the percentage of correct prediction

divided by the total number of predictions) of our classifiers for the following three

training/testing scenarios:

• One vs. One : In this case, we measure the percentage of successful inferences

on an individual participant, with classifiers trained from the training set of the

same participant. Target set size is 100 (10 per key) and training set size is 200

20

(20 per key). One vs. One is not only a best case scenario, but also represents

how the attack will perform if the adversary is able to collect target-specific

training data.

• One vs. Rest : In this case, we measure the percentage of successful inferences

on an individual participant, with classifiers trained from the training set of

the rest of the participants (not including the target participant). Target set

size is 100 (10 per key) and training set size is 2200 (220 per key). One vs.

Rest is a typical scenario where the adversary has a target, but is unable to

obtain labeled training data from the target.

• All vs. All : In this case, we measure the percentage of successful inferences

on all participants, with classifiers trained from training set of all participants.

Target set size is 1200 (120 per key) and training set size is 2400 (240 per key).

All vs. All is helpful in understanding how our attack framework will perform

if the adversary constructs a heterogeneous training data set to infer keystrokes

from multiple non-specific targets.

Classification results for One vs. One are shown in Figure 2.6. One vs. One

classification accuracy ranged fairly high between 94% and 77% for SH-NHHT, and

between 93% and 75% for SH-HHT, with an average of 84.58% and 83.5%, respec-

tively. However, classification accuracy drops noticeably in One vs. Rest. As shown

in Figure 2.6, One vs. Rest classification accuracy ranged between 82% and 63% for

SH-NHHT, and between 78% and 65% for SH-HHT, with an average of 70.08% and

71.16%, respectively. The achieved All vs. All classification accuracy was 88.16%

and 85.83% for SH-NHHT and SH-HHT, respectively. Overall, these results validate

21

SH
-N

H
H

T

SH
-H

H
T

One vs. One One vs. Rest

Samsung
Gear Live

Samsung
Gear Live

LG Watch
Urbane W150

SH
-N

H
H

T

SH
-H

H
T

SH
-N

H
H

T

SH
-H

H
T

Figure 2.6: Classification accuracy for One vs. One and One vs. Rest using two
different smartwatches (Samsung Gear Live and LG Watch Urbane W150).

Table 2.1: Mean computation time observed in each training/testing scenario. All
measurements are in seconds.

SLR RF K-NN SVM BDT Total

One vs. One 191 234 98 95 65 683
One vs. Rest 166 365 398 184 167 1280
All vs. All 504 617 441 271 218 2051

our claim that smartwatch motion sensors are a feasible side-channel for inferring

keystrokes on mobile touchpads.

We also recorded the mean computation time in each training/testing scenario

(Table 2.1). All training and testing operations were executed on a laptop featuring a

2.7 GHz dual-core Intel i5 processor and 8 GB of working memory. Due to the use of

ensemble classification technique, the total computation time is the sum of time taken

by the five constituting classification algorithms. The average total computation time

in One vs. One scenario was less then 12 minutes, about 21 minutes in One vs. Rest,

22

and about 34 minutes in All vs. All scenario. Moreover, the total computation time

can be further reduced if the different classification algorithms are executed in parallel

(with suitable hardware support). These results show that the above keystroke

inference attacks can be carried out by an attacker using reasonable computation

resources in a fairly short amount of time.

2.5.3 Reduced Sampling Frequency:

We also briefly investigate how our attack will perform at reduced sampling rate

(25 Hz and 10 Hz), a more realistic scenario for low-cost wearables, equipped with

less precise sensors. We repeat the experiments outlined in Sections 2.5.1 and 2.5.2

with smartwatch data sampled at a reduced frequency, and Figure 2.7 shows the

drop in accuracy of our attacks for both the SH-NHHT and SH-HHT scenarios. For

example, One vs. One classification accuracy in SH-NHHT dropped from 84.58%

to 72% when sampling frequency was reduced to 25 Hz and to 23% when sampling

frequency was reduced to 10 Hz. Similarly, the other scenarios also observed drop in

classification accuracy with reduction in sampling frequency, but percentage of suc-

cessful classification can be considered fairly substantial even at a sampling frequency

of 25 Hz.

2.5.4 Comparison with Smartphone-Based Attacks

Previous research efforts on keystroke inference attacks by using smartphone sen-

sor data [118, 81] (or data collected from the target’s smartphone sensors) also used

similar learning-based multi-class classification frameworks. This motivated us to

apply our attack framework on smartphone data and compare the results with those

23

Figure 2.7: Classification accuracy dropped when sampling rate was reduced, results
averaged over all 12 participants.

carried out using smartwatch data. This enables us to understand how much more

or less vulnerable a motion sensor-based side-channel originating on a smartwatch

makes us, as compared to known motion-based side-channels on the target users’

smartphone. We conduct similar experiments (as in Sections 2.5.1 and 2.5.2) by

using smartphone linear accelerometer data sampled at 50 Hz, rather than using

the smartwatch data. Figures 2.8 and 2.9 shows the accuracy of our attack for SH-

NHHT and SH-HHT scenarios. On comparing with previous results from Section

2.5.2, it can be observed that the keystroke inference attacks in SH-NHHT resulted

in slightly better average classification accuracy when smartwatch motion data was

used. Whereas in SH-HHT, classification accuracy results are mixed, and nearly

equal, for both the smartwatch and smartphone data. In summary, these results

demonstrate that the threat of motion-based keystroke inference may be increased

24

50

55

60

65

70

75

80

85

90

95

100

P
1

 v
s.

 P
1

P
2

 v
s.

 P
2

P
3

 v
s.

 P
3

P
4

 v
s.

 P
4

P
5

 v
s.

 P
5

P
6

 v
s.

 P
6

P
7

 v
s.

 P
7

P
8

 v
s.

 P
8

P
9

 v
s.

 P
9

P
1

0
 v

s.
 P

1
0

P
1

1
 v

s.
 P

1
1

P
1

2
 v

s.
 P

1
2

M
ea

n

P
1

 v
s.

 P
1

P
2

 v
s.

 P
2

P
3

 v
s.

 P
3

P
4

 v
s.

 P
4

P
5

 v
s.

 P
5

P
6

 v
s.

 P
6

P
7

 v
s.

 P
7

P
8

 v
s.

 P
8

P
9

 v
s.

 P
9

P
1

0
 v

s.
 P

1
0

P
1

1
 v

s.
 P

1
1

P
1

2
 v

s.
 P

1
2

M
ea

n

Pe
rc

en
ta

ge
 o

f
C

la
ss

if
ic

at
io

n
 A

cc
u

ra
cy

SH-NHHT SH-HHT

Figure 2.8: Classification accuracy for One vs. One using smartphone data.

in certain typing scenarios due to smartwatches. An interesting pattern of classifi-

cation accuracy can be observed (see Fig. 2.10) for inference using only smartphone

data in SH-HHT. We observe that the classification accuracy for certain keys (based

on their location) are distinctly higher than others. Interestingly, this occurrence is

not recognizable for the smartwatch dataset. This may be due to the fact that keys

farther away from the thumb impels the user to bend the phone towards the thumb.

As a result, significantly greater movement of the phone occurs, compared to keys

that are near the thumb.

In order to conduct an exhaustive comparison between the inference threat posed

by different motion sensors present on a smartwatch and smartphone, we carry out

additional experiments using the gyroscope data which is another widely studied side-

channel for keystroke inference [20, 81, 21]. Due to the absence of a gyroscope sensor

on the Motorola XT1028, we used another smartphone for this experiment, namely

a Motorola XT1096 (paired with the Samsung Gear Live). The same experiment as

25

50

55

60

65

70

75

80

85

90

95

100

P
1

 v
s.

 R
es

t
P

2
 v

s.
 R

es
t

P
3

 v
s.

 R
es

t
P

4
 v

s.
 R

es
t

P
5

 v
s.

 R
es

t
P

6
 v

s.
 R

es
t

P
7

 v
s.

 R
es

t
P

8
 v

s.
 R

es
t

P
9

 v
s.

 R
es

t
P

1
0

 v
s.

 R
es

t
P

1
1

 v
s.

 R
es

t
P

1
2

 v
s.

 R
es

t
M

ea
n

P
1

 v
s.

 R
es

t
P

2
 v

s.
 R

es
t

P
3

 v
s.

 R
es

t
P

4
 v

s.
 R

es
t

P
5

 v
s.

 R
es

t
P

6
 v

s.
 R

es
t

P
7

 v
s.

 R
es

t
P

8
 v

s.
 R

es
t

P
9

 v
s.

 R
es

t
P

1
0

 v
s.

 R
es

t
P

1
1

 v
s.

 R
es

t
P

1
2

 v
s.

 R
es

t
M

ea
n

Pe
rc

en
ta

ge
 o

f
C

la
ss

if
ic

at
io

n
 A

cc
u

ra
cy

SH-NHHT SH-HHT

Figure 2.9: Classification accuracy for One vs. Rest using smartphone data.

above was repeated by 12 new participants, each typing 100 randomly dictated num-

bers. For this experiment, we recorded keystroke related motion data, comprising of

both linear accelerometer and gyroscope measurements, from both the smartphone

and the smartwatch. We derived 59 time and frequency domain features from the

three-dimensional gyroscope data of both devices, such as minimum and maximum

values, the mean value, variance, skewness, kurtosis, vertex angles, number of spikes,

peak intervals, attenuation rate, etc. These features were selected from the literature

on activity detection [7, 123] and keystroke inference [21]. Figure 2.11 shows the One

vs. Rest classification accuracy results when solely the gyroscope features are used

compared to when they are used in combination with features derived from the linear

accelerometer measurements. The mean classification accuracy is marginally lower

when using only the smartwatch gyroscope, compared to the smartphone gyroscope

(SH-NHHT: 59.91% vs. 61.25%, SH-HHT: 59.66% vs. 64.75%). However, we can

observe that after combining multiple motion sensors (linear accelerometer and gy-

26

Figure 2.10: All vs. All classification accuracy for individual keys in SH-HHT using
smartphone data, results averaged over all 12 participants.

roscope) on a device, the keystroke inference threat on the smartwatch is greater

than the one on the smartphone (mean classification accuracy, SH-NHHT: 69.91%

vs. 61.41% and SH-HHT: 71% vs. 66.08%).

2.5.5 Combining Smartwatch and Smartphone Data

After comparing the accuracy of keystroke inference attacks using individually

both the smartwatch and smartphone motion data, we were intrigued to study the

impact of combining or fusing motion sensor data from both devices in order to

further reduce the number of classification errors. As most modern smartwatch

operating systems and applications require the watch to be paired with a smartphone,

such an attack is quite realistic. The feature vectors of same keystroke-records from

both the devices were merged to obtain new feature vectors containing 310 features.

We rebuild the classifiers with the larger feature vectors, and re-ran the previous

experiments (as outlined in Sections 2.5.1 and 2.5.2). Results of these experiments

(outlined in Table 2.2) show that indeed accuracy improved when the features from

27

SH
-N

H
H

T

SH
-H

H
T

SW GyroscopeSP Gyroscope SW LA+GSP LA+G

SH
-N

H
H

T

SH
-H

H
T

SH
-N

H
H

T

SH
-H

H
T

SH
-N

H
H

T

SH
-H

H
T

Figure 2.11: One vs. Rest classification accuracy using only gyroscope features,
and in combination with linear accelerometer features. Results compared between
smartwatch and smartphone.

both smartwatch and smartphone were combined. For example, the One vs. One

classification accuracy in SH-NHHT was 90.66%, compared to 83.5% and 84.0%

when individual smartwatch or smartphone data were used, respectively. Similar

improvements can be observed in other scenarios as well. However, the improvement

was relatively marginal, which can be attributed to the convergence in the learning

process. Therefore, combining or fusing data from both smartwatch and smartphone

may be more beneficial when the adversary has fewer training data.

2.5.6 A More Realistic Setting: Natural or Non-Controlled

Typing

In all of the experiments so far, the participants were being directed (to tap)

by an audio stream. Because participants have to hear the audio and then act on

it, a minor delay or disturbance may be introduced in each key press. Moreover,

28

Table 2.2: Classification accuracy after combining features from both smartwatch
and smartphone, results averaged over all 12 participants.

SH-NHHT Combined (Smart-
watch Only, Smartphone Only)

SH-HHT Combined (Smart-
watch Only, Smartphone Only)

One vs. One 88.91% (84.5%, 78.7%) 90.66% (83.5%, 84.0%)

One vs. Rest 71.59% (70.0%, 63.3%) 74.29% (71.1%, 70.9%)

All vs. All 88.65% (88.1%, 85.5%) 89.78% (85.8%, 86.8%)

Figure 2.12: An example where rebounding motion of a key press overlapped with
the next key press.

29

such a kind of typing or tapping does not invoke (and capture) users’ natural typing

behavior and speed. To evaluate a more natural typing behavior, we conduct another

experiment where a new set of 10 participants were instructed to type their phone

number followed by their residential zip code (a total of 15 numbers). These two

pieces of information can be readily recollected by participants, thus eliminating

any delay and/or disturbance while typing. This also enables us to capture more

realistic typing or tapping data from users. However, for prediction we continue to

use the classifiers trained earlier in the guided experiments (Section 2.5.2). The new

data was processed by the same attack framework to extract keystroke-records and

build feature vectors. We obtained a mean classification accuracy of 52% and 61%

for SH-NHHT and SH-HHT, respectively. It was observed that the primary cause

of drop in classification accuracy resulted from faster typing, where the rebounding

motion of few key presses overlapped with their next key press (see Figure 2.12).

Such instances were observed more often when two consecutive key presses were for

number adjacent to each other on the keypad. Although the classification accuracy

of naturally typed numbers is not as high as in the guided experiments, it is high

enough to be a significant threat.

2.5.7 Cross Device Performance

In order to further evaluate how the proposed attack framework performs across

different commercial wrist wearable or smartwatch hardware, we test our trained

classifiers (from Section 2.5.2) on keystroke motion data obtained from a smartwatch

of a different make and model. This simulates a situation where an adversary trains

classification models using one type of smartwatch hardware and then employs those

30

models to infer the keystrokes of a target user who is using a completely different

(possibly, unknown) smartwatch. Such a situation is much more realistic. For this

set of experiments, we used a LG Urbane W150 smartwatch that has a InvenSense

M651 accelerometer and gyroscope sensor and collected keystroke motion data from

12 completely new participants. Motion data corresponding to 100 keystrokes were

collected from each of the new participants, and tested using the classifiers trained

earlier in Section 2.5.2. The new data was collected at the same sampling frequency

of 50 Hz. Results (Figure 2.6) show that while mean classification accuracy dropped

slightly on the Urbane W150 (SH-NHHT: 70.08% vs. 67.41%, SH-HHT: 71.16%

vs. 70.83%), the variance is significantly lower in case of the Gear Live (SH-NHHT:

26.62 vs. 56.26, SH-HHT: 17.24 vs. 77.0). Although such a trend is intuitive,

it nevertheless shows that keystroke inference using the propose framework is still

feasible with reasonable accuracy even in such a realistic setting.

2.5.8 Extending to QWERTY Keypads

Up until this point, our primary focus has been keystroke inference attacks on

numeric mobile keypads. We now briefly investigate how our proposed attack frame-

work performs against alphanumeric mobile keypads with the standard QWERTY

layout. Intuitively, as the keys on a standard smartphone QWERTY keypad are

relatively smaller and placed closer to each other (compared to keys on the numeric

keypad), keystroke prediction may suffer from high confusion with neighboring keys

[81]. We collected 1248 alphabet keystrokes from a completely new set of 12 partic-

ipants using the LG Urbane W150 smartwatch, with equal distribution of alphabets

(48 each). We then re-ran the training and attack modules in the One vs. Rest

31

setting, with 75% data used for training and 25% data used for testing. Table 2.3

summarizes the classification accuracy of the 26 alphabets, along with two most con-

fused keys predicted for each alphabet. As anticipated, the classification accuracy

is significantly lower on the QWERTY keypad (compared to the numeric keypad),

with an average accuracy of 30.44%. While the low classification accuracy of indi-

vidual keys is prohibitive in carrying out effective inference attacks, it is important

to note that the most confused keys are usually neighboring to the actual key. It

is possible that we may be able to further improve the accuracy of these inference

attacks by analyzing keyboard characteristics and/or performing a dictionary-based

search [77, 71].

2.5.9 Variations of the SH-NHHT and SH-HHT Attack Scenarios

In addition to the SH-NHHT and SH-HHT scenarios presented in Figures 2.1(a)

and 2.1(b), there is an additional variation for each of these scenarios, as shown in

Figures 2.13(a) and 2.13(b). For SH-NHHT, the scenario 2.1(a) assumes that the

smartphone and smatwatch is on the left hand (and users type with the right hand).

A variation of this SH-NHHT scenario is having the smartphone and smatwatch

on the right hand and typing with the left hand (2.13(a)). A similar variation

(2.13(b)) can also be envisioned for the SH-HHT scenario 2.1(b). We would like

to analyze whether the performance of our proposed keystroke inference framework

differs significantly for these variations. The same experiment as in Section 2.5.2 was

repeated by 12 new participants, each typing 100 randomly dictated numbers per

variation. A two-tailed t-test on the One vs. Rest classification accuracies for the

SH-NHHT variations in Figures 2.1(a) and 2.13(a) returned the value of t = −0.46,

32

Table 2.3: Classification accuracy of the 26 alphabets (in percent), along with two
most confused keys predicted for each alphabet. Results averaged over all 12 partic-
ipants.

Accuarcy 1st Confusion 2nd Confusion

a: 41.66 s: 25.00 z: 16.66
b: 25.00 v: 33.33 g: 16.66
c: 33.33 f: 25.00 v: 25.00
d: 16.66 s: 33.33 c: 25.00
e: 33.33 w: 33.33 d: 16.66
f: 16.66 d: 33.33 v: 16.66
g: 25.00 h: 58.33 b: 8.33
h: 33.33 g: 25.00 n: 25.00
i: 33.33 o: 25.00 u: 25.00
j: 16.66 h: 16.66 k: 16.66
k: 16.66 j: 41.66 m: 16.66
l: 25.00 k: 25.00 o: 16.66
m: 33.33 k: 25.00 n: 8.33
n: 25.00 h: 16.66 m: 16.66
o: 33.33 i: 16.66 l: 8.33
p: 50.00 o: 25.00 i: 8.33
q: 41.66 a: 16.66 w: 16.66
r: 25.00 e: 33.33 f: 16.66
s: 16.66 x: 25.00 z: 25.00
t: 33.33 f: 16.66 h: 16.66
u: 41.66 h: 33.33 k: 16.66
v: 25.00 c: 33.33 b: 25.00
w: 41.66 q: 25.00 e: 8.33
x: 41.66 z: 33.33 c: 8.33
y: 33.33 t: 41.66 u: 16.66
z: 33.33 a: 33.33 x: 8.33

Average Accuracy: 30.44

33

(a) (b)

Figure 2.13: Variations of typing scenarios in Figures 2.1(a) and 2.1(b).

p = 0.65. For the SH-HHT variations 2.1(b) and 2.13(b), it returned t = 0.61,

p = 0.54. Both results are not significant at p < 0.05, implying that our attack

framework is not dependent on these variations. Therefore, an adversary can still

use the same framework to carry out the inference attacks for these variations by

simply retraining the classifiers.

2.6 Relative Transitions-Based Attack Framework

As discussed earlier, unlike the SH-NHHT and SH-HHT scenarios, key press

events in the DH-HHT scenario (Figure 2.1(c)) cannot be uniquely and accurately

detected on the smartwatch. To overcome this problem in the DH-HHT scenario,

we leverage on the observation that transitional movement between each pair of keys

produces characteristically unique motions on the wrist, which can be accurately

captured by the smartwatch. Accordingly, for the DH-HHT scenario, the keystroke

inference framework (Figure 2.14) leverages on supervised machine learning to first

classify transitional movements between consecutive key presses. Then, assuming

a reasonable distribution of numbers typed, when multiple transitional directions in

34

Figure 2.14: Overview of the relative transition-based attack framework for DH-
NHHT typing scenario.

between a target sequence of key presses are traced on the key pad, we obtain a unique

or highly reduced possibilities for the target sequence.

Data Collection and Pre-Processing: The same data collection application

that was used for the SH-NHHT and SH-HHT scenarios is also used for the DH-

NHHT scenario. Although the data collection process is exactly the same, the pre-

processing operations are entirely different for DH-NHHT. Instead of detecting key

press events, our goal here is to detect the type of wrist movement transition between

every two consecutive key presses. As a result, we use the labeled stream of data to

create labeled “transition-records” (Figure 2.15) and use them as the training set.

To create the training set, all linear accelerometer samples between two consecutive

key press events are used as the transition-record.

35

Transition Classification: We classify transitions based on cardinal direc-

tions. The logic behind such a classification is that transitions in the same direction

results in similar wrist movement. For example, wrist movement between num-

bers 4 and 1 would be similar to wrist movement between 6 and 3 (North), wrist

movement between numbers 4 and 7 would be similar to wrist movement between

6 and 9 (South), and so on. One classifier is trained for each possible transitional

direction, as listed in Table 2.4: North (N), South (S), East (E), West (W), North-

east (NE), Northwest (NW), Southeast (SE), Southwest (SW) and Repeat (O). To

achieve higher inference ability through tracing (explained later), the transition clas-

sifications must also be evenly populated. The number of possible transitions in each

of the above nine categories follows a fairly even distribution, varying between 9 and

14.

As an adversary will not have access to labels L, in the attack phase we use a

variable-length moving window to check and determine the occurrences of transitions.

The moving window is used to traverse (in steps of one sample) the linear accelerom-

eter data A in chronological order, and classify each window of linear accelerometer

samples into one of the nine directions. The length of the window was varied from

10 samples (200 msec at 50 Hz) to 100 samples (2 sec at 50 Hz), to capture the

variable length intervals possible between key presses. When ten or more consecu-

tive windows were classified to be in the same direction, the classification result was

recorded and the centroid was used as the key press time to form transition-records.

Feature Extraction: Contrary to the previous direct classification-based at-

tacks, where each key press event was denoted in a fixed time period, transition

36

Figure 2.15: Time series of key press events in DH-NHHT, and their corresponding
linear accelerometer readings. In DH-NHHT scenario, the wrist (along with the
smartwatch) continues to move in between key press events. As a result, key press
events cannot be identified or characterized based on spikes in energy level.

Table 2.4: Classification of all 100 possible numeric transitions.

N 4-1, 5-2, 6-3, 7-4, 8-5, 9-6, 0-8, 7-1, 8-2, 9-3, 0-5, 0-2, 0-1, 0-3

S 1-4, 2-5, 3-6, 4-7, 5-8, 6-9, 8-0, 1-7, 2-8, 3-9, 5-0, 2-0, 1-0, 3-0

E 1-2, 2-3, 4-5, 5-6, 7-8, 8-9, 1-3, 4-6, 7-9

W 2-1, 3-2, 5-4, 6-5, 8-7, 9-8, 3-1, 6-4, 9-7

NE 4-2, 5-3, 7-5, 8-6, 0-9, 4-3, 7-6, 7-2, 0-4, 8-3, 7-3

NW 5-1, 6-2, 8-4, 9-5, 0-7, 6-1, 9-4, 9-2, 0-6, 8-1, 9-1

SE 1-5, 2-6, 4-8, 5-9, 7-0, 1-6, 4-9, 1-8, 4-0, 2-9, 1-9

SW 2-4, 3-5, 5-7, 6-8, 9-0, 3-4, 6-7, 3-8, 6-0, 2-7, 3-7

O 1-1, 2-2, 3-3, 4-4, 5-5, 6-6, 7-7, 8-8, 9-9, 0-0

37

periods between two key presses can vary widely depending on typing habit, keypad

size, key pairs, etc. As a result, many of the time domain features used in SH-NHHT

and SH-HHT scenarios cannot be applied for DH-NHHT. Thus, we rely mainly on

frequency domain features, such as FFT of individual axis readings of the transition-

record, their mean, correlation, spectral roll-off, spectral centroid, spectral flux and

power spectral density estimates, to learn and classify transitions.

Tracing and Recovery: To infer a target sequence of key presses, the proposed

framework tries to “trace” the transitions between key presses on the numeric keypad.

Tracing eliminates all non-fitting key-pairs (the pair of keys that may have been

pressed before and after a transition) for each transition of the target sequence, where

the fitness of a key-pair is determined by the preceding and following transitions. In

case tracing results in a uniquely identified key-pair for a transition, the keys pressed

before and after that transition can be directly inferred. In other cases where tracing

results in multiple possible key-pairs for a transition, the keys pressed before and after

that transition can either be inferred by multiple trials or from the other adjoining

key-pairs (only if the adjoining key-pairs are uniquely identified).

After the transitions are classified, tracing of keys can be performed using one of

the following strategies:

• Forward Tracing: The transitions are plotted on the keypad in the same order

as they happened in time (Function F Tracing() in Algorithm 3). In forward

tracing, for a transition between candidate key pair (p, q), if there does not

exists a pair (∗, p) that satisfies the directional classification of the preceding

38

transition, pair (p, q) is eliminated from possible key pairs for that transition.

The F Tracing() function works from left to right on the test sequence.

• Backward Tracing: The transitions are plotted on the keypad in the reserve

order of how they actually happened in time (Function B Tracing() in Algo-

rithm 3). In backward tracing, for a transition between candidate key pair

(p, q), if there does not exists a pair (q, ∗) that satisfies the directional classi-

fication of the following transition, pair (p, q) is eliminated from possible key

pairs for that transition. The B Tracing() function works from right to left on

the test sequence.

• Bidirectional Tracing: Both forward and backward tracings are applied to re-

duce the possibilities for the target sequence (Function BD Tracing() in Al-

gorithm 3).

We use bidirectional tracing in our evaluations because bidirectional tracing limits

the propagation of any error that may be introduced by a transition misclassification.

2.7 Evaluation of Relative Transition Based Attack

In this section, we present the findings from our evaluation of the relative tran-

sition based attack framework.

2.7.1 Experimental Setup

The same experimental setup and participants as in Section 2.5.1 were used for

DH-NHHT. The only difference was that the smartwatch was worn on the right hand

by the participants, and the smartphone was held in the left hand.

39

Algorithm 3 Tracing Algorithms

Transitions[N] (N transitions in target sequence)
Directions[] = {∅}
KeyPairs[] = {∅}
for i = 1 to N do

Directions[i] = Classify(Transitions[i])
KeyPairs[i] = AllPossiblePairs(Directions[i])

end for

function F Tracing(KeyPairs[])
for j = 2 to N do

for each pair (p, q) in KeyPairs[j] do
if ∃! a pair (∗, p) in KeyPairs[j − 1] then

Remove (p, q) from KeyPairs[j]
end if

end for
end for

return KeyPairs[]
end function

function B Tracing(KeyPairs[])
for k = N − 1 to 1 do

for each pair (p, q) in KeyPairs[k] do
if ∃! a pair (q, ∗) in KeyPairs[k + 1] then

Remove (p, q) from KeyPairs[k]
end if

end for
end for

return KeyPairs[]
end function

function BD Tracing(KeyPairs[])
return B Tracing(F Tracing(KeyPairs[]))
end function

40

2.7.2 Constructing and Testing the Framework

We construct our transition classifiers based on training datasets of labeled transition-

records generated by the same 12 participants who helped create the classifiers for the

SH-NHHT and SH-HHT scenarios. The same audio stream of uniformly distributed

random numbers between 0 to 9 guided the participants in typing 100 numbers. Out

of the 1200 total numbers typed by all 12 participants, we use 960 numbers (having

948 transitions) for training and rest for testing. We test the accuracy of the transi-

tion classifiers and tracing algorithms using two 10-digit long number sequences per

participant (24 total test sequences, 240 total numbers, and 216 total transitions).

We calculate the accuracy of the different tracing algorithms based on the number

of correctly identified key presses in the traced number sequence. In order to infer a

key, at least the preceding or following transitions should be uniquely identified. For

example, in the instance shown in Figure 2.16, the transition 9 to 2 and 2 to 0 both

have other contending key-pairs (the incorrect transitions which are not removed by

the tracing algorithm because they fit in the overall sequence of transitions). In such

cases, it becomes impossible to determine the exact key (2 in this example) pressed

in one trial. However, although the transition 2 to 0 have other contending key-

pairs, the pressing of key 0 can be inferred with the help of the uniquely identified

0 to 7 transition, following the key press. In case both the preceding or following

transitions are uniquely identified, the adversary can be more confident about the

inference. One may also notice that the first and last number in a sequence are

harder to infer, as there exists only one transition for each.

41

Figure 2.16: An example of how bidirectional tracing drastically reduces the possibil-
ities of the key presses. First the forward tracing eliminates incompatible transitions
(in red) in chronological order. Then the backward transition removes additional in-
compatible transitions in chronologically reverse order. In this example, we are able
to uniquely identify the last 4 key-pairs using bidirectional tracing, which allows
unambiguous inference of the last 5 key presses.

42

In our evaluation, the transition classifiers were able to correctly classify 191

transitions-records (88.42% accuracy), while the remaining 25 incorrect or unclassi-

fied transitions introduced error in 17 of the test sequences. We also observe that

an incorrect prediction is more likely to occur immediately after a previous incorrect

prediction. One of the possible explanations behind such an observation is that the

transition behavior varies depending on the preceding and following transitions. In

terms of inference accuracy, 85 key presses out of the 240 test numbers were unam-

biguously identified using the bidirectional tracing (43.75% accuracy). We relate the

relatively low inference accuracy to three primary reasons: (a) incorrectly classified

transitions introduce error in not one but two key presses, (b) unclassified transi-

tions do not introduce error but there is no remedy to fill in the missing information,

and (c) even a very small number of contending key-pairs makes it impossible to

determine the exact key pressed.

Because most of today’s information systems acknowledge natural human mis-

takes and allows multiple trials to validate security tokens (pin, password, card num-

ber, etc.), adversaries can easily take advantage of it to try all possible number

sequences derived from the output of bidirectional tracing. Accordingly, we evaluate

the inference accuracy using multiple trials (solving from left to right), up to the

maximum number of trials required to correctly infer the full number sequence. For

example, in the instance shown in Figure 2.16, there can be 21 possible sequences

derivable from the output of bidirectional tracing (listed in Table 2.5). Results of

multiple trials are presented in Figure 2.17, where we see that more ambiguous se-

quences require additional number of trials (in the worst case). We do not restrict

43

Table 2.5: The 21 possible number sequences that satisfy the bidirectional tracing
obtained in Figure 2.16.

4-1-5-8-1-0-7-8-5-3 7-1-5-8-1-0-7-8-5-3 0-1-5-8-1-0-7-8-5-3
4-1-6-9-5-0-7-8-5-3 7-1-6-9-5-0-7-8-5-3 0-1-6-9-5-0-7-8-5-3
4-1-6-9-2-0-7-8-5-3 7-1-6-9-2-0-7-8-5-3 0-1-6-9-2-0-7-8-5-3
4-1-6-9-1-0-7-8-5-3 7-1-6-9-1-0-7-8-5-3 0-1-6-9-1-0-7-8-5-3
5-2-6-9-5-0-7-8-5-3 0-2-6-9-5-0-7-8-5-3 8-2-6-9-5-0-7-8-5-3
5-2-6-9-2-0-7-8-5-3 0-2-6-9-2-0-7-8-5-3 8-2-6-9-2-0-7-8-5-3
5-2-6-9-1-0-7-8-5-3 0-2-6-9-1-0-7-8-5-3 8-2-6-9-1-0-7-8-5-3

the adversary to a certain number of attempts (which would be system dependent)

because the actual sequence may or may not be tried in the limited number of at-

tempts. Instead, we evaluate the worst case scenario, where the adversary has to try

all possible sequences derived from the output of bidirectional tracing. Note that

we evaluate this using only the 7 bidirectionally traced sequences for which all the

predicted transitions are correct.

2.7.3 Combining Smartwatch and Smartphone Data

As smartphones cannot capture transitional wrist movements of the typing hand,

we cannot merge feature vectors like it was done in SH-NHHT and SH-HHT scenarios.

As an alternative, we found a novel way to combine smartphone motion sensor data

due to key taps, which was used in the classification-based attacks (as evaluated

in Section 2.5.5), with the smartwatch transition-records obtained in DH-NHHT

scenario. Based on the previous observation that classifying transition-records itself

is highly accurate (88.42% accuracy), we continue using the same attack framework.

However, to overcome the limitations faced in the inference process (after tracing is

44

Figure 2.17: More ambiguously traced sequences require additional number of trials
(in the worst case).

completed), classified smartphone keystroke-records may be used to choose from the

multiple candidate sequences obtained as the output of the tracing algorithm. We

evaluate this attack using linear accelerometer readings of the smartphone, which

were additionally collected during the DH-NHHT experiments of previous section.

Keystroke-records and feature vectors are extracted from the smartphone data as it

was done for SH-NHHT and SH-HHT. Elimination of contending key-pairs and filling

up of undetected transitions with the help of classified smartphone keystroke-records

(combined with reasonably accurate classification of keystroke-records), resulted in

82.50% unambiguous inference of key presses. This is a substantial improvement in

the inference accuracy, compared to the 43.75% accuracy obtained earlier without

the help of classified smartphone keystroke-records.

45

2.7.4 A More Realistic Setting: Natural or Non-Controlled

Typing

Similar to SH-NHHT and SH-HHT experiments, the participants were being di-

rected by an audio stream in the above DH-NHHT experiments, which may introduce

a minor delay or disturbance in each key press. As a result, we conducted a simi-

lar natural or non-controlled typing experiment in the DH-NHHT scenario, where a

completely new set of 12 participants were instructed to type their phone number fol-

lowed by their residential zip code (15 numbers, 14 transitions). In this setting, out

of a total of 168 transitions-records, 134 were classified correctly (79.76% accuracy).

The remaining incorrect or unclassified transitions introduced error in test sequences

of 10 participants. Out of a total of 180 key presses, 69 were unambiguously identified

using the bidirectional tracing, thus giving an accuracy of 38.33%.

2.8 Discussion

2.8.1 Limitations

Posture and Ambient Movement: In practice, wrist movement patterns may

change drastically based on the target user’s body posture and orientation. In other

words, the key press features while sitting may differ substantially from the key press

features while laying down. One main limitation of our attack framework is that it is

not robust against such different body postures and orientation. In order to overcome

this, an attacker must train multiple classification models using data corresponding

to different user postures and orientations, and then apply the appropriate one for

the victim. This, if the attacker knows what was the victim’s posture while typing.

46

Similarly, if the target user is moving (for example: walking, running, sitting inside a

car or train, etc.) while typing, keystroke events in the accelerometer/gyroscope data

may get masked and our framework may not be able to correctly infer them. However,

we must point out that this issue is not specific only to our attack framework, but

other frameworks in the literature suffer from a similar drawback.

Power Consumption: Another limiting factor of our attack can be the power

consumption rate on the smartwatch, due to the continuous recording of sensor data

at a high frequency. For instance, the 300 mAh battery inside the Samsung Gear

Live dropped from 100% to 69% in an hour, while recording linear accelerometer

readings at 50 Hz. This limitation is less evident in case of smartphones due to

their significantly higher battery capacity. To carry out a stealthy attack using the

smartwatch, an attacker may have to either reduce the sensor sampling rate, or devise

a mechanism to start the recording only when the potential victim is typing.

Both Hand Typing: We cover three major typing styles in this chapter, while

missing the case where a user holds the smartphone and types using both hands.

In this scenario, the motion captured by the smartwatch will vary depending on

which thumb is used to type a key, and which hand the smartwatch is worn on.

The movement captured in this typing scenario will yield very different results and

requires a new inference technique.

Threats to Validity: Most of our experimental results were obtained from analysis

of keystrokes typed in a relatively controlled setting, where participants were dictated

on what to type. As a result, it is possible that those results may not be representative

of how our attack framework may perform in more natural typing scenarios. However,

47

we must point out that we do investigate the efficacy of our attack framework in

several natural typing scenarios (in Sections 2.5.6 and 2.7.4), and the obtained results

show that our inference framework has reasonable accuracy in these scenarios as well.

2.8.2 Defenses

Defending against side-channel attacks is a much debated topic [22]. Although

modern mobile and wearable operating systems offer access control on some sensors,

sensors such as accelerometer and gyroscope cannot be disengaged by the user. More-

over, most mobile applications do not require explicit permissions (either at install

or run time) in order to access these sensors. A straightforward defense approach

is to safeguard all sensors using system or user-defined access controls. However,

such a static access control will become increasing complex to manage and will not

protect against applications that gain legitimate access to these sensors. Reducing

the frequency at which applications can sample data from these sensors is another

potential defense mechanism. A system-level monitoring mechanism that tracks the

context and frequency of sensor accesses, and appropriately flag unwanted accesses

requested by applications, could also serve as a useful defense tool.

2.8.3 Enhancements

Random Walk Tracing: This is a tracing algorithm we propose for use with very

long number sequences typed in DH-NHHT scenario. In this tracing algorithm, a

random subsequence of varying length is selected and bidirectional tracing is applied.

The process is repeated several times such that every transition is covered multiple

times, and each key press may end up having multiple candidate keys. Majority vot-

48

ing may be used to determine the final predicted keys (only if a key press has multiple

candidate keys). This tracing algorithm will greatly minimize the propagation of any

error that may be introduced by a transition misclassification.

2.9 Conclusion

In this chapter, we comprehensively investigated the feasibility of keystroke infer-

ence attacks on mobile numeric keypads by using smartwatch motion sensor data as

an information side channel. We proposed two supervised learning-based frameworks

to infer keystrokes from smartwatch motion data in three popular mobile holding

and typing scenarios. We empirically evaluated the performance and efficacy of our

proposed inference frameworks under various experimental settings (i.e., controlled

versus natural typing), by using different types of smartwatch hardware, by using

different types of motion sensors (i.e., accelerometer versus gyroscope) and by fus-

ing motion data from multiple sources (i.e., smartphone and smartwatch). We also

evaluated the performance of our attack framework on alphanumeric mobile keypads

with a QWERTY layout. Results from our various experimental studies have shown

that typing-induced motion data captured by smartwatch sensors can be employed

as an effective side-channel to infer keystrokes on mobile keypads.

Parts of this chapter appeared in [74, 75].

49

CHAPTER 3
ATTACKS ON CYBER INTERACTIONS: EXTERNAL

KEYBOARDS

3.1 Introduction

In this chapter, we show that unaudited access to motion sensors featured on most

smartwatches can inadvertently lead to significant leakage of information relating to

users and their surrounding. We demonstrate that a malicious application, with

access to motion sensor readings of a smartwatch, can decode the keystrokes made

on a QWERTY keyboard while wearing the smartwatch on one hand. We achieve

this based on the observed relative physical position of keystrokes and direction of

transition between pairs of keystrokes. We then recover the typed words by mapping

the captured ‘motion’ of each word to pre-formed motion profiles of words in an En-

glish language dictionary. Due to the distinctive nature of perceptible sensor data on

smartwatches, straightforward adaptation of earlier side-channel keystrokes attacks

based on emanation of electromagnetic, acoustic or vibration pulses generated by a

keystroke, is not befitting. A comprehensive empirical evaluation of our keystroke

inference framework show significantly high word recovery rates.

3.2 Related Work

Emanation based side-channel inference attacks date back to the World War II

era [35]. The primary types of emanations include electromagnetic signals, sounds,

and vibrations. Previous studies demonstrated the use of electromagnetic emanation

50

to eavesdrop on contents displayed on a CRT or LCD screen [112, 61] from a dis-

tance and with opaque obstacles in between. Similar attacks using electromagnetic

emanations have also been shown to work against CPU chips [5], smart cards [89],

data carrying cables [99], and keyboards (wired or wireless) [113]. Optical emana-

tion, contained in the band of electromagnetic spectrum perceptible to human eyes,

present a different form of leakage for display devices. The light released from display

devices may reflect off various surfaces in front of the screen, and reach an eavesdrop-

per. Successful reconstruction of the displayed information has been demonstrated

based on reflection such as from walls [60], shiny objects [12], and even from viewer’s

eyes [10]. While electromagnetic emanation based attacks are certainly effective,

the need of specialized equipment and it’s concealed placement near to the target

poses difficulty. Similarly for side-channel attacks based on optical emanations, the

eavesdropping equipment must be placed in line of sight of the target.

Side-channel attacks based on acoustic or sound emanations are much more feasi-

ble because of the popularity of personal devices featuring microphones. Microphones

are inexpensive, and can be easily concealed because of their compact form factor.

Furthermore, if a target’s microphone enabled device (such as smartphones, tablets,

etc.) is hijacked, it can act as a disguised eavesdropping equipment. As much as

90% of English text printed by a dot-matrix printer can be successfully recovered,

by learning the acoustic emanations released by the printer [11]. The other major

use of acoustic emanation has been in keystroke inference attacks, which targets to

recover key presses on a nearby computer keyboard [8, 16]. Similar keystroke infer-

ence attacks can be carried out using surface vibration emanation generated during

51

keystrokes [77, 14]. Vibrations of nearby surfaces caused by human voice can also

be recorded, and used to decode speeches [79]. While systems to record vibrations

may be difficult to conceal, Marquardt et al. [77] proposed the use of a smartphone’s

accelerometer to record vibrations near keyboards. If an adversary is able to infect

their target’s smartphone with a malicious application which can record and transmit

sensor data stealthily, it can serve as a very effective eavesdropping tool.

However, a critical requirement of learning based side-channel attacks using elec-

tromagnetic, acoustic, or vibration emanation, is that the target and eavesdropping

equipment must not be disturbed. Change in either’s position or orientation will

render the training data futile, thereby making recovery of target information im-

possible. This also means that training must be performed in the same setting as

the attack, which may not always be feasible. For example, in case of [77], if the

target person puts his/her smartphone one day on the left side of the keyboard and

another day on the right side, the vibrations captured by the accelerometer will be

significantly different, resulting in failed recovery of typed text. Our attack setting,

which uses motion data from a wearable device to infer keystrokes, is largely unaf-

fected due to similar constraints as most people wear and use these devices in a very

standard fashion (for example, smartwatches are almost always worn on the left wrist

by most people). Moreover, our attack mechanism and wrist motion characterization

framework is very general and can be easily extended to work in scenarios comprising

of non-traditional usage of these wearable devices (for example, users wearing the

watch on the right hand instead).

52

During the final phase of completing this work, we came across recently published

works which demonstrate the ability to infer keystrokes using smartwatch. In the

previous chapter [74], we used machine learning to train classifiers based on the slight

differences in wrist movements observed while tapping numeric keys on a handheld

smartphone keypad, depending on the location of the key on the screen. The trained

classifiers are then used on test data to perform multiclass classification between

the ten keys. Similar to our work, Wang et al. [115] demonstrate the feasibility of

keystroke inference attack using a smartwatch, on a QWERTY keyboard. However,

their attack framework is very different from ours. We also conduct a comprehen-

sive evaluation of our attack framework and preliminary results indicate that our

approach leads to better inference accuracy compared to [115]. However, [115] has a

different experimental setup, due to which we are unable to make a comprehensive

comparison like we do with [77] and [16].

3.3 Attack Description

In this chapter, we demonstrate the feasibility of a keystroke inference attack

against a user typing on an external QWERTY keyboard by using smartwatch motion

sensors. Because of limitations faced by emanation-based keystroke inference attacks,

and multiple technical challenges in implementing them on a smartwatch, we pursue

a slightly different approach for our attack where we focus on capturing and using

keystrokes related wrist motion or movement characteristics.

We observed that the wrist movements made while typing a fixed sequence of

letters on a keyboard are highly similar and consistent across multiple trials involving

53

a single typer. This gave us the intuition that an adversary can create a dictionary

of commonly used words (words are nothing but fixed sequence of letters), along

with their corresponding wrist movement patterns. During the attack, the adversary

can simply match the eavesdropped wrist movement pattern to the closest matching

pattern in the dictionary. Intuitively, the recovery can be highly accurate if the

dictionary is carefully created and comprises of all words that the target is expected

to type. However, the recovery rate also depends on how the wrist movement patterns

are characterized (which we will explain in Section 3.4.1) and the granularity of

the captured wrist movement data (which is generally limited by the eavesdropping

sensor’s maximum sampling frequency).

For carrying out the proposed inference attack, an adversary requires an eaves-

dropping device that is capable of continuously recording wrist movements, while

avoiding detection. A modern commercial-off-the-shelf smartwatch, which is gener-

ally equipped with a range of sensors (especially motion sensors), can easily serve

as such an eavesdropping device. Other forms of wrist wearable devices such as ac-

tivity trackers and fitness bands, are typically also equipped with motion or inertial

sensors, and can also be used as an eavesdropping device for the proposed attack.

In this work, without loss of generality, let’s assume that the adversary exploits the

smartwatch as an eavesdropping device. However, a bigger challenge is how does

an adversary gain access to the motion data captured on the smartwatch. This can

be achieved by an adversary installing a malicious application that has access to

the motion sensors on the target’s smartwatch such that the application is able to

stealthily capture and transfer the captured motion data to the adversary.

54

Figure 3.1: An exemplary setup where a person is typing on a QWERTY keyboard,
while wearing a Samsumg Gear Live smartwatch on left hand. A similar setup is
used in our experiments.

This is feasible because, even though an application’s access to the some sensors

(e.g., GPS and camera) is generally user-managed or restricted on most modern

mobile operating systems such as Android and iOS, access to motion sensors (such

as, accelerometer and gyroscope) remains highly unregulated. An adversary can

easily install the malicious application on the target smartwatch by various means,

for example, by gaining physical access to the device or through social engineering

(e.g. masquerading as a legitimate application, pretexting, baiting, phishing etc.).

The malicious application can then stealthily collect and transfer motion data by

masquerading as, or piggy backing on, useful application data and network traffic.

In other words, the infected smartwatch now acts as an eavesdropping device that

the targets’ themselves place on their wrist, and unsuspectingly have it on their wrist

while typing on a keyboard, as depicted in Figure 3.1.

55

The malicious adversarial application on the smartwatch records the linear ac-

celerometer data (linear accelerometer measures the acceleration experience by the

device, excluding the force of gravity) and microphone data. In the proposed attack,

the acoustic data recorded by the microphone is not used for keystroke inference, but

rather just to identify keystroke events (as explained in detail in Section 3.4.2.2). Due

to the impracticality of an on-screen keyboard on the small smartwatch screens, an

adversarial smartwatch application can seek access to the microphone in order to

support voice commands or dictation, which is common. Alternatively, keystroke

events can also be recognized by solely using the motion sensors, as accomplished

in Marquardt et al. [77]. As mentioned earlier, the recorded sensor data is then

transmitted by the malicious application to the adversary directly over the Internet

by masquerading as useful communication or by piggyback on communications from

other applications. In an effort to save battery power (necessary for avoiding detec-

tion), the recording and communication process may be initiated remotely by the

adversary or based on periodic activity tracking.

3.4 The Attack Framework

In this section, we present our model for identifying key-press events from raw

motion sensor data. We then discuss our attack framework, and an experimental

setup for evaluating the framework.

56

3.4.1 Modeling Key Press Events

With the maximum supported linear accelerometer sampling rate (∼50-70Hz)

being much lower than that of smartphones (∼200-300Hz), the difficulty in recogniz-

ing individual keys is greatly increased when using a smartwatch. To overcome this

shortcoming, we attempt to identify pairs of key presses or keystrokes by learning

the relationship between them. While typing a word, there will be one key press

for each character or letter in the word. Let Ki, Kj be two consecutive key press

events, signifying two consecutive characters or letters of a word. We characterize

the relation, rel(Ki, Kj), between any two consecutive key press events Ki, Kj as

follows:

• Horizontal Position: The location loc(Ki) of each keystroke event relative

to a ‘central-line’ dividing the keyboard into left (L) and right (R) halves.

The rationale behind this classification is that the wrist movement will be more

pronounced for typing a key on the same side as the watch-wearing hand.

• Transitional Direction Between Consecutive Key Presses: The direc-

tion dir(Ki, Kj) represents the direction of wrist movement between consec-

utive key presses Ki and Kj on watch-wearing side of the keyboard. The

possible directions (or values for dir(Ki, Kj)) are N, E, S, and W, representing

geographical north, east, south, and west, movement respectively. An addi-

tional classification is O, if Ki = Kj. The rationale behind this classification is

that the direction of transition between a pair of keystrokes will be reflected in

the wrist movement.

57

With the above classification, the relationship between two consecutive key press

events is defined as follows:

• When either Ki, Kj, or both, occur on the non-watch wearing side of the key-

board, rel(Ki, Kj) = loc(Ki) || X || loc(Kj), where ‘X ′ implies that direction

cannot be determined. The intuition behind such an assignment is that it is

not possible to determine the direction of transition when at least one of the

pressed key is not on the watch-wearing side of the keyboard.

• When both Ki and Kj occur on the watch-wearing side of the keyboard,

rel(Ki, Kj) = loc(Ki) || dir(Ki, Kj) || loc(Kj).

A word-profile for a word can then be derived by concatenating the relation

between every consecutive pair of letters in the word. For example, the word “boards”

can be broken down in to five pairs of keystrokes {bo, oa, ar, rd, ds}, i.e., word-profile

for the word “boards” is rel(bo).rel(oa).rel(ar).rel(rd).rel(ds). With the setup for a

QWERTY keyboard, as shown in Figure 3.2, and the entire L/R and N/E/S/W/O

classification listed in Table 3.1, the word-profile of “boards” will be:

RXR . RXL . LEL . LSL . LWL

The main idea behind our attack is that the adversary will have a pre-processed

dictionary of well-known (or targeted) words and their corresponding word-profiles

(formed as discussed before). These word-profiles are used in distinguishing between

candidate words from the dictionary. Given the motion data, the adversary will

attempt to infer word-profiles from the motion data and then use the pre-processed

58

Figure 3.2: The keyboard is divided in to left (L) and right (R) halves, shown by
the solid red line. Examples of N, E, S, and W classification are also shown. Each
direction has 90 degrees field of view from center of the key. Keys that fall on the
boundary are categorized in the direction where greater area of the key lies.

dictionary to determine the typed word by comparing the inferred word-profile to the

word-profile in the dictionary. However if the dictionary is large, more than one word

may have the same word-profile. Such collisions may result in incorrect predictions,

and thus, reduce the accuracy of the inference attack by the adversary. In such

cases, a frequency-based selection (as discussed in Section 5.15) could yield better

word recovery results. Similarly, defining word-profiles by using additional fine-

grained directional data (e.g., NE, SW, etc.) could reduce the number of collisions

and improve inference accuracy, however it will also increase the attack execution

time for the adversary.

3.4.2 Keystroke Inference Attack

Broadly, our proposed inference attack comprises of a learning phase (Figure

3.3) that is followed by the attack phase (Figure 3.4). However, before initiating the

learning phase, the adversary must define the classification parameters. This includes

deciding the keys in L and R halves, determining the hand on which the smartwatch

59

Table 3.1: L/R classification of individual keys and N/E/S/W/O classification of
character-pairs, assuming smartwatch is worn on left hand.

L q, w, e, r, t, a, s, d, f, g, z, x, c, v

R y, u, i, o, p, h, j, k, l, b, n, m

N aq, aw, sw, se, de, dr, fr, ft, gt, zq, zw, ze, za, zs, xw, xe, xr, xs, xd, ce, cr,
ct, cd, cf, vr, vt, vf, vg

E qw, qe, qr, qt, qs, qd, qf, qg, qx, qc, qv, we, wr, wt, wd, wf, wg, wc, wv, er,
et, ef, eg, ev, rt, rg, ae, ar, at, as, ad, af, ag, ax, ac, av, sr, st, sd, sf, sg, sc,
sv, dt, df, dg, dv, fg, zr, zt, zd, zf, zg, zx, zc, zv, xt, xf, xg, xc, xv, cg, cv

S qa, qz, wa, ws, wz, wx, es, ed, ez, ex, ec, rd, rf, rx, rc, rv, tf, tg, tc, tv, az, sz,
sx, dx, dc, fc, fv, gv

W wq, eq, ew, ea, rq, rw, re, ra, rs, rz, tq, tw, te, tr, ta, ts, td, tz, tx, sq, sa, dq,
dw, da, ds, dz, fq, fw, fe, fa, fs, fd, fz, fx, gq, gw, ge, gr, ga, gs, gd, gf, gz, gx,
gc, xq, xa, xz, cq, cw, ca, cs, cz, cx, vq, vw, ve, va, vs, vd, vz, vx, vc

O qq, ww, ee, rr, tt, aa, ss, dd, ff, gg, zz, xx, cc, vv

is worn, and accordingly form all perceptible transitions. In our experiments, we

suppose that the target is wearing the smartwatch on his/her left hand and the

keyboard is divided in L and R halves as shown in Figure 3.2. Accordingly, all 196

possible transitions with the watch-wearing hand are listed in Table 3.1. However,

the proposed attack could easily be modified (with little effort) for the watch worn

on the right hand or for other forms of L/R division of the keyboard. After these

parameters are determined, the learning phase can begin.

3.4.2.1 Learning Phase

The purpose of this phase is to construct trained classification and prediction

models for use during the attack phase. Training of these models comprises of the

60

Typing

Raw Linear
Accelerometer

Data

Feature
Extraction

Module

Position
Features

L/R
Labeler

Labeled L/R
Features

L-R Neural
Network

N/E/S/W/O
Labeler

Labeled
N/E/S/W/O

Features

N-E-S-W-O
Neural Network

Transition
Features

Random
Training
Words

Supervised
Learning Module

Figure 3.3: Learning Phase: A high level overview of the data processing architecture
used to train the neural networks.

following four steps: (i) data collection, (ii) feature extraction, (iii) word labeling, and

(iv) supervised learning. To ensure uniformity in the learning models, the training

data is chosen such that it has equally distributed features. This can be achieved

by using a large set of randomly generated words, uniformly covering all keys and

apprehensible transitions.

Data Collection: There are two types of data recorded by our custom Android

Wear attack (or data collection) application. First, is the motion data just before

and immediately after a keystroke. Second, is the entire transition data between

two keystrokes that occur on the watch-wearing side of the keyboard. Both types of

recorded data are the linear accelerations experienced by the smartwatch, as sensed

by it’s linear accelerometer sensor. The sampled linear accelerometer readings are

composed of instantaneous three dimensional linear acceleration along the X, Y,

and Z axes. One of the authors (pretending to be the adversary) typed a set of

61

1000 random English words which uniformly covered all 26 keys and 196 transitions,

without any fixed ordering or timing. Note that the number of possible transitions

will be 144 if the target wears the smartwatch on the right hand and the keyboard is

divided into the same L and R halves. The data collection application also clocks and

tags the ground truth of the typed keys, which helps simplify the feature extraction

and labeling process later, which in turn, ensures error-free training.

Feature Extraction: Feature extraction aids in dimensionality reduction by

eliminating redundant measurements. For (L/R) keystrokes we compute a compre-

hensive set of 24 type of features such as mean, median, variance, standard deviation,

skewness (measure of any asymmetry) and kurtosis (to measure any peakedness).

We use multiple inter and intra-axis time domain features to capture the correla-

tion between movement on the three axis, and frequency domain features to identify

the different rebounding (or oscillatory) motion of the wrist. However, in case of

(N/E/S/W/O) labeling, we observed that the transition period was varying widely

based on typing speed and word composition. As a result, it is impossible to rep-

resent the entire transition in a fixed length time-domain feature vector (as used in

feature vectors with (L/R) labels). As a solution, we use frequency-domain features

such as Fast Fourier Transformation (FFT) of the transition data.

Labeling: Each training word is broken down into its constituent characters

and character-pairs. As a result, a word of length n letters would be broken into

n characters and n − 1 character-pairs. Feature vector of each keystroke is labeled

(L/R) using the ground truth characters recorded during data collection. Feature

vectors of directions are labeled (N/E/S/W/O) by calculating the direction between

62

Typing

Raw Linear
Accelerometer

Data

Feature
Extraction

Module

Position
Features

Transition
Features

Contextual
Dictionary

Classification and Word Matching Module

Acoustic Keystroke
Detection

Keystroke
Timestamps

Feature
Matching

Predicted
Words

N-E-S-W-O
Neural Network

Classifier

L-R Neural
Network
Classifier

Figure 3.4: Attack Phase: A high level overview of the data processing architecture
used to analyze keyboard input using the trained neural networks.

character-pairs obtained from the same ground truth. An additional processing is

performed to select a set of character-pairs with even distribution of L and R and

N, E, S, W and O labels. Note that the number of N, E, S, W and O labels will

be approximately one-fourth of the number of L L, L R, R L and R R pairs

because the direction is determined only in case of L L transition (or R R if the

target wears the smartwatch on right hand). For L R, R L and R R character-

pairs, the direction for transition cannot be determined (which is denoted by X in

the word-profile), and thus, they are not used in the training phase.

Supervised Learning: We created two separate training models that will be

used during the attack phase to classify keystrokes and keystroke-pairs. The two

trained models are L-R and N-E-S-W-O neural networks for classifying (L/R) and

(N/E/S/W/O) feature vectors, respectively. Because of the complex interactions

possible between consecutive keystrokes, we train our classifiers using neural net-

63

works. Neural networks are specifically useful in discovering these complex inter-

actions between the corresponding feature vectors, and improving the classification

model based on it. Our L-R neural network uses a back-propagation algorithm for

learning at a rate of 0.01 and with a momentum of 0.99. This neural network has 30

hidden layers and training was performed for 2000 epochs. Our N-E-S-W-O neural

network also uses a back-propagation algorithm for learning at a rate of 0.001 and

with a momentum of 0.99. This neural network has 100 hidden layers and the train-

ing was performed for 1000 epochs. These parameters for our neural network based

classifiers were chosen heuristically. Training of these neural networks completes the

learning phase.

3.4.2.2 Attack Phase

The attack phase follows a similar procedure as the learning phase, with the ex-

ception that the goal here is to recover test words using the trained neural networks-

based classification models from the learning phase. In order to do so, the adversary

must first create a dictionary of words, and their corresponding word-profiles, that

the target is most likely of typing. The dictionary size can vary from a few words to

thousands of words, depending on the target and his/her context. If the adversary

is unaware of the target’s context, he could also create a large dictionary of most

popular or all words in the English language. The dictionary creation involves a

preprocessing step to obtain equivalent word-profiles of each word in the L/R and

X/N/E/S/W/O representation (as discussed before). The attack phase is then exe-

cuted in sequential steps of: (i) data collection, (ii) feature extraction, (iii) keystroke

classification, and (iv) word matching.

64

Data Collection: The same properties and operations from the data collection

operation of the learning phase also applies to the data collection during the attack

phase. The only exception is that the malicious Android Wear application does

not have the ability to clock and tag ground truth characters. As the smartwatch

can only detect motion cause by one (watch-wearing) hand, a significant challenge

of the proposed inference attack is due to the inability to detect keystrokes made

by the non-watch-wearing hand. However, our attack framework requires to know

the number of typed characters. To solve this problem, here we assume that the

adversary can employ an alternate source or sensor on the smartwatch that can detect

keystroke events typed by either hand. The intention for using such an auxiliary

sensor is not to classify the keystrokes using it, but to clock the time when a keystroke

occurs in the stream of raw linear acceleration data. A microphone can perfectly

serve this purpose. Even though a smartwatch’s microphone is not effective for

recovering keystrokes (due to the aforementioned reasons), it can certainly be used

to detect the occurrence of a keystroke itself, made by either hand. This is where

the naturally close positioning of the smartwatch near the keyboard is beneficial.

Thus, the malicious application uses the microphone to detect keystroke acoustics,

and in the case a keystroke event is detected from the acoustic signal, it logs a

keystroke event in the linear accelerometer data stream. Space key press events

are also clocked or logged because they act as word separators. Fortunately, as we

empirically determined, space keys are easy to identify in an audio recording because

of the key’s distinctive sound and frequency of use.

65

Feature Extraction: During the attack phase, the same features as in the

learning phase are extracted from the raw linear acceleration data recorded by the

malicious application. The feature vectors are then used to create two sets of data,

one for classifying L vs. R, and one for classifying N vs. E vs. S vs. W vs. O.

Keystroke Classification: The adversary initiates the classification process af-

ter extracting all feature vectors. The trained L-R neural network is used to predict

the (L/R) label for each individual keystroke. Only when a L L key-pair is de-

tected in the data stream by the L-R neural network, the N-E-S-W-O neural network

classification is conducted to predict the transition direction label (N/E/S/W/O).

Otherwise, the transition direction is labeled as X. Using the predicted labels (and

the recognized space keys as described earlier), a word-profile is constructed for each

word in the keystroke stream. All the constructed word-profiles are then passed as

input to a word matching algorithm described next.

Word Matching: Word matching is the final step of the attack phase, where

each predicted word-profile of length m is matched with all words of length m+ 1 in

the preprocessed dictionary by the adversary. For each matched word in the dictio-

nary, a similarity score is computed based on the number of matching labels between

the predicted word-profile and the corresponding word-profile in the dictionary (see

details in Algorithm 4). The dictionary word with the highest similarity score is then

output as the word corresponding to the predicted word-profile. For some evaluation

experiments, we also use a ‘similarity list’ made of dictionary words with descending

order of similarity scores.

66

Algorithm 4 Word Matching Algorithm

1: similarityScore = 0
2: for all words of len(m) ∈ dic do
3: for pair = 1 to m− 1 do
4: for label = 1 to 3 do
5: if dic.word.profile[pair][label] = predicted.profile[pair][label] then
6: similarityScore++
7: end if
8: end for
9: end for

10: end for
11: return similarityScore

3.4.3 Experimental Setup

In our experimental evaluation of the proposed inference attack and keystroke

characterization framework, we use a setup similar to the one shown in Figure 3.1.

We recruit 25 participants1 who wear the smartwatch on their left wrist and type

test words on an external QWERTY keyboard. All data recorded by the smartwatch

was transferred to a remote server. Both the training and attack phases are executed

on this remote server which is assumed to possess enough computational and storage

resources in order to carry out these operations. The specifications of important

hardware and software components used in our experiments are outlined below:

1. Smartwatch and sensor hardware: We used the Samsung Gear Live smartwatch

running Android Wear build 1.1.1.1944630. The Gear Live is equipped with an

InvenSense ICS-43430 microphone and an InvenSense MP-92M 9-axis Gyro +

1Our experiments have been approved by Wichita State University’s Institutional Review Board
(IRB).

67

Accelerometer + Compass sensor. The maximum average linear accelerometer

sampling rate achieved in our experiments was 50 Hz. Our data collection

application can be readily used on any Android Wear smartwatch, which makes

the attack framework compatible with a diverse set of smartwatches.

2. Keyboard hardware: We chose to use the Anker A7726121 bluetooth keyboard

because of its generic design. The bluetooth connectivity aided in accurate

labeling of sensor data, by allowing us to aggregate recorded sensor data and

corresponding typed character on the smartwatch in very close to real time.

3. Signal processing tool: Most of the features are calculated using MatLab 2015a

libraries.

4. Supervised machine learning tool: We used PyBrain v0.31 to train and test

the neural networks in our framework. PyBrain is an open-source modular ma-

chine learning library for Python, supporting easy integration with underlying

environment.

3.5 Evaluation

We first perform two preliminary experiments (involving only one participant)

in order to evaluate (i) the base accuracy of the L-R and N-S-E-W-O classifiers by

analyzing a set of test sentences from the set of Harvard sentences [1] and (ii) the word

recovery accuracy of the proposed inference attack strategy by using a dictionary of

ten Harvard sentences and attempting to recover each of the same ten sentences as

test data. We choose Harvard sentences because they are phonetically-balanced. In

68

the two preliminary experiments we make the assumption of ‘perfect typing’, i.e.

the participant follows our L/R separation. After the preliminary experiments, we

conduct more realistic experiments involving all 25 participants, real-life sentences,

larger dictionaries, and without the assumption of perfect typing.

3.5.1 Feature Accuracy

In the first experiment, we examine the base accuracy of both L-R and N-S-E-W-

O classifiers in correctly distinguishing between L/R region for individual letters and

N/S/E/ W/O transition between pairs of letters. We evaluate our trained classifiers

using all the ten sentences in List 6 of Harvard sentences. Interestingly, without any

typing errors, the L-R classifier was able to correctly identify 100% of the individual

key press events as left or right. However, the N-E-S-W-O classifier had two mis-

classifications, resulting in 95% accuracy.

3.5.2 Basic Text Recovery

Our next experiment examines the percentage of text (in terms of words) correctly

matched by the word matcher. In this preliminary experimental results, we observed

that the overall percentage of words correctly matched noticeably dropped due to

Typed Text: The show was a flop from the very start.

Recovered: *** sums *** * flop from *** very start.

Colliding Word-Profiles:

Show: LXR . RXR . RXL , Sums: LXR . RXR . RXL

Figure 3.5: Sentence 4 from List 6 of Harvard Sentences. The words ‘show’ and
‘sums’ have the same word-profile resulting in a collision in the dictionary.

69

mismatched two and three letter words in the analyzed text. The smaller number

of features in these words results in several of these ‘small’ words having the same

word-profile, thus causing more collisions during matching. We also observed that

most of these words are generally articles and conjunctions (e.g. an, the, and, or),

which can be easily interpolated by analyzing the language semantics of the recovered

text. As a result, we opted to consider only ‘long’ words of four letters or more in

all final percentages of recovered words in our remaining experiments. The ‘short’

words are instead denoted with asterisks (“*”) in the recovered sentences.

In this experiment, we used the same ten sentences in List 6 of Harvard sentences,

as from the first experiment. Among the 48 words of length four or more, only three

were erroneous (93.75% successful recovery). Out of the three, two had incorrect

N/E/S/W/O classification, while the other was due to collisions in the word-profiles.

Figure 3.5 shows the sentence where the collision occurred. The problem of collision

will increase with increasing size of the dictionary. However, if we also take in to

account second and third ranked similar word-profiles during word matching, this

problem can be moderated. Errors in word recovery (especially, due to collisions)

can be further diminished by analyzing language semantics, and then selecting the

word (from the multiple colliding words in the dictionary) that is semantically best

fit.

3.5.3 Contextual Dictionary

This experiment evaluates how our attack performs when the adversary has some

knowledge about what their targets are typing. All the 25 participants typed a para-

graph of 40 words (of length four or more) that appear in a National Public Radio

70

(NPR) news article on Greece debt crisis, and this experiment simulates eavesdrop-

ping on a reporter typing the NPR news article. The dictionary is formed with

words that appear in six other news articles related to Greece debt crisis, that were

published a week before the target article. The dictionary is also sorted based on

frequency of word appearances in the six chosen news articles, which improves our

chances of successfully solving a word-profile collision. Figure 3.6 shows the percent-

age of words recovered per participant. As one should expect in a real-life attack,

out of the 40 words in the target paragraph, only 27 were present in the contextual

dictionary. Even so, our framework was able to recover as many as 21 words (for 3

participants), by matching with just the first ranked word in the sorted list of simi-

larity scores (Figure 3.6). In other words, 21 words were uniquely identified without

any ambiguity, for the 3 participants. On the lower end, only 4 words were recovered

for 3 participants, but the recovery can be improved by considering words with lower

rank in the sorted similarity list. The mean word recovery using only the first ranked

word was 31.2% (or 46.2% if we consider only the words present in the dictionary).

3.5.4 Typing Behavior and Speed

During data collection, we observed that in many instances participants did not

follow our assumed layout. Some of the participants frequently used their left hand

to press a key on the right side of the keyboard, and vice versa. Upon further

investigation we also found that participant who typed slower, were less likely to

follow the left and right division of the keyboard. This phenomenon explains why

participants who took longer to type all the 40 words saw lesser word recovery rate in

Section 3.5.3 experiments. Figure 3.6 shows the time taken by the adversary (whose

71

0

10

20

30

40

50

60

70

80

90

P
7

P
5

P
1

1

P
2

4

P
2

0

P
1

6

P
1

9

P
1

8

P
9 A P
3

P
1

7

P
2

3

P
8

P
4

P
2

5

P
1

4

P
1

3

P
1

0

P
1

P
2

P
6

P
1

5

P
2

1

P
2

2

P
1

2

W
o

rd
 R

e
co

ve
ry

 P
e

rc
e

n
ta

ge
 (

To
p

 1
)

Increasing Order of Time Taken by Participant to Type All Words

Among All 40 Words Typed Among 27 Words in Dictionary

Participants who Typed
Faster than Adversary

Participants who Typed
Slower than Adversary

Figure 3.6: Contextual Dictionary: Percentage of words recovered per participant,
presented in descending order of typing speed of the participants.

typing was used as the training data) to type the 40 words as A on the horizontal

axis. Participants on the right of A typed slower than the adversary, and we can see a

trend that the recovery rate drops with slower typing. Interestingly, we see a similar

trend on the left of A as well, indicating that recovery rate drops with faster typing.

Our speculation is that due to fast typing there may occur overlapping feature regions

leading to poorly performing L/R classification, and incorrect L/R classification can

significantly affect recovery of words. Combining both the trends we arrive at a

conclusion that participants who typed at a similar speed as the adversary were

more vulnerable to the attack. For an adversary, the take-home message from this

conclusion is that the attack framework can be optimized by training it with a typing

speed and style expected from the potential victim(s).

72

0

10

20

30

40

50

60

70

80

90

100

Top 10 Top 25 Top 50 Top 100 Top 200

P
er

ce
n

ta
ge

 W
o

rd
 R

ec
o

ve
ry

Our Attack Marquardt et al. Berger et al.

Figure 3.7: A comparison of accuracy of our attack with Marquardt et al. [77] and
Berger et al. [16]. Note that in spite of not having wrist movement information
available from the non-watch-wearing hand, our results are roughly comparable for
a very large (60,000 words) dictionary.

3.5.5 Comparison to Previous Work

From the above experiments, we saw that relying on exact match with first ranked

words may not always result in the best inference accuracy. As pointed out by earlier

emanation based keystroke inference attacks [77, 16], more intelligent adversaries may

be able to form target sentences with lower ranked words from the sorted similarity

list. So, we re-create the experiments conducted by Marquardt et al. [77] and Berger

et al. [16] in order to be able to compare our attack framework directly with theirs.

We use a similar sized English dictionary of 60,000 words (of length 4 or more), sorted

based on frequency of usage in English literature. We reuse 38 of the 40 words typed

by participants in Section 3.5.3 experiment, while remaining 2 (first and last name

of former Greek finance minister) are not contained in the 60,000 word dictionary.

Figure 3.7 shows the comparison.

73

Our attack framework demonstrates comparable accuracies to that of Marquardt

et al. and Berger et al. It was able to correctly map test words to the top 10 words

in the sorted similarity list 50.5% of the time, which happen to be significantly

higher than the earlier works using smartphone sensors. The word recovery steadily

improves as we increase the size of selection from the sorted similarity list, but our

attack trails behind the other two in case of very large selections. Note that the com-

plexity of forming sentences with ambiguously recovered words grow exponentially

with the selection size. Therefore, achieving a better recovery rate with just top 10

words is more significant than having a better recovery rate using top 500 words. It

is also important to remember the distinct challenge faced by our technique where

no wrist movement information is available from the non-watch-wearing hand.

We are unable to compare equitably with Wang et al. [115] because of their

different experimental setup. However, using a smaller dictionary of only 5,000 words,

they were able to narrow down a typed word to 24 possibilities with a 50% chance.

In contrast, we use a much larger dictionary of 60,000 words, and our attack is still

able to narrow down a typed word to only 25 possibilities with about 52.5% chance.

3.6 Limitations

Our proposed movement-based keystroke inference attack using smartwatches

circumvents some of the limitations of emanation-based attacks, but it faces new

challenges. In this section, we discuss some of them.

• Ambient Wrist Movement: In case the target participates in some other

activity (for example, having a periodic sip of drink) in between typing, the

74

introduced noise can lead to incorrectly predicted words. However, since each

word is treated separately, the error will not propagate.

• Left and Right Handedness: Although the same attack framework is ap-

plicable independent of the hand on which the smartwatch is worn, classifiers

trained using data with the smartwatch worn on the left hand cannot be used

to predict words typed while wearing the smartwatch on the other hand, and

vice-versa.

• Inferring Non-Dictionary Text: Our attack performs well for dictionary

words, but is incapable of recovering numeric keys and special characters. As

a result, if the adversary is interested in learning data with numbers and/or

special characters (such a credit card numbers, strong passwords, etc.), the

presented framework and attack will not be directly applicable. However, wrist

movements can still be useful in determining approximate position of keys

pressed, which may significantly reduce the search space.

3.7 Conclusion

This chapter presents a novel keystroke inference attack which utilizes wrist-

motion data gathered from a smartwatch as side-channel information. Wrist move-

ments yield very different data compared to popular emanation-based keystroke in-

ference attacks. In order to harvest the information masked in wrist movements for

inferring keystrokes, we designed and validated a novel learning-based attack frame-

work which is specifically targeted towards recovering text typed by a smartwatch

75

wearing user on an external QWERTY keyboard. By showing the feasibility of the

proposed classification and prediction mechanisms, we validate our hypothesis that

wearable devices such as smartwatches can leak sensitive personal information if

access to sensors (on these devices) is not appropriately regulated.

Parts of this chapter appeared in [71].

76

CHAPTER 4
ATTACKS ON PHYSICAL INTERACTIONS: COMBINATION

PADLOCKS AND SAFES

4.1 Introduction

In the last two chapters, we have validated threats that enable an adversary

to infer private inputs or interactions made by a target user on an input-interface

(of some system of interest to the adversary) by taking advantage of unregulated

sensor data available from the user’s wrist-wearable. A majority of similar research

contributions in this direction also have primarily focused on threats that attempt to

infer private user inputs on interfaces of purely cyber or cyber-physical systems, for

example, inference of keystrokes or taps on physical keyboards or touchscreen-based

keypads [115, 70, 114, 46]. Outcomes of such threats, if successful, can significantly

impact the cyber-security and cyber-presence of targeted users.

In this chapter, our focus is on a slightly different kind of threat, which is to

investigate the feasibility of inferring a target user’s private inputs or interactions

on the interface of a purely mechanical device by harnessing the sensor data avail-

able from the user’s wrist-wearable. We specifically focus on inferring inputs on

mechanical devices typically used to secure physical access (on doors and lockers),

for example, combination locks. Such privacy threats concerning mechanical safety

devices, which may now be feasible due to the upcoming wearable device technology,

has the potential of impacting the physical safety and security of users. Despite their

severity, such threats have not received much attention in the literature.

77

(a) Master Lock 1500T (b) First Alert 2087F-BD Safe.

Figure 4.1: Target mechanical combination locks.

Our primary research goal in this chapter is to investigate the feasibility of in-

ferring unlock combinations of commercially-available mechanical combination locks

and safes (as shown in Figure 4.1) by exploiting inertial or motion sensor data from

wrist-wearables such as smartwatches. To unlock such combination locks, an autho-

rized user typically enters the secret unlocking combination or key as a sequence of

counter-clockwise and clockwise rotations of the lock’s circular numeric dial. Now

during the unlocking process, the wrist on the unlocking hand undergoes perceptible

and unique movements and rotations of its own, which is strongly correlated with

the unlock combination. Our hypothesis is that, if these motions can be accurately

captured and characterized, say, by targeting the gyroscope sensor on-board the

unlocking hand’s wrist-wearable, then it can be used to infer the lock’s combination.

78

Our objective is to validate the above hypothesis by empirically evaluating the

accuracy and effort with which such an inference attack can be executed using mod-

ern wrist-wearables. In line with this objective, we make the following technical

contributions in this chapter:

1. We present a novel motion-based combination or key inference framework com-

prising of: (i) an activity recognition component for efficiently and accurately

identifying unlocking-related data in the continuous motion data stream, (ii)

a segmentation component to separate and appropriately characterize motion

data corresponding to each part of the multi-part combination or key, and (iii)

an attack component that maps the characterizations of the individual parts

obtained from the previous steps to a (or a set of) valid combination(s) or

key(s).

2. A comprehensive empirical evaluation of the proposed attack framework in

order to assess its performance on: (i) a commercially available padlock and

safe, (ii) using different key spaces, (iii) in a cross-device setting, (iv) in a

cross-hand setting, and (iv) under real-life lock operation scenarios.

4.2 Related Work

Threats that attempt to infer private information, user-contexts or user-activities

by capturing related electromagnetic, acoustic, optical and/or mechanical emana-

tions from a target device or user and employing them as information side-channels

have been well-studied in the literature [89, 60, 5, 8, 16, 12, 10, 113, 11, 42, 6, 115, 67].

79

With the advent of smartphones, researchers started focusing on employing the

phone’s on-board hardware and software sensors to investigate the feasibility of sim-

ilar inference attacks [110]. One notable sensor modality that now became available

as an attack vector is the smartphone’s inertial or motion sensors, such as, accelerom-

eters and gyroscopes, which are capable of capturing fine-grained linear and angular

motion of the user or object on which the phone was placed. Smartphone inertial

sensors have been exploited to infer keystrokes on the phone itself as well as external

keyboards [14, 77, 20, 118, 86], to track user movements and locations [40, 44, 83], to

infer private user activities [85] and to decode human speech [79]. Similarly, smart-

phone microphone and/or magnetometer have also been exploited to infer private

user information [94] or trade secrets (such as 3D-printer designs) [45, 102, 32], pri-

vate user activities [91] and natural handwriting [121]. Recently, aggregate power

usage over a period of time available from the smartphone’s power meter was used

to track user movements and locations [80].

The arrival of smartwatches and fitness bands have fueled a similar line of research

in the area of private user-input, activity and context inference threats that take

advantage of data available from sensors on-board these commercial wrist-wearable

devices. However, unlike smartphones, as smart wearables are always carried by users

on their body in the same natural position, the resulting continuous nature of sensor

data available from them is more vulnerable to misuse and related inference threats

more likely to succeed. Smartwatch motion sensors, similar to the smartphone case,

have been exploited to infer keystrokes [74, 115, 70, 71, 114], user-activities [96, 69],

handwriting [117, 116] and driving behavior [57]. Recently, ambient light sensors on

80

these devices have also been used to infer private keystroke information [46]. Given

this plethora of research results, it is clear that sensors on-board mobile and wearable

devices pose a significant privacy threat. It is alarming though that common mobile

and wearable device users are unaware of such threats [26].

In this chapter, we investigate the feasibility of a new kind of privacy threat,

i.e., inferring unlock combinations of mechanical locks using wrist-wearable motion

sensors, which has never been investigated before. Several modern smart locks offer a

numeric keypad which can be compromised using known smartwatch-based keystroke

inference techniques in the literature [74, 115, 70, 71, 114]. However, in this chapter

we target traditional rotation-based mechanical locks which are still very popular

and where existing attack techniques will not work. Blaze [18, 17] systematically

examined physical and design weaknesses in both combination and pin-tumbler locks.

However, our primary contribution in this work is to show how external side-channel

attacks can make even a securely designed lock vulnerable.

4.3 Adversary Model

We consider the scenario of a target user who is wearing a wrist-wearable such as

a smartwatch and is entering the unlock combination or key on the circular dial of

a mechanical combination lock (targeted by the adversary) with the watch-wearing

hand. The goal of the adversary is to infer the unlocking combination of the lock

by employing the inertial or motion sensor data available from the smartwatch worn

by the target user. We assume that the adversary has knowledge of the exact type

(make and model) of the target combination lock and that the dial of the lock has

81

sufficient resistance to prevent rotation by mere movement of fingers. The adver-

sary is able to record and obtain the inertial or motion sensor data from the target

smartwatch through several different modalities. One way an adversary can achieve

this is by creating a trojan app and then tricking the unsuspecting target user or

victim into downloading and installing this trojan onto their wearable device. In case

the adversary is a popular service provider, gaining access in such a fashion is much

more straightforward as unsuspecting users may download and install the malicious

app on their own volition. This malicious eavesdropping app samples the on-device

sensors of interest (specifically, the gyroscope sensor data is used for this particular

attack) and transfers the sampled sensor data to a remote server controlled by the

adversary through some covert communication channel, say by hiding it within use-

ful communications. We assume that the malicious app has the required permissions

to access these sensors of interest. As the proposed attack employs the gyroscope

sensor, which is a zero-permission sensor on popular wearable operating systems

such as Android Wear and watchOS, the adversary has a relatively unobstructed

attack path once the malicious app is installed on the device. We also assume that

the adversary maintains a remote server with sufficient storage and computational

resources to archive the eavesdropped data and to perform offline inference compu-

tations. The above adversary model is practically feasible and has been a standard

assumption for similar lines of investigations. In addition to the above cyber re-

sources, the adversary also has a limited amount of physical access to the target lock

(in order to conduct the actual physical attack on the lock by trying out the inferred

combination), but not long enough to manually brute-force the lock’s combination.

82

The adversary presets/notes the position of the (lock’s) dial before the target user

begins the unlocking operation. However, the adversary has no visual access to the

dial during the unlocking operation itself.

4.4 Background

4.4.1 Mechanical Combination Locks

After studying the technical specifications of several commercially available me-

chanical combination locks, we decided to focus on two specific types of locks whose

internal mechanical structure and physical operation are representative and com-

monly found in most rotary combination locks: (i) padlocks, and (ii) consumer-grade

safes. For the padlock we chose a Master Lock 1500T model lock (Figure 4.1(a)),

while for the safe we chose a First Alert 2087F-BD safe (Figure 4.1(b)).

The front dial of the Master Lock 1500T is used to enter the unlock combination

key and has 40 numbers on its face. As the combination key comprises of three

numbers (each taking a value between 0 and 39) which must be entered sequentially,

the resulting theoretical combination key space is 403 = 64, 000. In order to unlock

the Master Lock 1500T, a user must turn the dial clockwise two full rotations and

stop at the first number of the combination key on the third turn (phase 1), then

turn it counter-clockwise past the first number of the combination key to the second

number of the key (phase 2), and finally turn the dial clockwise to the third number

of the combination key (phase 3). Let traversing from one number to it’s sequential

number (in any direction) be called a “unit” of traversal. Then it should be noted

that, depending on the combination key being entered, in phase 1 the user traverses

83

anywhere between 81 and 120 units in the clockwise direction, in phase 2 he traverses

anywhere between 41 and 80 units in the counter-clockwise direction, and in phase

3 he traverses anywhere between 1 and 40 units in the clockwise direction. If this

procedure is correctly followed, and if the entered combination key is correct, the

indentations on the lock’s cams align correctly allowing the hasp to be released and

opening the lock.

The First Alert 2087F-BD safe’s lock dial comprises of 100 numbers (from 0 to

99) on its face. It’s combination key comprises of four numbers (each taking a value

between 0 and 99) which must be entered sequentially, thus resulting in a theoretical

combination key space of 1004. In order to unlock the safe, a user must turn the dial

counter-clockwise four full rotations and stop at the first number of the combination

key on the fifth turn (phase 1), then turn it clockwise twice past the first number

to the second number (phase 2), then turn it counter-clockwise past the second

number to stop at the third number (phase 3), and finally turn the dial clockwise

to the fourth number (phase 4). Depending on the combination key being entered,

in phase 1 the user traverses anywhere between 401 and 500 units in the counter-

clockwise direction, in phase 2 he traverses anywhere between 201 and 300 units in

the clockwise direction, in phase 3 he traverses anywhere between 101 and 200 units

in the counter-clockwise direction, and in phase 4 he traverses anywhere between 1

and 100 units in the clockwise direction. Similar to the Master Lock 1500T, if this

procedure is correctly followed and if the entered combination key is correct, the safe

opens.

84

4.4.2 Combination Key and Wrist Movements

Before designing an inference framework, we need to develop a clear understand-

ing of how the activity of entering a combination key on a lock’s dial impacts the

wrist movement of the unlocking hand, and if it is possible to accurately and con-

sistently characterize this movement using the motion sensor data obtained from

modern wrist wearables such as smartwatches. More concretely, we would like to

first understand the relationship between the amount of movement of a lock’s dial

and the corresponding amount of movement of the user’s wrist. We quantify the

amount of movement of a lock’s dial using the parameter transition, which measures

the number of units traversed when inputing a particular number of the combination.

As the unlock combination key of the Master Lock 1500T padlock has three num-

bers (and correspondingly, the unlocking procedure has three phases), the amount

of movement of the lock’s dial during the unlocking process can be completely char-

acterized by three transitions. Similarly, as the First Alert 2087F-BD safe has a

four number combination, the amount of movement of the lock’s dial during unlock-

ing can be completely characterized by four transitions. We quantify the amount

of movement (or rotation) of a user’s wrist by computing the angular displacement

from the observed smartwatch gyroscope data. As the gyroscope measures angular

velocity, the corresponding angular displacements can be calculated by integrating

the obtained angular velocity readings.

In order to quantify the relationship between transitions on a lock’s dial and the

wrist’s angular displacements, we conduct some preliminary unlocking experiments

on the Master Lock 1500T padlock. Specifically, we collected smartwatch gyroscope

85

A
N

G
U

L
A

R
 D

IS
P

L
A

C
E

M
E

N
T

 (
R

A
D

)

TRANSITION UNITS

-20

-15

-10

-5

0

5

10

15

0 20 40 60 80 100 120

Subject 1+
Subject 1-
Subject 2+
Subject 2-
Subject 3+
Subject 3-

(a)

A
N

G
U

L
A

R
 D

IS
P

L
A

C
E

M
E

N
T

 (
R

A
D

)

TRANSITION UNITS

Phase 3 Phase 2 Phase 1

(b)

Figure 4.2: (a) – Positive (blues) and negative (greens) angular displacements, col-
lected from three subjects; (b) Combined linear least squares fitting.

samples at a sampling rate of 200 Hz from three human subjects who unlocked the

padlock wearing a Samsung Gear Live. The subjects in our preliminary experiments

entered 40 different combinations on the Master Lock 1500T padlock which covered

all the 120 possible transitions (40 possible transitions per number in any combi-

nation key). While entering each combination, the subjects always started from a

known position (number 0)1 and entered the combination by correctly following the

unlocking procedure described in Section 4.4.1. For each subject, we plot the angular

displacement (in radians), calculated by integrating the corresponding angular veloc-

ities observed on the x-axis of the smartwatch’s gyroscope, for each each transition

in either direction (Figure 4.2(a)).

1The starting point can be any number on the dial. However, the key inference function (Equa-
tions 4.1 and 4.2) must be initialized accordingly, during the inference phase.

86

From Figure 4.2 we first observe that, for each transition (irrespective of the

direction of rotation), the angular displacement of the wrist calculated from the

raw smartwatch gyroscope data is not the same as the angular displacement of the

lock’s dial. These inaccuracies could be attributed to the discrete nature of the gy-

roscope readings, which are limited by the maximum sampling rate of the gyroscope

hardware. In addition to this, the cartilaginous joints between the fingers and the

wrist, do not allow for a perfect rotation of the wrist during the unlocking opera-

tion. As a result, an adversary cannot simply use the angular displacement of the

wrist calculated from the raw smartwatch gyroscope data to determine the angular

displacement, and thus the corresponding transition, on the lock’s dial. Our second

observation is that the angular displacement of the wrist calculated from the raw

smartwatch gyroscope data can be approximated as an increasing linear function of

the transitions on the lock’s dial. Although intuitive, the interesting and encouraging

aspect here is that this relationship is consistent for all three subjects. Lastly, we ob-

serve that this linear relationship is reasonably homologous or similar across different

subjects. We only used the x-axis of the gyroscope data for these plots because we

observed that the x-axis remains perpendicular to the lock (Figure 4.1(a)) during the

unlocking operation and provides a more accurate measure of angular displacement

than the other two axes.

So, what do these observations mean to an adversary who wants to infer the

combination key entered by some target user? The adversary is unable to accurately

determine the angular displacement or transition on the lock’s dial (and thus the

corresponding number in the combination) directly from the corresponding angular

87

displacement of the wrist computed using the smartwatch’s gyroscope data. How-

ever, an adversary could use the above observations to construct a learning-based

inference framework that translates angular displacements of the wrist (computed

from the smartwatch’s gyroscope data) to transitions on the lock’s dial, and train

this framework using some representative training data. The adversary could then

employ such a trained inference framework to infer the combination (entered by the

target user) from the smartwatch gyroscope data. We develop such an inference

framework in Sections 4.5 and 4.6. However, there are two additional challenges that

we need to overcome. First, in a long sequence of time-series gyroscope data, how

does the adversary identify data corresponding to the unlocking motion? Second,

to accurately compute the angular displacement of the wrist for each phase of the

unlocking procedure, the adversary needs to divide or segment the gyroscope time-

series into individual phases. We address these issues by developing an unlocking

activity recognition technique (Section 4.4.3), and a segmentation technique (Section

4.4.4).

4.4.3 Unlocking Activity Recognition

Before attempting to infer combinations from the target user’s wrist motions, one

critical challenge for the adversary is to precisely detect when the unlock event takes

place. In order to overcome this challenge, we design an offline activity recognition

technique to detect and record timestamps of unlocking operations on combination

locks. Our activity recognition technique does not require any additional adversarial

capabilities or resources as it employs only the gyroscope data stream (specifically,

the x-axis data) which is already recorded by the adversary for the inference task.

88

While analyzing characteristics of the time-series gyroscope data during unlocking,

we observed that the integrated angular displacement increases on both positive and

negative axis in successive periods. This is because after rotating the dial (clockwise

or counter-clockwise) to an extent, users release the dial, go back in reverse (counter-

clockwise or clockwise, respectively), again grab the dial, and continue entering the

remaining part of the combination key (clockwise or counter-clockwise, respectively).

We refer to one such clockwise-counterclockwise (or vice-versa) motion during com-

bination key entry as a “spin”, which is primarily related to the comfortable wrist

rotation ability (or desire) of humans. Such spin-ing is repeated multiple times

during any combination key entry, approximately every half a turn (π) and over a

maximum duration of approximately 5 seconds. We can observe this phenomenon in

the sample gyroscope (x-axis) time-series corresponding to a padlock unlocking op-

eration (Figure 4.3). We utilize the above observations in the design of the following

four features which will be employed by our activity recognition technique:

• Positive Displacements (+α): Integration of positive x-axis gyroscope sam-

ples.

• Negative Displacements (-α): Integration of negative x-axis gyroscope sam-

ples.

• Summed Displacement (+α+ -α): Sum of integrated positive and negative

x-axis samples.

• Total Displacement Magnitude (+α + |-α|): Sum of the magnitudes of

integrated positive and negative x-axis samples.

89

In order to confirm the above observations, we computed the means and standard

deviations of the above four features over all the 5 second windows (maximum dura-

tion of a spin) in the preliminary unlocking-related gyroscope data collected earlier

(Figure 4.2(a)). We observed that the mean values of the magnitudes of +α and -α

are approximately similar in a spin, the mean value of the total displacement magni-

tude is approximately double of both +α and -α, and the mean value of the summed

displacement is close to zero. We employ these learned mean and standard deviation

values to form a decision-tree for detecting spins. During the activity recognition,

the above four features are recursively computed for every 5 second window, and

the decision-tree classifies a window as a spin if all the four features are within one

standard deviation of the learned means. In the case of padlock, if 5 (minimum

number of spins observed for the shortest padlock combination: 39-0-39) or more

spins are observed within a short time window (empirically determined based on the

maximum unlocking time observed in data) an unlocking activity is recognized. A

similar strategy could be used to recognize unlocking operation on a safe.

4.4.4 Segmentation

Segmentation of the time-series gyroscope data representing the entire combina-

tion key input into data corresponding to individual phases or transitions (three for

the padlock and four for the safe) will simplify the overall design of the inference

framework. This is because the combination inference problem can then be reduced

to the problem of independently inferring the combination number corresponding to

each segmented transition. In order to design a reliable segmentation technique, we

leverage on the observation from our earlier experiments that humans tend to slow

90

down when they approach a number in their combination key. We believe that this

phenomenon is due to the cognitive processing of the human brain governing the

physiological action of stopping at a particular number, which causes the subjects

to slow down when approaching the intended number in their combination key or

risk overshooting it (and thus having to restart the entire key entry process). We

can observe this phenomenon in the time-series gyroscope data corresponding to the

unlocking operation of the Master Lock 1500T padlock by one of the subjects, where

we can clearly see (Figure 4.3) the sharp decreases in the angular velocity (red line)

when approaching the combination key number near the end of each phase. In order

to automate the process of segmentation, we design an algorithm to detect the rela-

tive decrease in angular velocity, and use the peaks (representing slowest movement)

to segment the entire time-series. The algorithm first computes the absolute values

of all samples in the gyroscope time-series data, inverts, and then amplifies the time-

series by a factor of 10 (for better visualization). Then, on the resultant time-series, a

Gaussian filter with a moving window [27] of 15 samples (learned empirically, at 200

Hz sampling frequency) is applied. Finally, the algorithm performs a search for top-2

global peaks in the resultant time-series, which represents approximate timestamps

for the first and second number of the combination key, in chronological order. The

blue (top) line in Figure 4.3 is an example of the visualized output of our segmenta-

tion algorithm, showing the detected peaks and resulting segmentation timestamps.

Our algorithm also works on gyroscope data from the safe, using top-3 peaks.

91

A
N

G
U

L
A

R
 D

IS
P

L
A

C
E

M
E

N
T

S
 (

R
A

D
/S

)

Output of the Segmentation Algorithm

Raw Gyroscope Time-Series Data

TIME-SERIES (200 Hz)

1st Number

Timestamp

Starting

Timestamp

2nd Number

Timestamp

3rd Number

Timestamp

Figure 4.3: Segmentation using a Gaussian filter.

4.5 Deterministic Attack Framework

We develop two learning-based inference frameworks to infer numbers of the com-

bination key inputted on the lock’s dial from the segmented smartwatch gyroscope

data. We first outline a deterministic framework which outputs a single inferred

combination key from the segmented time-series gyroscope input.

4.5.1 Padlock Attack Model

Assuming that the starting point s on the padlock’s dial is

fixed/known (say, to be 0), we can define Φ1 = {81, 82.., 120}, Φ2 = {41, 42.., 80} and

Φ3 = {1, 2.., 40} as the sets of possible padlock transitions in phase 1, phase 2 and

phase 3 of the unlocking procedure, respectively. Now for a given 3-number combi-

nation key k = 〈a, b, c〉 of the Master Lock 1500T padlock, where a, b, c ∈ {0, 1.., 39},

let θsak ∈ Φ1, θabk ∈ Φ2 and θbck ∈ Φ3 be the actual transitions or number of units

traversed (on the lock’s dial) between consecutive numbers of the combination key

92

k, i.e., θsak , θabk and θbck are the number of units traversed between 0 and a, between a

and b, and between b and c, respectively. Let αsak , αabk and αbck denote the correspond-

ing angular displacements of the target user’s wrist (ignoring the direction or sign)

calculated from the segmented smartwatch gyroscope data. The inference framework

comprises of a training phase and an attack phase. During the training phase, the

adversary collects training data (from a set of human participants) comprising of a

set of θ and corresponding α values for a sample set of combinations covering all

possible transitions. As indicated by our preliminary results (Figure 4.2(a)), the

relationship between angular displacements of the wrist and transitions on the lock’s

dial can be approximated by a linear function. Thus, the adversary can use the

training data to learn such a linear function α = mθ + n that best fits all (θ, α)

points in each of the [s, a], [a, b] and [b, c] transition ranges of the training data. The

adversary can employ a least squares [120] technique in order to learn such a linear

function (Figure 4.2(b)). Then during the attack phase, for an unknown combination

key k̂ = 〈â, b̂, ĉ〉, the adversary first segments the gyroscope data and computes the

corresponding angular displacements αsâ
k̂

, αâb̂
k̂

and αb̂ĉ
k̂

. The adversary’s goal then is

to determine a combination k′, as an inference of k̂, by first approximating or esti-

mating the θsâ
k̂
∈ Φ1, θâb̂

k̂
∈ Φ2 and θb̂ĉ

k̂
∈ Φ3 values from the corresponding angular

displacements (αsâ
k̂

, αâb̂
k̂

and αb̂ĉ
k̂

, respectively). Let these approximations of θsâ
k̂

, θâb̂
k̂

and θb̂ĉ
k̂

be denoted as θ̄sâ, θ̄âb̂ and θ̄b̂ĉ, respectively. In order to accomplish this,

the adversary employs the linear function (α = mθ + n) learned earlier. Once the

transition in each phase has been estimated, k′ can be computed as:

93

k′ = 〈((−θ̄sâ + s) mod 40),

((θ̄âb̂ + (−θ̄sâ + s)) mod 40),

((−θ̄b̂ĉ + (θ̄âb̂ + (−θ̄sâ + s))) mod 40)〉

(4.1)

4.5.2 Safe Attack Model

Similar to the padlock, we can define Ψ1 = {401, 402.., 500}, Ψ2 = {201, 202.., 300},

Ψ3 = {101, 102.., 200} and Ψ4 = {1, 2.., 100} as the sets of possible safe transitions in

phase 1, phase 2, phase 3 and phase 4 of the safe unlocking procedure, respectively.

For a given 4-number safe combination k = 〈a, b, c, d〉, where a, b, c, d ∈ {0, 1.., 99},

let θsak ∈ Ψ1, θabk ∈ Ψ2, θbck ∈ Ψ3 and θcdk ∈ Ψ4 be the actual transitions between

consecutive numbers of the combination key k. Also, let αsak , αabk , αbck and αcdk denote

the corresponding angular displacements of the target user’s wrist (ignoring the di-

rection) calculated from the segmented smartwatch gyroscope data. Similar to the

padlock case, the adversary collects training data (from a set of human participants)

comprising of a set of θ and corresponding α values for a sample set of combina-

tions covering all possible transitions, and uses it to learn a linear function (of the

form of α = pθ + q) by employing a least squares [120] technique. Then during

the attack phase, for an unknown combination key k̂ = 〈â, b̂, ĉ, d̂〉, the adversary

first segments the time-series gyroscope data and computes the corresponding angu-

lar displacements αsâ
k̂

, αâb̂
k̂

, αb̂ĉ
k̂

and αĉd̂
k̂

. The adversary’s goal then is to determine

a combination k′ as an inference of k̂ by first estimating the θsâ
k̂
∈ Ψ1, θâb̂

k̂
∈ Ψ2,

θb̂ĉ
k̂
∈ Ψ3 and θĉd̂

k̂
∈ Ψ4 values from the corresponding angular displacements. In

94

order to accomplish this, the adversary employs the linear function (α = pθ + q)

learned earlier. Then the adversary computes k′ as:

k′ = 〈((θ̄sâ + s) mod 100),

((−θ̄âb̂ + (θ̄sâ + s)) mod 100),

((θ̄b̂ĉ + (−θ̄âb̂ + (θ̄sâ + s))) mod 100),

((−θ̄ĉd̂ + (θ̄b̂ĉ + (−θ̄âb̂ + (θ̄sâ + s)))) mod 100)〉

(4.2)

4.6 Probabilistic Attack Framework

One shortcoming of the deterministic framework is that it outputs only a single

prediction, which if incorrect, is not very useful to the adversary. A ranked list of

predictions (“close” to the actual combination) would be useful in reducing the search

space and more desirable, especially if the combination predicted by the deterministic

framework is incorrect. Empirical analysis of our deterministic framework (Section

4.7.2) shows that the inference error (for each inferred number in the combination)

has a low standard deviation, which suggests that numbers neighboring an incorrect

inference have a higher likelihood of being part of the real combination key than

numbers farther away. We use this observation in the design of our probabilistic

framework.

4.6.1 Ranking of Padlock Key Predictions

The goal of the probabilistic framework is to create an ordered list of inferred

combinations, ranked based on the probability of a combination being the actual

combination. We achieve this objective by giving priority to transitions closer to θ̄sâ,

95

θ̄âb̂ and θ̄b̂ĉ (calculated by the deterministic model), than transitions further away

from it. This is done by assigning probabilities to all possible transitions in Φ1, Φ2

and Φ3 using three normal distributions N (θ̄sâ, σ2
sâ), N (θ̄âb̂, σ2

âb̂
) and N (θ̄b̂ĉ, σ2

b̂ĉ
), re-

spectively. The means and standard deviations of these distributions are learned from

the deterministic model presented in Section 4.5.1. Specifically, we calculate proba-

bilities P (X|αsâ
k̂

) ∼ N (θ̄sâ, σ2
sâ) for all possible transitions X ∈ Φ1 being the actual

transition performed in phase 1, P (Y |αâb̂
k̂

) ∼ N (θ̄âb̂, σ2
âb̂

) for all possible transitions

Y ∈ Φ2 being the actual transition performed in phase 2, and P (Z|αb̂ĉ
k̂

) ∼ N (θ̄b̂ĉ, σ2
b̂ĉ

)

for all possible transitions Z ∈ Φ3 being the actual transition performed in phase 3.

Once P (X|αsâ
k̂

), P (Y |αâb̂
k̂

) and P (Z|αb̂ĉ
k̂

) for all possible transitions X, Y and Z

are computed, the probability P (k̂ = k′) of each of the 64K possible combination

keys k′ being the actual combination k̂ entered by the target user can be determined

as:

P (k̂ = k′) = P (X|αsâ
k̂

)P (Y |αâb̂
k̂

)P (Z|αb̂ĉ
k̂

); ∀(X,Y, Z) (4.3)

Where k′ can be obtained by substituting θ̄sâ, θ̄âb̂ and θ̄b̂ĉ with X, Y and Z in

Equation 4.1, respectively. All the 64K combinations k′ can then be ordered or ranked

using P (k̂ = k′), with a higher value of P (k̂ = k′) indicating that k′ is more likely

to be the actual combination k̂. Such a ranked list of combinations, denoted as K̄,

provides the adversary with a targeted search space to carry out the inference attack.

If the actual combination key k̂ lies in the top-r of K̄, then the attack framework is

said to succeed after r attempts in the worst-case. The adversary would obviously

like r to be as small as possible.

96

4.6.2 Ranking of Safe Key Predictions

The above probabilistic model for the padlock can be trivially extended to the

safe. This is done by calculating probabilities P (W |αsâ
k̂

);∀W ∈ Ψ1, P (X|αâb̂
k̂

);∀X ∈

Ψ2, P (Y |αb̂ĉ
k̂

);∀Y ∈ Ψ3 and P (Z|αĉd̂
k̂

);∀Z ∈ Ψ4 using normal distributionsN (θ̄sâ, σ2
sâ),

N (θ̄âb̂, σ2
âb̂

),N (θ̄b̂ĉ, σ2
b̂ĉ

) andN (θ̄ĉd̂, σ2
ĉd̂

), respectively. Then, the probability P (k̂ = k′)

of each of the 1004 possible combination keys k′ being the actual combination k̂ en-

tered by the target user can be determined as:

P (k̂ = k′) = P (W |αsâ
k̂

)P (X|αâb̂
k̂

)P (Y |αb̂ĉ
k̂

)P (Z|αĉd̂
k̂

) (4.4)

Where k′ can be obtained by substituting θ̄sâ, θ̄âb̂, θ̄b̂ĉ and θ̄ĉd̂ with W , X, Y

and Z in Equation 4.2, respectively. All 1004 combinations k′ can then be similarly

ranked in a decreasing order using P (k̂ = k′).

4.6.3 Search Space Reduction

Although the theoretical combination space for both the Master Lock 1500T

and the First Alert 2087F-BD are large enough to make manual brute-force attacks

impractical, the padlock has some well-known design limitations. In practice, only

a set of 4000 keys are used in the production design of Master Lock, as pointed out

in a LifeHacker article [68]. Accordingly, after studying how our probabilistic attack

model performs on the entire 403 key space, we also analyze how our attack can

improve predictions within the already reduced space of |K̄| = 4000 combinations.

We are not aware of similar limitations in the First Alert safe.

97

4.7 Evaluation

We conduct thorough empirical evaluations of the proposed inference frameworks

in order to assess their performance under realistic lock operation scenarios. Our

evaluation results are outlined next.

4.7.1 Experimental Setup

We evaluate the proposed inference frameworks by means of smartwatch gyro-

scope data collected from a set of human subject participants who performed un-

locking operations on the Master Lock 1500T padlock and the First Alert 2087F-BD

safe with the watch-wearing hand. For our experiments, we employed a Samsung

Gear Live smartwatch which runs Android Wear 1.5 mobile OS and is equipped

with an InvenSense MP92M 9-axis Gyro + Accelerometer + Compass sensor. The

smartwatch’s gyroscope sensor was sampled at 200 Hz, and the samples were trans-

mitted over a Bluetooth connection to a paired Android smartphone (specifically,

a Samsung I9500 Galaxy S4). The smartphone recorded the received sensor data

stream into labeled files, which were later used for training and validation (testing).

All preprocessing, training and testing were performed on a server equipped with

dual Intel Xeon L5640 processors and 64 GB of RAM. During the data collection,

participants are clearly explained the unlocking procedure for each lock. The locks

are placed on a flat table and participants sit on a chair across the table while un-

locking. For the first part of our evaluation (sections 4.7.2 and 4.7.3), we collect and

use data from the participants’ right hand (i.e., the right hand was used to unlock)

in a controlled setting. In this setting, each combination is dictated one at a time

to the participants who would then correctly enter it on the lock. Our only objec-

98

tive for collecting unlocking-related motion data from participants was to employ it

for a realistic evaluation of the proposed inference frameworks. Our data collection

procedure posed no safety or ethical risks to participants, and no private or person-

ally identifiable information (including, combinations of personal locks/safes) was

collected from participants. This study is approved by our institution’s IRB.

4.7.2 Deterministic Attack Framework Results

We evaluate the performance of the deterministic framework by measuring the

standard deviations of the inferred transitions θ̄ij from the corresponding ground-

truths θij for each phase of the unlocking operation. We specifically evaluated three

different inference strategies: i) inferring transitions (+θ̄ij) solely using positive dis-

placements (+αij), ii) inferring transitions (-θ̄ij) solely using negative displacements

(-αij), and iii) averaging inferences (
+θ̄ij+-θ̄ij

2
) obtained individually using positive

and negative displacements. Our objective is to determine if transition inference

using any one of the above displacement parameter is better than the other.

4.7.2.1 Results for Padlock

The training dataset for the Master Lock 1500T padlock is composed of data

collected from 3 participants (who are the authors, acting as the adversary). Each

participant entered 40 different 3-digit combinations, covering all of the 120 possible

transitions (40 in each of Φ1, Φ2 and Φ3). This data entry was repeated 3 times

by each participant, resulting in a total of 9 complete datasets which is used for

training the deterministic attack model. The testing dataset was collected later from

99

a different set of 10 participants (non-authors)2. Each of these test participants

entered 4 different 3-digit combinations covering 12 of the 120 possible transitions

(4 in each of Φ1, Φ2 and Φ3), and repeated the data entry 3 times. The combination

of data collected from all the 10 participants resulted in 3 complete test datasets

covering all the 120 possible transitions. The data collection task is a non-trivial and

time-consuming process due to the high cognitive workload associated with entering

new and previously unknown combinations which resulted in a significant number of

input errors by the participants. All input errors during data-collection were closely

monitored and eliminated from the final datasets, and participants were asked to

re-enter combinations on which errors occurred. We took utmost care to ensure that

our test dataset is complete (covering all transitions) and reasonably heterogeneous

(from 10 different participants) to avoid any bias in the evaluation results. The

evaluation results, outlined next, are using the averaged prediction over all the 3 test

datasets.

Table 4.1 shows the linear least-squares fittings for αsa, αab and αbc, learned from

the 9 training sets. These learned linear least-squares fitting parameters (m and n)

are then used within the deterministic framework to infer the 120 unique transitions

in the test dataset. Figure 4.4(a) (Right Hand results) shows the standard deviations

in inference errors for the inferred transitions in phase 1 (θ̄sa), in phase 2 (θ̄ab) and in

phase 3 (θ̄bc). We can see that the inference averaging method (
+θ̄ij+-θ̄ij

2
) resulted in

2The training dataset for all experiments were collected independently and before the test par-
ticipants were identified/recruited, which gives us the worst-case results. However, an adversary
could be more successful by personalizing the training process for the user being targeted.

100

Table 4.1: Linear least-squares fittings for the padlock.

m (Slope) n (α-intercept)

+αsa (81-120): 0.0836 0.3272
-αsa (81-120): -0.1269 0.3714
+αab (41-80): 0.0854 0.9360
-αab (41-80): -0.1163 0.3301
+αbc (1-40): 0.0737 2.0387
-αbc (1-40): -0.1173 0.0061

Table 4.2: Linear least-squares fittings for the safe.

p (Slope) q (α-intercept)

+αsa (401-500): 0.0153 19.5492
-αsa (401-500): -0.0266 -8.8471
+αab (201-300): 0.0010 7.9046
-αab (201-300): -0.0386 -2.3798
+αbc (101-200): 0.0170 3.6319
-αbc (101-200): -0.0460 0.4906

+αcd(1-100): 0.0305 1.7663
-αcd (1-100): -0.0483 -0.1058

lowest error for the inference of transitions in phase 1 (specifically, 12.27 units) and

phase 2 (8.49 units), respectively. However, inference using negative displacement

(-αbc) resulted in the lowest error in phase 3 (4.82 units). We can also see that the

inference of shorter transitions are more accurate than longer ones. This observation

is intuitive and could be attributed to the differences in the biomechanics of the

diarthrodial joints [82] of the test and training participants. These joints play an

important role during the unlocking operation and the errors due to biomechanical

differences could add up for longer transitions, thus making their inference more

error-prone.

101

Positive Negative Average

40

30

20

10

0S
T

A
N

D
A

R
D

 D
E

V
IA

T
IO

N
 (

U
N

IT
S

)

Using +αij Using -αij Using (+θij + -θij)/2

Right Hand Left Hand

ഥ𝜽ab

(41-80)

ഥ𝜽bc

(1-40)

ഥ𝜽sa

(81-120)

ഥ𝜽ab

(41-80)

ഥ𝜽bc

(1-40)

ഥ𝜽sa

(81-120)

Positive Negative AverageUsing +αij Using -αij Using (+θij + -θij)/2

ഥ 𝜽
sa

(4
0

1
-5

0
0

)

40

30

20

10

0S
T

A
N

D
A

R
D

 D
E

V
IA

T
IO

N
 (

U
N

IT
S

)

ഥ 𝜽
a
b

(2
0

1
-3

0
0

)

ഥ 𝜽
b

c

(1
0

1
-2

0
0

)

ഥ 𝜽
cd

(1
-1

0
0
)

ഥ 𝜽
sa

(4
0

1
-5

0
0

)

ഥ 𝜽
a
b

(2
0

1
-3

0
0

)

ഥ 𝜽
b

c

(1
0

1
-2

0
0

)

ഥ 𝜽
cd

(1
-1

0
0

)

Samsung Gear Live LG Watch Urbane

Figure 4.4: Standard deviations in inference error for (a) – three padlock phases, and
(b) – four safe phases.

4.7.2.2 Results for Safe

The training dataset for the First Alert 2087F-BD safe is composed of data col-

lected from 3 participants (who are the authors). Each participant entered 100

different 4-digit combinations, covering all of the 400 possible transitions (100 in

each of Ψ1, Ψ2, Ψ3 and Ψ4), which resulted in 3 complete training datasets. Testing

dataset was collected later from a set of 10 different participants (non-authors), where

each participant entered 2 different 4-digit combinations covering 8 of the 400 possible

transitions (2 in each of the transition sets {405, 410, 415, ...500}, {205, 210, 215, ...300},

{105, 110, 115, ...200} and {5, 10, 15, ...100}). Each participant repeated entering each

combination 3 times, which resulted in 3 partially complete test datasets of 80 evenly

distributed transitions. Due to a slightly more complex and longer unlocking pro-

cedure of the safe (compared to the padlock), we observed a larger number of par-

ticipant errors during combination entry. As before, all input errors were closely

102

monitored and removed from the final datasets. Due to a large combination space,

in addition to the more complex unlocking procedure, we restricted ourselves to only

partial test datasets for the safe. However, we made sure that the test dataset is uni-

form in terms of the distribution of the various transitions and the participants that

recorded those transitions to avoid any bias in the evaluation results. The evaluation

results, outlined next, are using the averaged prediction over all the 3 test datasets.

Table 4.2 shows the linear least-squares fittings for αsa, αab, αbc and αcd, learned

from the 3 training sets. These learned linear least-squares fitting parameters (p and

q) are then used to infer the 80 unique transitions in the test datasets. The standard

deviations in inference errors for the inferred transitions in phase 1 (θ̄sa), in phase 2

(θ̄ab), in phase 3 (θ̄bc) and in phase 4 (θ̄cd) are outlined in Figure 4.4(b) (Samsung

Gear Live results). We can see that the inference averaging method resulted in the

lowest error for the inference of transitions in phase 1 (specifically, 22.99 units),

while inference using positive displacement (+αab) resulted in the lowest error for

the inference of transitions in phase 2 (17.86 units). For transitions in phase 3 and

phase 4, inference using the corresponding negative displacements (i.e., -αbc and -αcd)

resulted in lowest errors (8.66 and 7.23 units, respectively). Similar to the padlock

case, we can observe that inference of shorter transitions in safe combinations are

more accurate. Moreover, we also observe that the standard deviations of inference

errors for the safe are relatively higher compared to the padlock. We believe that this

is due to the higher concentration of numbers on the safe’s lock dial, compared to

the padlock’s dial, for the same angular displacement.

103

4.7.3 Probabilistic Attack Framework Results

We evaluate the performance of the probabilistic attack model by evaluating the

overall success probability of test combination keys being present in the top-r of their

corresponding ranked inferred combination sets.

4.7.3.1 Padlock Key Predictions (64K)

We first evaluate the success probability of finding an entire padlock test combi-

nation key within the top-r of the corresponding set of 64K candidate keys, ranked

using the probabilistic model. The 64K unique test combinations were obtained by

combination of Φ1, Φ2 and Φ3 datasets. In this case, rather than using all the three

methods for the inference of the individual transitions of the test combination, i.e.,

inference using only positive displacements, only negative displacements, and averag-

ing individual inferences, we optimize the overall combination inference by selecting

the inference method with the lowest error in each phase, for inferring transitions

of the test combination key in that phase. Thus for all the 64K test padlock com-

binations, the first two phases were inferred using inference averaging method, and

the third phase using negative displacements. The value of r was increased from 50

to 64,000 in varying steps. Figure 4.5(a) shows the success probability of finding

a test combination within the top-r of the corresponding probabilistically ranked

(using Equation 4.3) set of candidate keys. 688 test combinations (out of a total

of 64K test combinations) were found in the top-50 of their corresponding ranked

inferred combination set, which equates to a 1.07% overall probability of success.

Compared to this, the probability of correctly picking a test combination after 50

random guesses is only 0.078%. This implies that for r = 50 the proposed proba-

104

688 1436 3181
8422

14585

34914

45631

56253
64000

0

10000

20000

30000

40000

50000

60000

T
O

P
 5

0

T
O

P
 1

0
0

T
O

P
 2

0
0

T
O

P
 5

0
0

T
O

P
 1

0
0

0

T
O

P
 5

0
0

0

T
O

P
 1

0
0

0
0

T
O

P
 2

0
0

0
0

T
O

P
 6

4
0

0
0

A
X

IS
 T

IT
L

E

Using a

1

0.875

0.75

0.625

0.5

0.375

0.25

0.125

P
R

O
B

A
B

IL
IT

Y
 O

F
 S

U
C

C
E

S
S

(+θsa + -θsa)/2, (+θab + -θab)/2, -αbc

Number of Successful

Predictions Out of

64,000 Test Keys

235

847

1339

1934

2861

3424

4000

0

500

1000

1500

2000

2500

3000

3500

4000

T
O

P
 1

0

T
O

P
 5

0

T
O

P
 1

0
0

T
O

P
 2

0
0

T
O

P
 5

0
0

T
O

P
 1

0
0

0

T
O

P
 4

0
0

0

A
X

IS
 T

IT
L

E

Using a

Number of Successful

Predictions Out of

4,000 Test Keys

1

0.875

0.75

0.625

0.5

0.375

0.25

0.125

P
R

O
B

A
B

IL
IT

Y
 O

F
 S

U
C

C
E

S
S

(+θsa + -θsa)/2, (+θab + -θab)/2, -αbc

1142 5876 10434

31126
39576

67927

99370

160000

0

20000

40000

60000

80000

100000

120000

140000

160000

T
O

P
 1

0
0

T
O

P
 5

0
0

T
O

P
 1

0
0

0

T
O

P
 5

0
0

0

T
O

P
 1

0
0

0
0

T
O

P
 5

0
0

0
0

T
O

P
 1

0
0

0
0

0

T
O

P
 1

6
0

0
0

0

A
X

IS
 T

IT
L

E

Using a

Number of Successful

Predictions Out of

160,000 Test Keys

6
2
5
0
0

3
1
2
5
0
0

6
2
5
0
0
0

3
1
2
5
0
0
0

6
2
5
0
0
0
0

3
1
2
5
0
0
0
0

6
2
5
0
0
0
0
0

1
0
0
0
0
0
0
0
0

(+θsa + -θsa)/2, +αab, -αbc, -αcd

1

0.875

0.75

0.625

0.5

0.375

0.25

0.125

P
R

O
B

A
B

IL
IT

Y
 O

F
 S

U
C

C
E

S
S

13.76 14.36
15.905

16.844

14.585

6.9828

4.5631

2.81265

1

0

2

4

6

8

10

12

14

16

18

T
O

P
 5

0

T
O

P
 1

0
0

T
O

P
 2

0
0

T
O

P
 5

0
0

T
O

P
 1

0
0

0

T
O

P
 5

0
0

0

T
O

P
 1

0
0

0
0

T
O

P
 2

0
0

0
0

T
O

P
 6

4
0

0
0

Using a Poly. (Using a)

S
U

C
C

E
S

S
 I

M
P

R
O

V
E

M
E

N
T

 F
A

C
T

O
R

C
O

M
P

A
R

E
D

 T
O

 R
A

N
D

O
M

 T
R

IA
L

S

(+θsa + -θsa)/2, (+θab + -θab)/2, -αbc

23.5

16.94

13.39

9.67

5.722

3.424

1

0

5

10

15

20

25

T
O

P
 1

0

T
O

P
 5

0

T
O

P
 1

0
0

T
O

P
 2

0
0

T
O

P
 5

0
0

T
O

P
 1

0
0

0

T
O

P
 4

0
0

0

Using a Poly. (Using a)

S
U

C
C

E
S

S
 I

M
P

R
O

V
E

M
E

N
T

 F
A

C
T

O
R

C
O

M
P

A
R

E
D

 T
O

 R
A

N
D

O
M

 T
R

IA
L

S

(+θsa + -θsa)/2, (+θab + -θab)/2, -αbc

11.42 11.752
10.434

6.2252

3.9576

1.358540.9937 1

0

2

4

6

8

10

12

T
O

P
 1

0
0

T
O

P
 5

0
0

T
O

P
 1

0
0

0

T
O

P
 5

0
0

0

T
O

P
 1

0
0

0
0

T
O

P
 5

0
0

0
0

T
O

P
 1

0
0

0
0

0

T
O

P
 1

6
0

0
0

0
Using a Poly. (Using a)

6
2
5
0
0

3
1
2
5
0
0

6
2
5
0
0
0

3
1
2
5
0
0
0

6
2
5
0
0
0
0

3
1
2
5
0
0
0
0

6
2
5
0
0
0
0
0

1
0
0
0
0
0
0
0
0

(+θsa + -θsa)/2, +αab, -αbc, -αcd

S
U

C
C

E
S

S
 I

M
P

R
O

V
E

M
E

N
T

 F
A

C
T

O
R

C
O

M
P

A
R

E
D

 T
O

 R
A

N
D

O
M

 T
R

IA
L

S

Figure 4.5: (a) − Top-r success probabilities for inferred padlock combinations using
64K test combinations; (b) − Top-r success probabilities for inferred padlock com-
binations using 4K test combinations; (c) − Top-r success probabilities for inferred
safe combinations using 160K test combinations; (d), (e), (f) − Success improvement
factors compared to random trials, for the padlock test set of 64K test combinations,
padlock test set of 4K test combinations and safe test set of 160K test combinations,
respectively.

105

bilistic model achieves an improvement by a factor of 13.76 over random guessing.

Despite the low overall success probability, the above results are indicative of the

fact that certain combinations (688 test combinations) are easier to infer than oth-

ers. Figure 4.5(d) show similar improvements factors for all other top-r cases. These

results indicate that an adversary can significantly reduce the search space, and still

have high probability of success. As a result, the cumulative probability of success

using the probabilistic model is much higher with ‘limited’ number of trials, compared

to random guessing or the deterministic attack.

4.7.3.2 Padlock Key Predictions (4K)

We again evaluate the success probability of finding an entire test combination

key within the top-r of the corresponding set of candidate keys ranked using the

probabilistic model, but this time using the only the 4K implemented padlock combi-

nations (outlined in Section 4.6.3) as test combinations. Similar to the 64K analysis,

for all the 4K test padlock combinations, the first two phases were inferred using

inference averaging method, and the third phase using negative displacements. The

value of r was increased from 10 to 4,000 in varying steps. Figure 4.5(b) shows

the success probability of finding a test combination within the top-r of the corre-

sponding probabilistically ranked (using Equation 4.3) set of candidate keys. 235

test combinations (out of a total of 4K test combinations) were found in the top-10

of their corresponding ranked inferred combination set, which equates to a 5.87%

overall probability of success. Compared to this, the probability of correctly picking

a test combination (among all the implemented keys) after 10 random guesses is only

0.25%. This implies that for r = 10 the proposed probabilistic model achieves an

106

improvement by a factor of 23.5 over random guessing. Figure 4.5(e) show similar

improvements factors for all other top-r cases. These results indicate that an ad-

versary can significantly reduce the combination search space by leveraging on both

known mechanical flaws and eavesdropped wrist-movements.

4.7.3.3 Safe Key Predictions (160K)

We next evaluate the success probability of finding an entire test combination key

within the top-r of the corresponding set of candidate keys ranked using the proba-

bilistic model. For this analysis, we test 160K safe combinations k = 〈a, b, c, d〉 dis-

tributed evenly across the entire 1004 combination space (θsâ ∈ {405, 410, 415, ...500},

θâb̂ ∈ {205, 210, 215, ...300}, θâb̂ ∈ {105, 110, 115, ...200} and θâb̂ ∈ {5, 10, 15, ...100}).

The 160K unique test combinations were obtained by combination of Ψ1, Ψ2, Ψ3 and

Ψ4 datasets. Similar to padlock key predictions, we optimize the overall combination

inference by selecting the inference method with the lowest error in each phase, for

inferring transitions of the test combination key in that phase. Thus for all the 160K

test safe combinations, the first phase was inferred using inference averaging method,

the second phase was inferred using positive displacements, and the last two phases

using negative displacements. The value of r was increased from 100 to 160,000 in

varying steps. It should be noted that in the case of the safe, we only probabilistically

rank the (evenly distributed) 160K keys appearing in the test set rather than the

entire safe combination space of 1004. This is primarily due to the computational

challenge associated with computing probabilities for, and then ranking, 100 million

combination keys for each of the 160K test combinations, which is an extremely

time-consuming process. The adversary, however, does not have a similar problem

107

because the adversary has to rank the entire combination space of 1004 for only a

few test keys, which is relatively easier to compute. Figure 4.5(c) shows the suc-

cess probability of finding a test combination within the top-r of the corresponding

probabilistically ranked set of candidate keys. 5876 test combinations (out of a total

of 160K test combinations) were found in the top-500 of their corresponding ranked

inferred combination set, which equates to a 3.67% overall probability of success.

Compared to this, the probability of correctly picking a test combination after 500

random guesses is only 0.31%. This implies that for r = 500 the proposed proba-

bilistic model achieves an improvement by a factor of 11.42 over random guessing. A

straightforward extrapolation of r (multiplying it with a factor of 54) puts the value

of r at 312500 for achieving similar improvement if the entire combination space

of 1004 combinations is ranked. Readers should note that labels marked in red in

Figure 4.5(c) are extrapolated values of r. Figure 4.5(f) show similar improvements

factors for all other top-r cases. These results indicate that the proposed framework

can achieve significant reduction of the combination search space for the safe as well.

4.7.4 Cross-Device Performance

So far we have evaluated our inference frameworks in a same-device setting where

the same smartwatch hardware (Samsung Gear Live smartwatch with an InvenSense

MP92M sensor) was used for collecting both the training and testing datasets. How-

ever in a practical setting, an adversary may be unaware of, or may not possess,

the precise wrist-wearable hardware used by the target user. Thus, it is critical to

assess the performance of the inference frameworks when different wrist-wearable

hardwares are used for training and testing (attack) purposes. In other words, a

108

comparison of the earlier evaluation results with results using test data from a differ-

ent smartwatch would tell us if the proposed inference frameworks are inter-operable

across different devices. For brevity, we analyze the cross-device performance of the

inference frameworks only for the First Alert 2087F-BD safe. For this, we collect

the same set of test data for the safe as detailed in Section 4.7.2.2 by using a LG

Watch Urbane smartwatch equipped with an on-board InvenSense M651 6-axis Gyro

+ Accelerometer sensor (sampled at 200 Hz) and running Android 2.0 mobile OS.

We then employ the linear function α = pθ + q (Table 4.2), trained from the data

collected with a Samsung Gear Live (as outlined in section 4.7.2.2).

A comparison of the standard deviations in inference error (Figure 4.4(b)) does

not show significant change in prediction results we observed earlier. A pair-wise two-

tailed t-test [128] of all the values in both set of results, resulted in t = 0.11; p = 0.915.

The small value of t along with a high p value indicates that the mean difference

between the two sets of results is not significant, with high probability. As a result,

the adversary can train the inference models using data from one device and use these

trained models to carry out inference attacks on data from a different wrist-wearable

device, provided data from this device is sampled at the same frequency.

4.7.5 Cross-Hand Performance

All evaluations of our inference models so far have been accomplished using train-

ing and testing datasets collected from subjects who only used their right hand for

the unlocking operation. However in a practical setting, a target user may not per-

form the unlocking operation with the same hand that the adversary has trained its

models on. Thus, it is important to assess the performance of the proposed inference

109

frameworks when training and testing data corresponding to the unlocking operation

comes from different hands. In other words, we would like to analyze if the proposed

inference models trained using unlocking data from one hand (say, right) can be used

to infer combinations entered using the other hand (say, left). For this we collect the

same test data for the padlock as detailed in Section 4.7.2.1, but this time the 10

participants wore the Samsung Gear Live smartwatch on their left hand and entered

the test combinations on the padlock with their left hand. We then employ the linear

function α = mθ + n, trained earlier using the right hand data (Table 4.1), to infer

transitions in each phase using the deterministic model.

A comparison of the standard deviations in inference error (Figure 4.4(a)) does

not show significant change in prediction results we observed earlier using same-

hand predictions. A pair-wise two-tailed t-test of all the values in both set of results,

resulted in t = 1.33; p = 0.219. The value of t indicates that there exists minor

difference between the two sets of results. However, due to the low p value, we

cannot conclusively say that an adversary can focus on training a single model with

either hand’s data, and use it on both left and right handed targets. That being said,

it is not difficult for an adversary to train two different models (one per hand), and

use the appropriate model per target user.

4.7.6 Real-Life Detection and Prediction

Next, we evaluate the performance of our unlocking activity recognition algo-

rithm (Section 4.4.3) and inference framework under a real-life setting. To facilitate

a real-life experiment with three new participants, we handed out a Samsung Gear

Live smartwatch, a paired smartphone and a padlock, for them to take home. The

110

watch was installed with our recording application and the unlock activity recogni-

tion algorithm. We collected x-axis gyroscope data for the duration of approximately

1 day, during which the participants were instructed to perform at least three pad-

lock unlock operations with a 3-digit combination of their choice (among the 4K

mechanically valid combinations), at random intervals. Overall, our unlock activ-

ity recognition algorithm yielded 100% recall and 80% precision, with a total of 12

true positives, 3 false positives and 0 false negative. Interestingly, the 3 false pos-

itives were reportedly due to activities similar to padlock unlocking, such as when

washing hands after rotating a washer tap/faucet, and while using a screw driver.

Next, we evaluate the prediction accuracy of the secret combination entered by each

participant by using the last three instance of their unlocking gyroscope time-series

data, as extracted from the entire day’s data. Applying the same inference model

for ranking keys among the 4K implement keys, used in Section 4.7.3.2, the real key

entered by the three participants were ranked at 42, 85 and 112 (out of 4000). This

demonstrates the extent to which the proposed attacks can reduce the combination

search space even in uncontrolled real-life settings.

4.8 Discussions

4.8.1 Characteristics of Inferred Combinations

Results of our deterministic attack model indicated that shorter transitions can be

more accurately inferred than longer transitions. To see if this phenomenon carries

over to full combinations as well, we analyzed the length (in terms of transition

units) of the 235 padlock combinations (out of 4K) that were successfully inferred

111

within top-10 trials (Figure 4.5(b)). The shortest padlock combination can be of

123 transition units (81 + 41 + 1), where as the longest combination can be of 240

transition units (120+80+40). On this scale, 91.06% of the 235 padlock combinations

that were successfully inferred within top-10 trials, were shorter than 150 transition

units. Based on this observation, we can conclude that key combinations that require

less rotational displacement have better inference probability, and users should avoid

purchasing locks preset with such combinations.

4.8.2 Limitations

Starting Point: Without a known starting point the adversary will have to try all

numbers on the dial as the starting point, thereby significantly increasing the average

number of trials it would take to be successful. However, because the adversary will

require physical access to the lock in order to try predicted keys, it is not unrealistic

to assume that they can also learn or preset the starting point. The starting point

can be any number on the dial; only the key inference functions (Equations 4.1 and

4.2) must be appropriately initialized according to that starting point. Moreover,

the learned least-squares (Tables 4.1 and 4.2) are not affected by a change in the

starting point during the attack phase.

Kinesiological Factors: Factors such as the grasping style, hand size, and muscle

strength have a significant effect on the biomechanics of the diarthrodial joints of

a target user performing an unlocking operation. While we did not encounter any

participant in our study with significantly different unlocking styles, it is possible for

an adversary to come across a target whose unlocking style is significantly different.

However, a competent adversary may be able to train a variety of models based

112

on different kinesiological factors, and use an appropriate model for each target.

Further user study is required to understand if unlocking styles can be classified in

to characteristically unique groups.

Affected Users: Our attack assumes that the user wears his/her wrist-wearable

on the hand used to unlock the padlock or safe. This may not always be the case,

causing the attack to fail. While we did not find any statistics in the literature

to deduce the percentage of users who use the same hand for both, according to

an on-going online poll with about 5000 participants [3], approximately 38.23% of

users prefer to wear watches on their dominant hand. Assuming most users use their

dominant hand for unlocking padlocks and safes, a significant number of users can

be affected by the proposed attack. Moreover, with the advent of fitness trackers

(most of which also have gyroscope sensors), users tend to wear their watches and

wrist-based fitness trackers on different hands. Regardless of the exact statistics, we

hope that this work will create awareness of this threat.

Generalization of Results: The proposed attack frameworks can be easily ex-

tended to work with any other rotation-based mechanical combination lock, with

different length of combination keys and different sequence of key entry directions

(clockwise/counter-clockwise). But, according to the trends in our evaluation results,

it can be challenging to infer longer combination keys (5 or more numbers) and on

locks with more concentrated dials (more numbers on the dial face), with high ac-

curacy. However, in a brief study of the most popular consumer-grade padlocks and

safes, we found that 5 or more number combination padlocks and safes are very rare

in the retail market (Table 4.3). There are several consumer-grade padlocks and

113

Table 4.3: Popular padlocks and safes retailed by Amazon and Walmart.

Product Combination Length ↓ Numbers on Dial Mechanical Limitations

Master Lock 1500iD Speed Dial Unlimited 4 7501 unique states [48]

First Alert 2087F-BD Safe 4 100 Unknown

SentrySafe SFW082CTB 3 100 Unknown

Master Lock 1500T 3 40 4000 used combinations

Master Lock Padlock 1588D 3 20 Unknown

safes available for purchase, from different manufacturers and retailers. However,

most of them employ similar, if not identical, working mechanisms. In Table 4.3, we

list the most popular products with rotation-based locks, which are representative

of its type. Similar locks produced by different manufacturers are faced with the

same level of threat, unless the manufacture introduces additional design changes.

For example, a Hollon Home Safe 310D and the First Alert 2087F-BD Safe, both

have 4-number combinations with 100 numbers on the dial, resulting in 1004 possible

combinations. However, many larger enterprise-grade safes and vaults are equipped

with larger dials which can translate in to more perceptible gyroscope readings on

the wrist. As a result, a more accurate inference may be possible for locks with sig-

nificantly larger dials. The principles used in our attack models can also be used to

infer private activities pertaining to other forms of rotary wrist movements, such as

numbers entered on a rotary telephone dial, driving trajectory on a steering wheel,

etc.

114

4.8.3 Mitigations

Users can take few preventive measures to avoid falling victim to the proposed

attack. A simple measure could be to use the hand without any wrist-wearable

for unlocking, or to take off any wrist-wearables before unlocking. Users could also

inject noise in the data by shaking their hand in between the unlock operation.

More complex protection mechanisms can include dynamic access control of zero-

permission sensors such as the gyroscope. As some of the previous works suggested

[23, 71], a dynamic access control can take advantage of contextual information to

automatically cut-off sensor access when users are detected to be vulnerable. A

potential solution in this direction could be to use our unlocking activity recognition

algorithm (presented in Section 4.4.3) in a real-time fashion, so as to disable the

gyroscope after the first few spins.

4.8.4 Other Attack Vectors

Padlock and safe combinations are also susceptible to other forms of non-intrusive

attacks, such as visual shoulder-surfing when the target user is unlocking. Visual

access to a lock’s dial when the user is unlocking, can result in more precise key

inference than our wrist motion based inference framework. However, there is high

likelihood that the user will notice a visual observer (human or camera), and shield

their unlocking activity. It may also be possible to use visual on the user (instead of

the lock) to perform timing based inference attacks [34]. As part of future work, we

will investigate other potential side-channels and evaluate the possibility of combining

multiple side-channel attack vectors to improve the overall key prediction accuracy.

115

4.9 Conclusion

In this chapter, we presented a new motion-based attack to infer mechanical

lock combinations from smartwatch gyroscope data. A comprehensive evaluation

using a commercial padlock and safe demonstrated that our framework can signifi-

cantly reduce the combination search space for an adversary. The combination key

search space can be further reduced in case of the padlock by leveraging on mechan-

ical design flaws. We also observed that the performance of the proposed inference

frameworks do not significantly degrade when model training and inference tasks are

carried out using different smartwatch hardwares or different unlocking hands. Fi-

nally, we also demonstrated the efficacy of the proposed inference attack in a real-life

setting.

Parts of this chapter appeared in [73].

116

CHAPTER 5
PROTECTING USER INTERACTIONS: DESIGN-TIME

5.1 Introduction

In order to thwart the privacy threats validated in last three chapters, effective

and usable techniques for detection and mitigation of wearable device misuse will

be critical and urgently needed. Consequently, we propose design-time protection

measures in this chapter, which tries to prevent inference attacks by altering the

interaction interfaces. Specifically, we present and evaluate the effectiveness and

usability of RandomPad for protecting mobile keypad interactions, and EyePad for

protecting external keyboard interactions.

5.2 RandomPad - Protecting Mobile Keypad Interactions

Users have been increasingly using their mobile devices and smartphones to enter

personal and private information, such as, PIN, credit card numbers, passwords and

telephone numbers. However, touchscreen-based numeric keypads on these mobile

devices and smartphones are becoming increasingly more vulnerable to side-channel

keystroke inference attacks, which results in a serious invasion of privacy of mobile

users. Kune et al. [34] leveraged on a common assumption that an audio feedback

to the user is imparted for each button pressed, and demonstrated the possibility of

inferring keystroke sequences based on time delays between keystrokes. Yue et al.

[122] used computer vision to analyze the shadow formation around the fingertip to

automatically locate the touched points. Simon et al. [98] used microphone to detect

117

touch events, while the camera is used to estimate the smartphone’s orientation, and

correlate it to the position of the digit tapped by the user. Sun et al. [105] used

video recordings of the backside of a tablet to infer typed keystrokes, based on the

observation that keystrokes on different positions of the tablet’s soft keyboard cause

its backside to exhibit different motion patterns. Zhang et al. [125] analyzed finger

smudges left on the touch screen surface to infer touch patterns, with remarkable

success.

Motion sensors, such as, accelerometer and gyroscope, represent another class of

side-channels for accomplishing keystroke inference attacks that have been highly

researched. Tapping at different locations on a touchscreen results in unique move-

ments of the mobile device which can be captured by eavesdropping on-board motion

sensors. Cai et al. [20] were one among the first to use this observation to train multi-

class classifiers for each of the ten spatially separated numbers of a keypad, and were

able to correctly predict up to 70% of test keystrokes. Owusu et al. [86] extended the

side-channel attack from numeric keypads to soft QWERTY keyboards. In Chapter

2 used a smartwatch to demonstrate that an external device’s motion sensors can also

be used to infer keystrokes made on a mobile keypad [74]. Lack of any access con-

trol to motion sensors on existing mobile (and wearable) operating systems further

improves the feasibility of such motion side-channel based inference attacks.

Interestingly, all the above attacks share one common assumption: the numeric

keypad employed by the target user has a standardized key layout (Figure 5.1) known

to the adversary. Intuitively, this means that if the keypad layout is changed from

the standardized layout unbeknownst to the adversary then the above attacks will

118

perform poorly. Thus, such a dynamic keypad layout strategy is an appealing defense

strategy against side-channel keystroke inference attacks. However, as an adversary

can also re-train the attack framework for the new keypad layout, changing the

keypad layout just once (or in a predictable fashion) will not be an effective defense.

In order to prevent an adversary from knowing the keypad layout in use at any given

time, this change in layout should be randomized. In Section 5.5, we present different

keypad randomization strategies, in terms of key size, sequence and location. The

primary goal of these strategies is to reposition the on-screen keys such that an

adversary cannot correctly predetermine the keypad layout in use at any given time.

Without an accurately predetermined keypad layout, the adversary will be unable to

train or set up the attack framework, and an improperly trained attack framework

will result in erroneous inference of keystrokes. Interestingly, a major smartphone

manufacturer recently introduced a custom authentication method called “Random

PIN entry” [66], which implements a randomization strategy in order to restrict

side-channel attacks.

While randomized keypads could provide an effective defense against keystroke

inference attacks, it also raises usability concerns. The default keypad (Figure 5.1)

is widely used and many users have gradually become habituated to the static lay-

out. Thus, randomizing the keypad brings two new challenges: (a) users may be

uncomfortable typing on a keypad different from the one they are habituated to, and

(b) as the keypad changes randomly, users will always face an unfamiliar keypad. If

users are discomforted to a level where they may opt not to use random keypads for

the sake of privacy, then it cannot be proposed as an effective defense mechanism

119

against inference attacks. Therefore, before recommending the use of randomized

keypads for privacy protection, it is critical to evaluate the usability of the various

layout randomization strategies. In order to achieve this goal, we comprehensively

assess the usability and perceived workload of typing on keypads generated by each

of the proposed randomization strategies with the help of actual typing experiments

involving a diverse set of human subjects. We also compare the rate of mistyping

among all strategies, and attempt to determine whether one strategy is more usable

than the others. In addition to this, we also evaluate if usability is positively influ-

enced by distinguishable visual features, i.e., by coloring each key with an ascending

shade of gray. Finally, by comparing their empirical ease-of-usage with their analyt-

ical security assurance, we attempt to study the privacy-usability trade-off (if one

exists) in using different types of randomized keypads.

5.3 RandomPad - Attack Description

We consider the scenario of a potential victim typing on a smartphone’s numeric

touchscreen keypad (Figure 5.2) in the presence of an adversary whose goal is to in-

fer the keystrokes typed by the victim. For on-device inference attacks using device

sensors as information side-channels, the adversary may bug or eavesdrop on the

target’s smartphone [20, 86, 98] and/or paired smartwatch (Chapter 2) by installing

a malicious application which records the activity of certain on-board sensors. This

step can be achieved by exploiting known software vulnerabilities or by tricking the

victim into installing a Trojan or a malicious code hidden within a useful appli-

cation. The malicious application also maintains a covert communication channel

120

Figure 5.1: Default keypad.

Figure 5.2: A common typing scenario.

with the adversary, and periodically uploads the eavesdropped data to an adversar-

ial server by means of this channel. For external inference attacks [34, 105, 122, 125],

the adversary captures relevant keystroke characteristics from a physically close po-

sition, using appropriate eavesdropping devices, such as, microphones or wireless

transceivers. We assume that the adversary has sufficient storage and computational

resources to process the eavesdropped data and successfully carry out both types of

attacks. However, we assume that the adversary cannot visually eavesdrop

or observe the keypad (and the victim’s keystrokes) and does not have the

ability to install system level key-logging applications to directly obtain the typed

keystrokes.

121

5.4 RandomPad - Related Work

5.4.1 Protection Against Side-Channel Attacks

Due to the increasing use of various sensors in mobile and wearable devices as

information side-channels to accomplish privacy invasive inference attacks, the topic

of defending against such attacks has gained prominence. Cai et al. [22] drew atten-

tion on the limitations of current mobile systems in mitigating side-channel attacks.

They also pointed out the following desirable properties in any defense solution: (i)

Security: the solution must protect against side-channel inference attacks, (ii) Us-

ability: ideally, the solution should require no extra effort from users and if extra

effort is unavoidable, it should not disrupt the users’ work flow, (iii) Backward and

Forward Compatibility: the solution should require no or minimal modification to

existing applications and operating systems, (iv) Performance: the solution should

have no or minimal overhead, and (v) Versatility: the solution should be deploy-

able on various types of mobile hardware, software, and user interfaces. If a defense

solution fails to fulfill any of these properties, it may not be well accepted by users.

Controlling access to sensors that has the potential to be used as side channels

is one form of defense mechanism that can be used. However, as mobile and wear-

able systems currently offer very limited access control options (mostly restricted to

location and microphone sensors), fine-grained access control to all sensors will re-

quire major modifications to these systems. Context-aware access controls [25] could

relieve users from manually changing and adjusting access settings, however they

would add significant performance and energy overhead, are non-versatile and diffi-

cult to setup and would require major modifications to current operating systems.

122

Furthermore, sensor access controls do not protect against applications that gain le-

gitimate access to these sensors. Enforcing system-wide reduced sensor sampling

rate or disabling sensors is one suggested defense against on-device keystroke infer-

ence attacks [74, 86]. However, while system-wide down-sampled or disabled sensors

may provide protection, it may disrupt useful non-malicious applications as well.

Moreover, neither access control, nor limiting sampling rate, protects against exter-

nal inference attacks. There has been limited work on protecting smartphone users

against external side-channel attacks. Shrestha et al. [97] proposed the injection

of noise in motion sensor readings, in order to protect against motion sensor based

inference attacks. However, their solution is ineffective against most other classes

of keystroke inference attacks. Alternate forms of authentication (e.g., biometrics)

are also becoming popular, but the vast majority of mobile devices are not equipped

with the enabling hardware and/or software. Thus, mobile users will continue to use

touch screen-based keypads to enter sensitive information, including authentication

data, and there is an increasing need for a keypad protection mechanism that satisfies

most of the design criteria identified by Cai et al. [22].

5.4.2 Protection by Randomization

Randomizing the keypad prevents an adversary from predetermining the keypad

layout, which can serve as an effective defense against both external and on-device

attacks. Randomized keypads are already known to be used commercially in elec-

tronic door access control systems [101], although with limited flexibility in terms

of available set of randomization strategies. Ryu et al. [93] were among the first to

study randomized keypads and they observed that their randomized keypad resulted

123

in longer completion times compared to a conventional keypad. However, their study

was not geared towards mobile devices, considered only one randomization strategy

and did not comprehensively evaluate user workload and other usability parame-

ters except completion times. In this research effort, we propose, implement, and

comprehensively evaluate different randomized keypads (or RandomPad) for mobile

devices. RandomPad does not add significant overhead on system performance as it

is essentially a rearranged keypad layout. It can be easily implemented as a third

party application on popular mobile operating systems such as Android and iOS,

without requiring support from operating system developers. RandomPad can also

be versatile, when implemented according to scalable design principles [49]. With

RandomPad, we analyze the remaining two design properties outline in Section 5.4.1:

security and usability.

5.5 RandomPad - Randomization Strategies

We outline five representative strategies that span the entire spectrum of strate-

gies from purely-random to partially-random keypad layouts, i.e., the latter preserves

some characteristics of the default layout. For stronger security, keypad randomiza-

tion can be performed either at the beginning of every keystroke or at the beginning

of each typing session.

5.5.1 Key Sequence Randomization

The default keypad follows a sequence of ascending numbers. Key sequence

randomization strategies reposition the keys by changing the order of keys, by not

124

(a) (b) (c)

(d) (e) (f)

Figure 5.3: Examples of (a) RR, (b) CR, (c) IKR, (d) KSR and (e) KLR; (f) The
hidden 7× 6 grid layout used in KSR and KLR.

125

following the ascending order. Following are the three key sequence randomization

strategies we use in our study, all of which keep the key sizes unchanged:

• Row Randomization (RR): In row randomization (RR), rows from the de-

fault keypad are randomly ordered while preserving the order of the numbers

within each row. Figure 5.3(a) shows an example of RR.

• Column Randomization (CR) In column randomization (CR), columns

from the default keypad are randomly ordered while preserving the order of

the numbers within each column. Figure 5.3(b) shows an example of CR.

• Individual Key Randomization (IKR) In individual key randomization

(IKR), individual keys are randomly re-arranged without maintaining any col-

umn or row order. Figure 5.3(c) shows an example of IKR.

5.5.2 Key Size Randomization (KSR)

A key size randomization (KSR) strategy preserves the sequence of numbers on

the default keypad. Instead, the randomization factor is incorporated within the size

of each key. Changing the key sizes also repositions them from their default locations

on screen. In our design of KSR, we use a hidden 7 × 6 grid layout (scaled to fit

the width of the screen), as shown in Figure 5.3(f). One randomly selected key is

enlarged to appear as a 4 × 4 block on the grid, other keys in the same row as the

large key appear as 4×1 blocks, and all other keys appear as 1×2 blocks on the grid.

Figure 5.3(d) shows an example of the KSR strategy. Note that the 7×6 grid layout

is not visible to users; only the overlaid keys are visible. As the default sequence is

126

preserved, it may be necessary to randomize key sizes after each key press to prevent

relative positioning based attacks.

5.5.3 Keypad Location Randomization (KLR)

A keypad location randomization (KLR) strategy also preserves the sequence of

numbers of the default keypad. The randomization factor is instead incorporated in

the location of the keypad, because changing the keypad location repositions all keys

from their default locations on the screen. Figures 5.3(e) shows an instances of the

keypad location randomization we consider in our study. In this case, we again use a

hidden 7× 6 grid layout similar to KSR. Each key appears as a 1× 1 block, and the

entire keypad appears as a randomly selected contiguous 4× 3 block on the grid (16

possibilities). The distribution of keys on the hidden 7×6 grid layout happens to be

same for both KSR and KLR (Figure 5.4). Similar to KSR, keypad randomization

in KLR may need to be done at every key press to prevent relative positioning based

attacks. Moreover, key sequence randomization strategies can also be combined with

KSR and KLR for additional security.

5.5.4 Security Analysis

Next, we probabilistically analyze the security offered by these five randomization

strategies. For this analysis we assume that the adversary is able to cluster keystroke

positions not just on a default sized 4 × 3 keypad, but also for smaller blocks of a

7× 6 layout (used in KSR and KLR), without any error (i.e., 100% accuracy). The

adversary is also assumed to know the randomization strategy currently in use and

that a new randomized keypad layout within the corresponding strategy is used by

127

the user (victim) for every keystroke (that the adversary is attempting to infer).

As the keypad layout is randomized, the best an adversary can do is to guess the

mapping between the randomized and default keys. We derive the successful guessing

probability of the adversary as an indication of the security assurance or guarantee

each strategy provides under such a strong attack scenario. The lower this probability

for a particular randomization strategy, the higher is its security assurance.

Consider a twelve key (including “∗” and “#” keys) keypad in IKR. The probabil-

ity that an adversary guesses the mapping of a digit correctly is 1
12

and the probability

of correctly guessing the entire mapping (of all the keys) is 1
12!

. However, in case of

RR and CR, the adversary can improve its guessing, which is intuitive. Knowing

that keys within a row remain in order, for a RR keypad, the adversary only needs

to guess the row mapping. The probability that an adversary correctly guesses a row

(and thus keys in it) is 1
4
, and all four rows is 1

4!
. Similarly for CR, the probability

that the adversary correctly guesses a column (and thus keys in it) is 1
3
, and all

three columns is 1
3!

. Due to crossover regions on the keypad, accurately guessing key

mappings in KSR and KLR is a bit more complicated. In case of KSR, one large

key displaces the position of other keys, leading to non-zero probabilities of multiple

keys being at the same on-screen location. As the key distribution possibilities are

same for KLR, it also shares the same probability distribution as KSR. Assuming

that a keystroke touch can occur uniformly on any of the 42 (7×6) on-screen blocks,

the probability of an adversary correctly guessing a key’s position is:

1

42

∑ 1

Ni,j

,∀i, j (5.1)

128

1 1, 2 1, 2, 3 1, 2, 3 2, 3 3

1, 4 1, 2, 4,
5

1, 2, 3,
4, 5, 6

1, 2, 3,
4, 5, 6

4, 7, * 4, 5, 7,
8, *, 0

4, 5, 6,
7, 8, 9,
*, 0, #

4, 5, 6,
7, 8, 9,
*, 0, #

1, 2, 3,
4, 5, 6,
7, 8, 9,
*, 0, #

1, 2, 3,
4, 5, 6,
7, 8, 9,
*, 0, #

1, 2, 3,
4, 5, 6,
7, 8, 9

1, 2, 3,
4, 5, 6,
7, 8, 9

1, 4, 7 1, 2, 4,
5, 7, 8

1, 4, 7,
*

1, 2, 4,
5, 7, 8,

*, 0

2, 3, 5,
6 3, 6

2, 3, 5,
6, 8, 9 3, 6, 9

2, 3, 5,
6, 8, 9,

0, #

3, 6, 9,
#

5, 6, 8,
9, 0, # 6, 9, #

7, * 7, 8 , *,
0

7, 8, 9,
*, 0, #

7, 8, 9,
*, 0, #

8, 9, 0,
9,

* *, 0 *, 0, # *, 0, # 0, # #

Figure 5.4: KSR and KLR on-screen key distribution possibilities on the hidden 7×6
grid layout.

129

Table 5.1: Security assurance of the five proposed randomization strategies. Lower
rank is better security.

Randomization Strategy Correct Entire Keypad
Guessing Probability

Security Assurance Rank

CR 1
3!

= 0.16667 5
IKR 1

12!
= 2.08× 10−9 1

KLR 1
16

= 0.0625 3
KSR 1

12
= 0.08333 4

RR 1
4!

= 0.04167 2

where, Ni,j is the number of keys that could possibly occupy block i, j. Solving

Equation 5.1 using the distribution of keys (Figure 5.4) results in a success probability

of 0.34193. Guessing the entire keypad in KSR and KLR is relatively uncomplicated,

as the adversary has to guess only the large key in KSR (probability 1
12

) and one

among the sixteen possible locations of the keypad in KLR (probability 1
16

). Table

5.1 in ranks the adversary’s success probabilities for the different randomization

strategies. These probabilities represent a best-case scenario for the adversary.

5.6 RandomPad - Human Factors

The above security analysis shows that randomizing keypad layouts is an effec-

tive protection strategy against side-channel keystroke inference attacks. It is also

efficient from a system performance perspective, easy to implement and versatile.

However, a significant concern remains to be answered: “Will users employ and

effectively be able to use such a protection mechanism”? As the proposed protec-

tion mechanism is simply a different and highly dynamic user-interface, we attempt

to answer this broad question by using principles and techniques from the area of

130

human-computer interaction (HCI) [30] and cognitive psychology [56]. Designing

usable input interfaces, e.g., keypads, for mobile devices has been a significant tech-

nical challenge [47]. For mobile devices, the main constraint in designing usable

input interfaces is the screen size, however earlier research has shown that smaller

keypad sizes do not negatively affect the efficiency or accuracy of user input [95].

Thus, in this work we will focus only on how random positions and sizes of the keys

on the keypad impact their usability. In our quest for answering the above usability

question, we will primarily focus on measuring user effort and workload while using

these randomized input interfaces (or RandomPad) by means of well-known quanti-

tative and qualitative metrics, as discussed below. We would also like to investigate

if certain design changes would improve or reduce user workload.

Keypads with randomized key sequences (e.g., RR, CR, IKR keypads) pose a

unique challenge to human cognition. Users may often find themselves searching

for a particular key, which would slow down overall typing speed. Physiological

factors, such as, visual acuity, light accommodation, dexterity, working memory,

and reaction times [37, 104] can further impact this. Thus, time required for the

typing task completion and the number of errors during the task are some of the

metrics that will be used to evaluate user-effort while using RandomPad. Another

commonly used HCI technique to empirically measure the user-effort of interfaces,

and thus its usability, is eye-tracking. Eye-tracking devices can capture fixation

duration and number of fixations while the user is interacting with the interface.

The average fixation duration indicates how long it takes for users to encode the

visual information, which is influenced by the readability of the characters, such as,

131

font size, font style, spacing and contrast of background and foreground, etc. [90].

The number of fixations to complete a task is correlated with the difficulty to locate

the target (within the task). In this work, we also use these metrics (captured by

means of an eye-tracking device) to quantify the difficulty of the user in locating the

keys on RandomPad.

Besides these, we also analyze the usability of RandomPad by employing user-

provided subjective workload and usability measures. For instance, NASA-TLX [41]

is a well-known scale for subjectively measuring mental workload. Mental workload

measures the subjective experience of the effort to complete a task [15]. A high

mental workload is often detrimental to task performance and can reduce the chances

of the product or interface being adopted or used by users. The NASA-TLX is a

multidimensional scale to measure the perceived workload, including, the mental,

physical and temporal demand, overall performance, frustration level and effort. We

employ the NASA-TLX scale in our experiments to capture the mental workload

of participants after they have used RandomPad. Similarly, we also measure the

overall usability of the RandomPad design by using another subjective scale called

the System Usability Scale (SUS) [19]. The SUS is a 10-item 5-point scale, which

produces a usability score ranging from 0 to 100, with a larger value indicating a

more usable interface. We feel that a combination of task completion performance

measures, eye fixation measures using eye-tracking, and subjective mental workload

and usability measures will provide a converging evidence to illustrate the usability of

RandomPad, and thus provide some answers to the broad usability related question

posed earlier.

132

As discussed earlier, certain physiological or environmental factors may impact

human cognition of the interface, and thus its usability. Pattison and Stedmon

[88] suggested that certain physiological factors impacting interface usage can be

combated with a design that has improved illumination and provides certain distin-

guishing visual cues/feedback to the user. Luminance differences and contrasting

shades (e.g., using a gray-scale) have been particularly successful in capturing user

attention [4, 103], as well as, in distinguishing objects in medical diagnostic images

[52, 109]. This motivated us to adopt a similar approach where our goal is to evalu-

ate whether usability of our RandomPad interface improves when additional visual

cues are provided to the users, for instance, by using contrasting shades of gray to

represent each of the keys. More specifically, we study an enhancement to Ran-

domPad, where the keys on the randomized keypad are colored with an ascending

shade of gray, i.e., shade of key “0” being the lightest (#D8D8D8) and “9” being

the darkest (#000000). The luminance of keys between “0” and “9” are increased

in uniform steps. Figure 5.5 shows an exemplary instance of IKR keypad in our

ascending gray-scale scheme. Note that keys “*” and “#” are excluded from this

particular usability study. As the key sequence is preserved in KSR and KLR, we

do not expect any potential benefit from the gray-scale enhancement, and thus, are

not evaluated either.

5.7 RandomPad - Study

Our study comprised of lab-based experiments involving human subjects, where

participants performed typing tasks on a set of assigned smartphone numeric key-

133

Figure 5.5: Aiding usability with contrast: Instance of IKR keypad in ascending
gray-scale.

pads. Each participant is randomly assigned only one of the five keypad randomiza-

tion strategy, and all experiments administered to each participant are based on the

assigned strategy. The assigned strategy is uniformly distributed (balanced) across

all participants. The entire experiment for each participant is divided into two ses-

sions: Natural Typing and Dictated Typing. In each scenario, the participant types

using the default, randomized (with the randomly assigned strategy) and gray-scale

(assigned only if the participant was assigned RR, CR or IKR) keypads. Our ex-

periment (methodology and data collection process) was reviewed and approved by

Wichita State University’s Institutional Review Board.

5.7.1 Participants

Our study was conducted by recruiting 100 participants, the majority of whom

were affiliated with our university. As an incentive, students were offered partic-

ipation credits which would partially satisfy certain academic requirements, while

134

Table 5.2: Demographics and preferences of participants.

Gender 56% Female, 44% Male
Occupation 33% Employed, 67% Student
Smartphone Ownership Duration 26% Less than 5 Years, 74% More than

5 Years
Current Smartphone 59% iOS (iPhone), 1% Android
Willingness to Use Random Key-
pad (Before Study)

22% In Favor, 78% Not in Favor

non-students were compensated with $10. The participants first completed a pre-

survey demographic questionnaire, which included questions on smartphone usage

and privacy preferences. Then an introductory video, explaining the concept of

randomizing keypads and how it can help protect against certain eavesdropping or

side-channel attacks, was shown to them. Participants were then introduced to the

specific randomization strategy assigned to them using another video. However, they

were not introduced to the remaining (non-assigned) randomization strategies. This

was done to prevent any bias in their response(s). Participant demographic informa-

tion and preferences are outlined in Table 5.2. Interestingly, when shown a sample

random keypad screenshot (according to the assigned randomization strategy), less

than 25% were in favor of using the random keypad for typing sensitive information.

Note that this response was recorded before they were introduced to the side-channel

keystroke inference attacks and how randomization can help protect against it.

5.7.2 Apparatus

Our experiments were conducted by using an Android implementation of the

RandomPad application, designed specifically for this study. The application would

135

display the keypad (Figure 5.3) and a short instruction of the task to perform. As

the participants type on the keypad, the application records the dictated number (if

applicable) along with the typed number and the corresponding time-stamps. The

application was also programmed to the flow of our experiments, and it automatically

enforced certain aspects of the experiments, such as random ordering of the natural

and dictated typing scenarios, rest periods between various parts in each scenarios,

pausing to record responses to the NASA-TLX and SUS scales, etc. The order in

which the two experimental scenarios (discussed next) are presented to the partic-

ipants is counterbalanced to prevent bias in the results. The keypad design in our

application (for each randomization strategy) followed well-accepted standards [53],

for example, the smallest height and width of a key was 57dp, which is comfortably

higher than the standard minimum of 48dp. We used the Moto E smartphones (1st

generation) in our study. The Moto E features a 4.3 inch touch screen with 540×960

pixels (∼ 256 ppi pixel density). We also used the head-mounted Ergoneers Dikablis

Professional Eye-Tracking system, equipped with two eye movement tracking cam-

eras and a forward scene camera, to measure participants’ eye activity while typing.

5.7.3 Session 1: Dictated Typing (DT)

In this experimental session, participants were prompted with visually and acous-

tically dictated sequences of pseudo-random single digit numbers. Length of each

number sequence was uniformly varied between 3 (representing length of credit card

security codes), 4 (representing length of phone unlock codes), 5 (representing length

of zip codes), 7 (representing length of phone numbers without area code), 8 (repre-

senting length of birth dates), 10 (representing length of phone numbers with area

136

code), and 16 (representing length of credit card numbers). This session of the

study is further divided into three parts : Default Keypad Typing, Randomized Key-

pad Typing, and Gray-scale Randomized Keypad Typing. Each part consisted of ten

activities, where in each activity the participants typed the dictated sequence of sin-

gle digit numbers on the displayed keypad. There was a ten second time separation

between each activity and a one minute separation between the three parts, allowing

participants enough opportunities to rest.

5.7.3.1 Task

The primary task for participants is to follow the dictation and type the dictated

digits on the displayed keypad. Each activity begins when participants are ready

and they tap on the “Start” button on the smartphone screen. Immediately after

tapping the “Start” button, the keypad appears and dictation starts. Participants

can see the dictated digits on screen or hear the corresponding audio prompt, or

both. No time restriction is imposed on participants, and new digits are dictated

after the participant presses a key in response to the last dictated digit.

5.7.3.2 Part 1.1 – Default Keypad

In this part, participants type on the default keypad, with no randomization

in key size or sequence. This serves as a reference point for our performance and

accuracy evaluation.

137

5.7.3.3 Part 1.2 – Randomized Keypad

In this part, the RandomPad application generates and displays an instance of

random keypad, using the randomization strategy assigned to the participant. For

KSR, KLR randomization strategies, a new instance of random keypad is generated

and displayed after every key press. For other (RR, CR, IKR) randomization strate-

gies, the instance of random keypad generated at the beginning of each activity is

used for the entire activity.

5.7.3.4 Part 1.3 – Gray-scale Randomized Keypad

This part is administered only to those participants who are assigned RR, CR,

and IKR strategies. The RandomPad application generates and displays an instance

of random keypad, using the randomization strategy assigned to the participant.

Additionally, keys on the randomized keypad are shaded with an ascending shade of

gray, with color of key “0” being lightest and “9” the darkest, as discussed earlier.

5.7.4 Session 2: Natural Typing (NT)

In this session, participants were instructed to type information already known

to them at their own natural pace. Participants were asked to type their residence

area code (3 digits), zip code (5 digits), phone number without area code (7 digits),

birth date (8 digits), or phone number with area code (10 digits), in random order.

This session is also divided into three parts, i.e., Default Keypad Typing, Random-

ized Keypad Typing, and Gray-scale Randomized Keypad Typing, with each part

consisting of ten activities. The time intervals between parts and activities remain

the same as before.

138

5.7.4.1 Task

The primary task for participants is to type familiar numbers on the random

keypad. Before beginning each typing activity, the participants are visually commu-

nicated about the number they have to type in that activity. The activity begins

when participants are ready and tap on the “Start” button on the smartphone screen.

Immediately after tapping the “Start” button, the keypad appears and participants

are expected to start typing. No time restriction is imposed on participants, and

activity finishes when the participants are finished typing in the expected number of

digits (based on what was asked to type).

5.7.4.2 Parts

Similar to the dictated typing session (i.e., session 1), the natural typing ses-

sion (i.e., session 2) has three parts: (i) Part 2.1 – Default Keypad, (ii) Part 2.2

– Randomized Keypad, and (iii) Part 2.3 – Gray-scale Randomized Keypad. The

description of the activities performed by the participants and the keypads used in

each of these parts is similar to the previous session; the only difference is that rather

than typing a dictated sequence of numbers in each activity, the participants type a

known sequence of numbers (as outlined before) at their own pace.

5.7.5 Procedure and Data Collection

Participants were seated in a lab environment and given a smartphone installed

with the RandomPad application. Before beginning each session of the study, a short

video was shown to the participants explaining the task to be completed in each part.

If participants made a mistake during typing, they were instructed to continue to

139

the next number without attempting to rectify it. The mistyping is recorded for

evaluating accuracy in typing. To measure accuracy during the Natural Typing

session, the residence area code (3 digits), zip code (5 digits), phone number without

area code (7 digits) and date of birth (8 digits) were collected from each participant

beforehand in the pre-survey. As discussed in sections 5.6, subjective usability and

mental workload perceptions of participants is captured using the SUS and NASA-

TLX scales. The SUS and NASA-TLX surveys were completed by the participants

after each part of either session 1 or session 2, whichever came temporally later (as

the order of the Dictated Typing and Natural Typing sessions is counterbalanced).

After finishing both sessions of the experiment, the participants completed a post-

survey.

5.8 RandomPad - Results

In this section, we outline results from both the natural and dictated typing

sessions of our experiments.

Q1: Do randomized keypads increase the task completion time when com-

pared to the default keypad?

We investigate the difference in task completion times between default and ran-

domized keypads with the null hypothesis that their means are not significantly

different. Figures 5.6 and 5.7 show the average time taken by the participants to

type a key, in the dictated and natural typing sessions, respectively. The results are

further categorized by the keypad randomization type. It is evident that the aver-

140

age task completion time on random keypads is increased in both cases, compared

to the default keypad. However, the overall task completion time is less in natural

typing, compared to dictated typing. This is most likely due to the extra cognitive

task performed to follow the dictation while typing. Among the five randomization

strategies, typing on IKR (mean differences w.r.t. default keypad, dµDTIKR = +249.78

ms, dµNTIKR = +140.66 ms) and KSR (dµDTKSR = +263.61 ms, dµNTKSR = +137.07 ms)

took relatively more time compared to CR (dµDTCR = +105.14 ms, dµNTCR = +98.75

ms), KLR (dµDTKLR = +116.32 ms, dµNTKLR = +107.75 ms), and RR (dµDTRR = +106.60

ms, dµNTRR = +144.62 ms). In two-tailed paired sample t-test [100], the combined

mean increase in time taken by participants to type a key are dµDT = +168.3 ms

and dµNT = +125.8 ms, with p < 0.001 in both DT and NT. Since p < 0.05 (the

assumed significance level), the null hypothesis is rejected. In other words, we found

that randomized keypads do increase task completion times, by approximately 21%

for dictated and 16% for natural typing.

Q2: Do randomized keypads increase the error rate in the primary task?

We investigate the difference in typing accuracy between default and randomized

keypads with the null hypothesis that their means are not significantly different.

Figures 5.8 and 5.9 shows the average accuracy of the typed numbers, for the natural

and dictated typing sessions, respectively. The results are further categorized by the

keypad randomization type. In two-tailed paired sample t-test, the combined mean

decrease in typing accuracy are dµDT = −0.53% and dµNT = −0.77%, with p = 0.06

in DT and p = 0.003 in NT. As p > 0.05 for dictated typing, the null hypothesis

is marginally accepted. However, the null hypothesis is rejected in case of natural

141

500.0

600.0

700.0

800.0

900.0

1000.0

1100.0

CR IKR KLR KSR RR

A
V

ER
A

G
E

TY
P

IN
G

 T
IM

E
(M

S)

RANDOMIZATION TYPE

Default Randomized Gray-scale

Figure 5.6: Average time taken per key typed in Dictated Typing.

500.0

600.0

700.0

800.0

900.0

1000.0

1100.0

CR IKR KLR KSR RR

A
V

ER
A

G
E

TY
P

IN
G

 T
IM

E
(M

S)

RANDOMIZATION TYPE

Default Randomized Gray-scale

Figure 5.7: Average time taken per key typed in Natural Typing.

142

90.0

91.0

92.0

93.0

94.0

95.0

96.0

97.0

98.0

99.0

100.0

CR IKR KLR KSR RR

A
C

C
U

R
A

C
Y

(%
)

RANDOMIZATION TYPE

Default Randomized Gray-scale

Figure 5.8: Dictated Typing accuracy.

typing, which means the typing accuracy may be lower on the randomized keypads.

Nonetheless, mean accuracies in all five randomization strategies are above 95% for

both default and randomized keypads, with mean difference less than 1% compared

to the default keypads. As the participants’ primary task was to type the number

sequences correctly, and not to type as fast as possible, it may be concluded that the

task completion time was traded off for higher accuracy by the participants.

Q3: Is there a learning curve associated with randomized keypads?

In order to analyze if the typing performance (speed and accuracy) improves

with more usage of the randomized keypad, we compare the average per key typing

time for the first and last ten numbers typed with random keypads, in the natural

typing session. We observed that the average task completion time is significantly

143

90.0

91.0

92.0

93.0

94.0

95.0

96.0

97.0

98.0

99.0

100.0

CR IKR KLR KSR RR

A
C

C
U

R
A

C
Y

(%
)

RANDOMIZATION TYPE

Default Randomized Gray-scale

Figure 5.9: Natural Typing accuracy.

lower for the last ten numbers (compared to the first ten numbers), for all five

randomization strategies. The overall mean drop in per key typing time is recorded

as dµNTL10−F10 = −163.09 ms, with p < 0.001. However, we did not observe any

significant improvement in accuracy. This suggests that there exists a learning curve

in using RandomPad, primarily to learn the randomization strategy, rather than

memorizing an instance. As we see marked improvements within a relatively short

experimental duration, we are optimistic that randomized keypad usage performance

will only further improve with prolonged use.

144

0.0

10.0

20.0

30.0

40.0

50.0

60.0

CR IKR KLR KSR RR

N
A

SA
-T

LX
 S

C
O

R
E

RANDOMIZATION TYPE

Default Randomized Gray-scale

Figure 5.10: NATA-TLX scores for all the five randomization strategies. Dictated
and Natural Typing are combined. Lower scores signify lesser workload for the user.

0
50

100
150
200
250
300
350
400
450

D
ef

au
lt

R
an

d
o

m
iz

ed

D
ef

au
lt

R
an

d
o

m
iz

ed

NATURAL TYPING DICTATED TYPING

AVERAGE FIXATION DURATION (MS)

0

10

20

30

40

50

60

70

D
ef

au
lt

R
an

d
o

m
iz

ed

D
ef

au
lt

R
an

d
o

m
iz

ed

NATURAL TYPING DICTATED TYPING

AVERAGE FIXATION COUNT

(a) (b)

Figure 5.11: (a) Average fixation count and (b) average duration per fixation, for
Natural and Dictated Typing. Lower scores signify lesser workload for the user.

145

Q4: How much more effort do randomized keypads take, compared to the

default keypad?

We investigate the difference in user effort required to type on the default versus

randomized keypads with the null hypothesis that the mean of their NASA-TLX

scores are not significantly different. However, the randomized keypads scored higher

on the NASA-TLX scale for all five randomized keypads (Figure 5.10), with an overall

mean difference dµ = +16.87 and p < 0.001. This suggests that participants required

considerably more perceived effort to use the randomized keypads. This observation

is somewhat expected because of their familiarity with the default keypad. KLR

is reported to take the least effort (dµKLR = +9.94) compared to the other four

randomization strategies.

In addition to subjective metrics such as NASA-TLX, we complement our results

for workload by means of quantitative metrics such as fixation counts and fixation

duration from the eye tracking data. Due to the significant setup time and overhead

involved, we collected eye tracking data from only a subset of participants (more

specifically, 53 participants). Figure 5.11 shows the average fixation count and fixa-

tion duration recorded during the experiments involving these participants. Higher

fixation count indicates that the participants had to view more areas of interest

(AOI) before they were able to locate the target key. The average fixation count

on randomized keypads is increased (+4) in case of natural typing, but marginally

decreased (-1) in case of dictated typing. On the other hand, the average fixation

duration (time spent per AOI) increased (+19 ms) in case of dictated typing, but

marginally decreased (-3 ms) in case of natural typing. These results show that,

146

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

CR IKR KLR KSR RR

SU
S

SC
O

R
E

RANDOMIZATION TYPE

Default Randomized Gray-scale

Figure 5.12: SUS scores for all the five randomization strategies. Dictated and
Natural Typing are combined. Higher scores signifiy better usability.

in certain scenarios, randomized keypads do increase the difficulty in locating keys,

resulting in increased workload.

Q5: How much less usable randomized keypads are, compared to the

default keypad?

We investigate the difference in perceived usability of the default versus random-

ized keypads with the null hypothesis that the mean of their SUS scores are not

significantly different. However, the randomized keypads faired lower than the de-

fault keypad (Figure 5.12). The overall mean difference dµ = −25.80 and p < 0.001

suggests that participants felt that the default keypad is more usable. This observa-

tion is also somewhat expected because of their familiarity with the default keypad.

147

KLR is again reported to be the most usable (dµKLR = −19.12) compared to the

other four randomization strategies.

In the SUS scale, a score lower than 50 indicates unacceptable for use; a SUS

score larger than 70 indicates acceptable for use; A score between 50 to 70 indicates

marginally usable. RR (mean SUS score = 56.13) is significantly lower on the SUS

scale compared to the other five randomization strategies. On the other end, KLR

(mean SUS score = 73) provides acceptable usability and CR (mean SUS score =

67) is just below the 70 mark. Thus, from a perceived usability perspective, KLR is

preferred by the users over other randomization strategies. Again, we are optimistic

that randomized keypads can achieve better usability scores if users get familiarized

with the distinct layouts.

Q6: Does gray-scale shading of randomized keypads improve usability?

On the NASA-TLX (Figure 5.10) and SUS (Figure 5.12) scores, there are no

significant differences between the randomized keypads without gray-scale shading

versus randomized keypads with gray-scale shading, indicating that contrasting gray-

scale shades on the keypad does not lower the perceived workload or improve the

perceived usability. However, we observe that gray-scale shaded randomized keypads

marginally lower the task completion times. The average task completion time on

gray-scale randomized CR, IKR and RR keypads during dictated typing session is

901.70 ms versus 935.09 ms for just randomized CR, IKR and RR keypads. This

shows that our gray-scale shading scheme does not significantly improve the usability

of the RandomPad interface. This may be because in our gray-scale shading scheme

the contrast between the shade of the digits and that of the background is not optimal

148

for certain keys, which can create difficulty during the reading of those keys [129].

The usability of gray-scale keypads could be potentially improved by adjusting and

optimizing this contrast between the different shades.

Q7: Are smartphone users interested in adopting randomized keypads?

In the initial pre-survey recorded before the participants were introduced to side-

channel keystroke inference attacks, only 22% of the participants reported that they

would be willing to use a randomized version of the keypad. On being more informed

about the dangers of side-channel keystroke inference attacks and how randomized

keypads help protect against such attacks, and after completing the experimental tri-

als, as many as 80% of the participants reported in the post-survey that they would

be willing to use a randomized keypad in order to protect their privacy. Those

participants who reported “No” to this question (i.e., were not willing to use the

randomized keypad) in the post-survey reported that they were more familiar, there-

fore more comfortable, with the default keypad and that the randomization (of the

keypad) was confusing to them. Those who changed their answer to “Yes” in the

post-survey (i.e., were willing to use the randomized keypad) primarily reported that

their reason for using an unfamiliar interface, such as, a randomized keypad, would

be to primarily enhance their privacy and to prevent hackers from stealing their

personal information.

149

5.9 RandomPad - Discussions

In this section, we discuss some of the implications of our study, and how re-

searchers and developers can use our evaluation results in order to implement and/or

improve RandomPad.

5.9.1 Privacy-Usability Trade-Off

In our evaluation, it was clear that RandomPad negatively affects users’ perfor-

mance, workload and perceived usability. While this was intuitive and an expected

result, the effect on usability, although present, was not large enough to make the

interfaces completely unusable. It should also be noted that 80% of the partici-

pants were still willing to use RandomPad on a regular basis in order to input their

sensitive information. As participants were introduced to only one randomization

strategy (to receive an unbiased opinion about each strategy), it is also likely that

they may like another strategy better. Therefore, we analyzed the privacy-usability

trade-off of the five different randomization strategies based on security assurance

ranking (Table 5.1) and usability ranking (calculated using typing speed, workload

and perceived usability)1. Table 5.3 shows the usability ranking calculations of the

five different randomization strategy. Comparing Table 5.1 and 5.3, we see that KLR

ranks relatively highest on both (3 + 1 = 4) tied with IKR (1 + 3 = 4), followed by

RR (2 + 4 = 6), and CR (5 + 2 = 7), and KSR (4 + 4 = 8), respectively. In other

1As accuracy was marginally varying, we exclude it as a factor in the usability ranking calcula-
tions.

150

Table 5.3: Usability rankings of the five proposed randomization strategies calculated
using average typing speed (lower better; dictated and natural typing combined),
workload (lower better) and perceived usability (higher better). Lower least rank is
better usability.

Randomization
Strategy

Typing Speed
Rank

Workload
Rank

Perceived Us-
ability Rank

Summed Us-
ability Rank
(Least Rank)

CR 1 2 2 5 (2)
IKR 4 3 3 10 (3)
KLR 2 1 1 4 (1)
KSR 5 4 4 13 (4)
RR 3 5 5 13 (4)

words, KLR and IKR provides the best balance between security and usability, while

KSR provides the least.

5.9.2 Recommendations to Developers

Users type sensitive information only a fraction of the time they use a keypad.

Having an always-on randomized keypad may be an inconvenience to the users,

whom may then choose to not use randomized keypads altogether. A good design

should have an easily accessible and user-controllable (soft) switch to turn on or off

the key randomization, as and when desired by the user. Whenever users feel that

the information they are going to type is sensitive in nature, they should be able to

easily turn on the randomization of the keypad. After they finish typing the sensitive

information, or in the case they are typing non-sensitive information, they should

be able to easily turn off the randomized keypad and continue to use the default

keypad.

151

5.9.3 Limitations

Even though RandomPad is able to protect users against several types of side-

channel keystroke inference attacks, it fails to protect against visual eavesdropping,

also known as shoulder-surfing. There are certain authentication schemes that can

defend against visual eavesdropping [119], but they (i) require more effort from users

and (ii) cannot be used to type sensitive information other than device unlock codes.

5.10 RandomPad - Conclusion

With the increasing number of side-channel attacks targeting mobile keypads,

user privacy is at stake. With RandomPad, we proposed to used randomized keypads

for typing sensitive information on mobile device keypads. Randomized keypads are

able to sufficiently alter keystroke characteristics, such that most of the side-channel

attacks will fail. However, with users accustomed to the default keypad for years,

randomized keypads face usability issues. Therefore, we comprehensively evaluate

the usability of randomized keypads, with the help of 100 participants. We found

that randomized keypads can increase task completion time. We also found that

randomized keypads are perceived to be less usable and more work. However, the

learning curve associated with randomized keypads can improve user performance

and usability with prolonged use. Interestingly, even with the degraded usability of

randomized keypads, participants were willing to use it for improved privacy.

152

5.11 EyePad - Protecting External Keyboard Interactions

Physical QWERTY keyboards are the most widely adopted input interface for

personal and portable computing systems. These keyboards have also been a con-

stant target for various forms of “shoulder surfing” attacks, where the goal of an

adversary is to obtain or infer users’ keystrokes by directly, but surreptitiously, ob-

serving the typing user (and the keyboard) or eavesdropping on certain information

directly related to the typing activity being performed. The first case, where the

adversary has a covert visual access to the typing user, is a more common and

easy-to-execute threat. Such threats are also the most difficult to protect against,

especially by means of traditional cryptography-based or other information manipu-

lation and hiding techniques. For instance, Roth et al. [92] proposed an oracle-based

multi-round protocol for PIN entry by color coding keys into two shades (black and

white). This scheme takes advantage of limitations in human cognitive capabilities

to overcome shoulder surfing, however, Kwon et al. [64] recently showed that covert

attention and perceptual grouping can improve information processing by humans,

thus rendering Roth et al.’s approach ineffective.

Alternatively, there exists other forms of shoulder surfing attacks that, rather

than relying on the direct visual channel, take advantage of indirect information

channels (or side-channels) to infer users’ keystrokes. For instance, Vuagnoux et

al. [113] use electromagnetic emanations from external keyboards (both wired and

wireless) to infer keystrokes, whereas, Berger et al. [16] have accomplished a similar

feat by using acoustic emanations originating due to typing on these keyboards.

As another variation of non-visual shoulder surfing, Marquardt et al. [77] utilized

153

the vibrations sensed by a smartphone accelerometer (positioned in the proximity

of the target keyboard) to infer a users’ keystrokes on the keyboard. Maiti et al.

[71] proposed a similar attack by taking advantage of motion information available

from wrist-wearable devices such as smartwatches. More recently, Ali et al. [6]

demonstrated the ability to infer keystrokes by observing the unique changes in the

radio signal channel statistics caused during typing.

Interestingly, the success of all of the above attacks rely on one common assump-

tion: the adversary has knowledge of the layout, and in some cases, even the exact

model, of the keyboard used by the target user. This assumption, at least the former,

is reasonable as most modern QWERTY keyboards have a standard layout of keys.

Intuitively, this means that if the keyboard layout is changed from the default to

something different, and if this new or changed layout is not known to the adver-

sary, then at least the above side-channel or non-visual attacks will not succeed. In

other words, a dynamic keyboard layout strategy is an appealing defense strategy

against side-channel keystroke inference or shoulder surfing attacks. Such a strategy

is also not far-fetched as a similar concept is currently being used in other types of

commercial products, for instance, to enhance the security of electronic door access

control systems [101]. Ryu et al.[93] also performed a usability evaluation of such

randomized numeric keypads.

Despite the promise, there are two critical technical challenges with respect to

implementing this solution for external or physical QWERTY keyboards. First, the

layout of these keyboards cannot be easily modified; it is possible to modify the

mapping between the physical keys (on the keyboard) to the actual character they

154

represent, however such a keyboard will be extremely challenging to use as the users

will have to memorize the mapping between the physical keys on the keyboard and

the actual characters they represent. Second, even if somehow it was possible to

dynamically change the physical layout of the keyboard, such a change would not

protect against shoulder surfing attacks by an adversary that has covert visual access

of the target keyboard (or the user typing on the keyboard).

With EyePad, we overcome the above technical challenges and propose a system

for randomizing external keyboard layouts by making a novel and interesting use of

augmented reality devices. One key advantage of our proposal is that it is able to

overcome all forms of shoulder surfing attacks, including those possible through direct

visual access of the target keyboard. Our proposal consists of several keyboard layout

randomization strategies, each of which assigns a unique non-standard position to the

keys on the keyboard which is unknown to the adversary. The randomized keyboard

is then projected to the typing user by means of an augmented reality wearable

device. As the randomized keyboard is visually superimposed over the actual physical

keyboard, and is visible only to the typing user through the augmented reality device,

it acts as an effective countermeasure against both side-channel and visual channel-

based keystroke inference or shoulder surfing attacks. We implement our system on

the commercially available EPSON Moverio BT-200 [31] augmented reality device

and validate its performance and effectiveness by means of preliminary empirical

usage data from a small number of test subjects.

155

5.12 EyePad - Related Work

Protection against shoulder surfing attacks have received significant attention in

the literature, with several different solution directions proposed and analyzed. For

instance, Kumar et al. [62] proposed EyePassword, where orientation of the user’s

pupils were used for password entry. The authors further showed that such an ap-

proach requires only marginal additional time over using a keyboard and that the

error rates due to this approach is similar to those of using a keyboard. In order to

thwart shoulder surfing attacks against traditional alphanumeric passwords, graph-

ical passwords was also proposed as an alternative where the user was expected to

select a predetermined image or set of images in a particular order [87, 55]. Human

subject studies showed that such graphical passwords were perceived to provide rea-

sonable protection against visual shoulder-surfing attacks [106], however it was later

showed that those conclusions were not completely valid [125, 65]. More recently,

Yan et al. [119] proposed CoverPad, a leakage-resilient password entry system for

touchscreen mobile devices, where a user is expected to cover the touchscreen (by

hand) to securely read a hidden message that contains information on removing the

correlation between the actual password (or PIN) and the one entered by the user.

One common theme in most (if not all) past research efforts in this direction is that

they focus only on preventing shoulder surfing attacks against authentication infor-

mation such as passwords or PINs. Our proposed design and system protects all

kinds of textual inputs, including, but not limited to, passwords and authentication

information, against both visual and side-channel shoulder surfing attacks.

156

5.13 EyePad - Adversary Model

We consider the scenario of a target user typing on an external or physical QW-

ERTY keyboard and an adversary who intends to carry out a shoulder surfing attack

on the user in order to infer his/her keystrokes. The attacker may carry out the shoul-

der surfing attack using various channels. He may have a covert visual access of the

physical keyboard and the user’s typing activity. This could be achieved by the

adversary surreptitiously watching the target user’s keyboard as he is typing or by

gaining access (either legally or in an unauthorized fashion) to a video feed of the

user’s keyboard and typing activity by means of a camera or a surveillance device. We

assume that the information being typed is protected from visual eavesdropping of

the display screen (or monitor). This is a reasonable assumption as most applications

obfuscate confidential on-screen information or text such as passwords and PINs by

symbols or special characters (e.g. asterisk). Alternatively, the monitor could also

be protected using a privacy screen. It should be noted that these measures do not

protect against an adversary eavesdropping on the keyboard and user’s keystrokes.

If a visual channel is unavailable to the adversary, he may attempt to accomplish the

keystroke inference attack using other forms of information side-channels, such as,

electromagnetic emanations from the keyboard [113], vibrations [77] or acoustic [16]

signals captured during the typing activity, by observing the changes in the radio sig-

nal channel statistics [6] or by capturing the motion information of the typing hand

[71]. As discussed later, our protection mechanism involves the use of commercial

off-the-shelf augmented reality glasses such as EPSON BT-200. We assume that the

157

display of this augmented reality device is visible only to the target user, and that

this device is secured from the adversary.

5.14 EyePad - Proposed Defense Model

Consider the scenario where a user wants to type a sensitive piece of information

on an external QWERTY keyboard in the presence of an eavesdropping adversary,

as shown in Figure 5.13. To obscure keystrokes from the eavesdropping adversary,

we propose the use of randomized keyboard layouts in cohort with an augmented

reality device. In our proposal, the user privately sees a randomized (using strate-

gies explained later) keyboard layout augmentation over the actual keyboard, where

keys are positioned differently from the default QWERTY layout, by means of an

augmented reality device or glasses (shown in Figure 5.13). The augmentation is

done such that the randomized keys are superimposed over the existing keys of the

physical keyboard. This can be achieved with the help of marker (Figure 5.15) or

character recognition [2] of individual keys on the physical keyboard. Also, the aug-

mented reality device establishes a temporary secure wireless link with the computer

(with which the keyboard is attached to) so as to communicate the key mapping

between the randomized augmented layout and the underlying QWERTY layout.

This secure link can be established using widely available wireless technologies, such

as Bluetooth, and made secure using symmetric encryption protocols, such as AES.

Whenever the user presses a key based on observation of the augmented layout,

the computer uses the mapping between the randomized and QWERTY layouts to

substitute the character typed on the physical keyboard with the correspondingly

158

Eavesdropping
Adversary

User Wearing
Augmented Reality

Device

Figure 5.13: The proposed defense model, where the user wearing the augmented
reality device sees and types on the randomized augmented keyboard. The eaves-
dropping adversary can observe only the default QWERTY layout of the physical
keyboard.

placed key in the augmented layout. The adversary, however, can only eavesdrop on

the physical keyboard having the default QWERTY layout. As the adversary does

not see (or is unable to eavesdrop on) the augmented layout and does not have access

to the mapping, it cannot infer the character actually registered by the computer

system.

5.14.1 Randomization Strategies

To prevent keystroke inference attacks, an important task in the proposed system

is to ensure that the layout of the augmented characters is unpredictably different

from the default QWERTY layout. Moreover, as an adversary can gain semantic

knowledge from multiple observations and re-train his attack framework, changing

the augmented keyboard layout just once (or in a very predictable or insignificant

fashion) will not be an effective defense. To prevent an adversary from knowing the

159

Row 2

Row 1

Row 3

Figure 5.14: Assumed rows and columns for RS and CS strategies.

keyboard layout in use at any given time, the change in layout should be randomized.

Accordingly, in our proposed system, every time the user wants to type sensitive text,

a newly randomized keyboard layout is augmented over the physical keyboard. The

new mapping of the randomized layout to the underlying physical keys is also updated

accordingly on the computer side by means of the secure communication link. In

EyePad, we focus on randomization of just the twenty-six alphabets (Figure 5.14),

however it could be easily extended to all keys. Below, we list a few representative

(by no means an exhaustive list) randomization strategies that can be used to change

the keyboard layout:

(i) Individual Key Randomization (IKR): This strategy randomly assigns po-

sitions to each alphabet or letter on the augmented keyboard layout, without any

relation to its actual position on the QWERTY layout. An instance of IKR is shown

in Figure 5.16.

(ii) Row Shifting (RS): In this strategy, the alphabets in each row of the QW-

ERTY layout (rows in Figure 5.14) are circularly left or right shifted by a random

number of keys on the augmented layout. In other words, each alphabet on the

160

Figure 5.15: A QWERTY keyboard with alphabetic markers glued on top of the
corresponding alphabet keys. As a result, the keyboard can be used both in the
regular QWERTY or with the random augmented layout.

Figure 5.16: Randomized augmented keyboard using the IKR strategy, as observed
by the typer on the EPSON Moverio BT-200.

161

Figure 5.17: Randomized augmented keyboard using the RS strategy, as observed
by the typer on the EPSON Moverio BT-200.

Figure 5.18: Randomized augmented keyboard using the CS strategy, as observed
by the typer on the EPSON Moverio BT-200.

162

augmented layout is found on the same row as in the QWERTY layout, however its

position is shifted left or right by a random number of keys.

(iii) Column Shifting (CS): In this strategy, the alphabets in each column of

the QWERTY layout (columns in Figure 5.14) are circularly top or bottom shifted

by a random number of keys on the augmented layout. In other words, in CS

each alphabet on the augmented layout is found on the same column as in the

QWERTY layout, however its position is shifted top or bottom by a random number

of keys. As the column (correspondingly, row in RS) of each alphabet and the

order of alphabets in each column (correspondingly, row in RS) is maintained in CS,

intuitively it appears that it may be comparatively easier for a user to search for an

alphabet on the CS and RS layouts. We want to validate if this is true in practice,

and thus the reason for choosing these two layouts in addition to IKR.

While several additional randomization strategies can be envisioned, for concise-

ness we limit the current discussion to just the above three strategies.

5.14.2 Security Analysis

As the keyboard layout is randomized, the best an adversary (assumed to know

the randomization strategy used by it’s target) can do is guess the mapping between

the randomized and QWERTY layouts. We use the successful guessing probability

to indicate the level of security assurance each randomization strategy provides in

the presence of an eavesdropping adversary. For a particular randomization strategy,

the lower this probability is, the higher the security assurance provided by it.

In IKR, the probability that an adversary correctly guesses the mapping of a

particular alphabet is 1
26

, i.e., uniformly distributed. Moreover, the probability that

163

the adversary guesses the entire mapping correctly is 1
26!

= 2.4 × 10−27, which is

negligibly small. However, in case of RS and CS, the adversary can improve it’s

guessing, based on the relative positioning of key within a row and column, respec-

tively. Knowing that keys within a shifted row remain in (circular) order, for a row

shifted keyboard (RS), the adversary only needs to guess the random length of shift-

ing. The probability that an adversary correctly guesses the length of a row’s shifting

is 1
10

, 1
9
, and 1

7
, for rows 1, 2, 3, respectively (as labeled in Figure 5.14). Therefore,

the probability that the adversary guesses the mapping for all 26 alphabets correctly

is 1
10
× 1

9
× 1

7
= 1.5× 10−3.

Similarly, for CS, the probability that the adversary correctly guesses the length

of random shifting is 1
3

for columns 1 to 7, 1
2

for columns 8 and 9, and 1 for column

10 (as labeled in Figure 5.14). Therefore, the probability that the adversary guesses

the mapping for all 26 alphabets correctly is (1
3
)7 × (1

2
)2 × (1)1 = 1.1× 10−4. Thus,

given the adversary knows the strategy being used, IKR is probabilistically the most

secure while RS is the least secure randomization strategy. However, in practice the

adversary will not know the randomization strategy currently in use, thus making

these strategies even more secure. The security of the system could be further im-

proved by re-randomizing or reshuffling the keyboard at regular intervals by using

a particular randomization technique (and parameters). However, if the keyboard

layout is changed too often, the usability may suffer drastically, because the key-

board will change even before users get habituated to the current one. This trade-off

between security and usability is what we intend to study by means of experiments

involving human participants.

164

Participant
Audio-Visual Typing

Instructions

(White) QWERTY

Keyboard with Markers

Augmented Reality Device

(EPSON Moverio BT-200)

Desk

Figure 5.19: The experimental setup, where a participant is typing on the randomized
augmented keyboard.

5.15 EyePad - Evaluation

To validate the feasibility of the proposed system, we implement a proof-of-

concept prototype and perform preliminary experimentation to evaluate system effi-

ciency and performance parameters such as task completion times and typing accu-

racy. Next, we first present our prototype and experimental setup followed by results

from our evaluation.

5.15.1 Study Design

We perform some preliminary evaluation of our proof-of-concept implementation

with the help of data collected from human participants who use our prototype for

165

typing. Below, we specify our experimental setup, tasks performed by the partici-

pants, and the empirical parameters used in the evaluation.

Experimental Setup: Figure 5.19 depicts the setup used in our evaluation. We

recruited thirteen participants; all of them were familiar with typing on a QWERTY

keyboard. The participants were seated in front of a keyboard, with a display screen

in the background. We chose to use the Anker A7726121 Bluetooth keyboard because

of its generic design. The keyboard was connected to the computer and the alphabet

keys were covered with corresponding alphabetic markers (Figure 5.15). As a result,

the keyboard was usable even as a regular QWERTY keyboard. Participants wore

the EPSON BT-200 augmented reality device during the experiment. The EPSON

BT-200 is equipped with a front facing camera with a resolution of 640× 480 pixels,

which enables augmented reality applications. The BT-200 also features the An-

droid 4.1 platform, and our implementation of the augmented randomized keyboard

was installed as an application. Our implementation of the augmented randomized

keyboard uses the ARToolKit library [59]. We would like to stress, however, that

in practice a specialized and expensive AR hardware, such as, the EPSON BT-200,

is not required. We have also implemented an alternate smartphone application of

our proposed augmented randomized keyboard which can be installed by users on

their AR-friendly smartphones and used in conjunction with an affordable augmented

reality viewer such as Google Cardboard.

Task: The participants were directed with audio-visual instructions on what to type

on the keyboard. In the first part of the experiment, each participant typed all

twenty six alphabets of English language in random order. In the second part of

166

the experiment, each participant typed five familiar words: first name, last name,

hometown, address street, and area of work. In the third part of the experiment,

each participant typed an experimental password of their choice. For the second and

third parts, ground truth was collected beforehand, in order to calculate typing ac-

curacy. Participants repeated all three parts of the experiment four times; in default

QWERTY (without the augmented randomized keyboard turned on), IKR, CS, and

RS. The default QWERTY typing serves as a base line to compare results obtained

in the other three scenarios, where participants type using the augmented random-

ized keyboard. The order of the four typing scenarios was counterbalanced across

participants [13], so as to minimize the chances of order effects. For consistency, the

same instances of randomized keyboards (each for IKR, CS, and RS) are used by all

participants. Participants were also given practice sessions before each part of the

experiment, in order to allow them to get familiarized with the keyboard being used.

Empirical Parameters: In order to evaluate our implementation, we measure two

usage-related parameters for each participant. For evaluating efficiency, we mea-

sure the participants’ typing speed both on the standard QWERTY layout and on

the proposed randomized layouts. Typing speed is measured as the average typing

time (in seconds) per character for all the 100 typed characters. We use the com-

puter’s clock to log these time intervals. For evaluating performance, we measure the

participants’ typing accuracy for both the standard QWERTY and the randomized

layouts. Typing accuracy is measured by enumerating the number of errors during

typing by comparing each character instructed to be typed with the character ac-

tually typed by the participant. In addition to usage-related parameters, we also

167

measure the users’ perceived workload by using a standard metric such as NASA

Task Load Index (NASA-TLX) [41].

5.15.2 Results

We outline results and observations from our experiments below.

Typing Speed: The average time taken by all thirteen participants to type

a key on the default QWERTY keyboard (with augmentation turned off) was 2.03,

1.80, and 2.37 seconds for random letters, familiar words, and password, respectively.

Readers should note that this measurement includes the time taken by participants to

hear/see the alphabet to type, search of the corresponding alphabet on the keyboard,

and then key it. When the randomized keyboard augmentation was turned on with

the IKR randomization strategy, the average time taken by the thirteen participants

to type a key increased to 3.13, 3.15 and 3.36 seconds, respectively. Following a

similar trait, in cases of CS and RS randomization strategies, the mean time taken

by the thirteen participants to type a key increased (with respect to the QWERTY

layout) to 2.58, 2.93 and 3.20 seconds, and 2.94, 2.84 and 3.19 seconds, respectively.

Averaged results from each typing scenario are presented in Figure 5.20. These

results suggest that there is a notable increase in task completion time with the

use of randomized augmented keyboards. As mentioned by some of the participants

who are habitual with touch-typing, significant time was used up in searching for

particular alphabets on the randomized (IKR) keyboard. A noteworthy observation

is that the typing speed is slightly higher on keyboards randomized with RS and

CS strategies, compared to IKR. Intuitively, this is due to the fact that a subset of

168

0

0.5

1

1.5

2

2.5

3

3.5

4

QWERTY IKR CS RS

A
v
er

ag
e

K
ey

st
ro

ke
 I

n
te

rv
al

 (
S

ec
o
n

d
s)

Random Letters Familiar Words Password

Figure 5.20: Average time taken by the thirteen participants to type random letters,
familiar words, and password, using default QWERTY, IKR, CS, and RS layouts.

keys stay relatively in the same position as on the QWERTY layout. Therefore, it

somewhat eases the process of key search.

Typing Accuracy: The average typing accuracy for all thirteen participants in

typing a key on the default QWERTY keyboard (with augmentation turned off) was

94.37%, 93.78%, and 99% for random letters, familiar words, and password, respec-

tively. When the randomized keyboard augmentation was turned on with the IKR

randomization strategy, the average accuracy for all thirteen participants in typing

a key dropped marginally to 93.19%, 93.19%, 98.53%, respectively. However, typ-

ing accuracies in CS (92.89%, 94.08%, 98.53%) and RS (93.78%, 94.37%, 97.76%)

randomization strategies were similar to the QWERTY keyboard, if not better. Av-

eraged results from each typing scenario are presented in Figure 5.21. After the

experiment was completed, one of the participants expressed concerns about the lag

in rendering of the keys, especially noticeable when the user moves his/her head.

169

50

55

60

65

70

75

80

85

90

95

100

QWERTY IKR CS RS

T
y

p
in

g
 A

cc
u

ra
cy

 (
%

)

Random Letters Familiar Words Password

Figure 5.21: Average typing accuracy achieved by the thirteen participants to type
random letters, familiar words, and password, using default QWERTY, IKR, CS,
and RS layouts.

The delay in rendering may have confused the participants, and lead to longer task

completion times and/or more errors in typing. Therefore, results suggest that if

some of the issues with our proof-of-concept prototype are resolved, typing accuracy

can be comparable to typing on default QWERTY keyboards. Readers may notice

that password typing took the longest and was also more accurately typed than the

random letters and familiar words. This occurrence is primarily because the par-

ticipants had to carefully recall and type the experimental password (chosen at the

beginning of the study), which most likely is not their real password.

Perceived Task Load: The NASA-TLX is a multidimensional scale to measure

the perceived workload, including, the mental, physical and temporal demand, overall

performance, frustration level and effort. We employ this scale in our experiments

to capture the task load imposed on participants in using the augmented random

keyboard. Figure 5.22 shows the average overall score as well as the six individual

170

0

10

20

30

40

50

60

70

Overall
Score

 Mental Physical Temporal Perform Effort Frustration

T
L

X
 S

co
re

Figure 5.22: Results from the NASA-TLX assessment, taken by participants after
completing the study.

sub-scales. Using augmented random keyboard was perceived by participants to be

mentally demanding and complex (59.61 - Mental). Participants also felt that the

task required significant effort to accomplish (61.61 - Effort). Participants were also

not entirely satisfied with the performance of our implementation (27.76 - Perform).

However, the physical activity required and time pressure felt due to the pace at

which the tasks were being completed are notably low (30.07 - Physical, 37.53 -

Temporal). Participants felt moderately content, relaxed, and complacent during

the task (44.07 - Frustration).

5.16 EyePad - Discussion

Generalization to Other Keyboards: One advantage of our proposed design

is that it can be easily generalized and deployed across different types of key-

boards/keypads. The use of character recognition, instead of the exemplary marker

171

recognition used in our prototype, will enable such a generalized design. One appli-

cation of such a generalized design can be found in systems such as ATM machines.

Numeric keypads on ATMs, due to their open or unrestricted locations, are the most

prone to shoulder surfing attacks. The proposed system could be used in this sce-

nario, where a users’ augmented reality device could communicate with the ATM

by means of a secured wireless channel to exchange a per-transaction randomized

layout. This layout can then be augmented over the actual numeric keypad of the

ATM machine and made visible only to the user by means of his/her augmented

reality device.

Hardware Limitations: The hardware and software of the augmented reality de-

vice plays a crucial role in the design and implementation of the proposed system.

For example, the camera resolution of the EPSON BT-200 is extremely low (640×480

pixels), which makes marker recognition error-prone and difficult, especially if the

user is at a distance from the keyboard (and the markers). We were also restricted

by the limitations of the processor on the EPSON BT-200 which resulted in a notice-

able lag in rendering when the user moved his/her head. We are hopeful that these

limitations will be resolved with advances in augmented reality device technology.

Usability: As evident from our preliminary evaluation, typing on a randomized

augmented reality keyboard requires some extra time and effort from the user. The

next logical advancement in this direction would be to conduct a comprehensive

usability study with the help of a significant number of participants, natural typing

experiments, and standard usability metrics, such as SUS [19].

172

5.17 EyePad - Conclusion

We proposed EyePad, a novel technique to overcome various forms of shoulder

surfing attacks against a user typing on an external physical QWERTY keyboard.

Our proposal augments a randomized key layout, unknown to the adversary, over

the actual QWERTY keyboard, which only the typing user can see by means of an

augmented reality device. Our preliminary experimentation involving three different

randomization strategies showed that keyboard randomization and augmentation

does increase the time required by users to complete their typing tasks. In certain

cases, it also introduced additional errors during typing. Despite its promise, these

issues along with the usability of the proposed system requires further investigation.

Parts of this chapter appeared in [72, 76].

173

CHAPTER 6
PROTECTING USER INTERACTIONS: RUN-TIME

6.1 Introduction

As evident from our experimental results in Chapters 2, 3 and 4, the threat to

privacy posed by side-channel attacks using wearable devices is substantial. How-

ever, there have been very limited efforts from the research community to effectively

defend against such side-channel attacks in a user-friendly fashion. None of the

recent works on side-channel keystroke inference attacks propose or implement a

practical protection mechanism. Some of the previous work using smartphone sen-

sors as side-channels, briefly suggest operating system developers to provide users

with fine-grained control over application’s permissions to every sensors [23]. But

without knowing which application is malicious, the user may have to toggle sen-

sor access back and forth for all the installed applications. Other research efforts

vaguely suggest to restrict the precision at which applications are allowed to access

the sensors [86, 79, 74]. However, regulating sensor precision will result in poor ap-

plication performance, for example, gaming applications will have slow controls and

response, mapping applications will be delayed/inaccurate, etc. Moreover, some sen-

sors (such as camera and microphone) will be rendered unusable at very low sampling

rates. In the more recent work using smartwatches as a side-channel [115], Wang

et al. completely overlooked the necessity of having protection mechanisms. In this

chapter, we not only demonstrate the feasibility of keystroke inference attacks using

174

smartwatches as a side-channel, but we also design, implement, and evaluate a new

context-aware protection framework to defend against such attacks.

While design-time protection mechanisms presented in Section 5 are able to pre-

vent such attacks in some form, they require specially designed interfaces, which

may not be readily available. In this chapter, our goal is to show the effectiveness

and usability of run-time protection measures running on the wearable devices and

using contextual information to dynamically regulate zero-permission sensor data,

when users are detected to be vulnerable to a known inference attack. In this direc-

tion, we propose and implement a new context-aware protection framework which

can automatically activate various protection mechanisms whenever typing activity

on an external keyboard is detected. We also empirically evaluate the protection

framework in real-life usage scenario.

6.2 Run-Time Protection for External Keyboards

Our proposed attack for external keyboards in Chapter 3 demonstrates the need

for reforms on how sensors on smartwatches, and other wearable devices, are accessed

by applications. Even innocuous sensors can be used as side-channels to indirectly

infer private information. However, there is no straightforward remedy to such pri-

vacy threats. In this section, we present a smart countermeasure to prevent such

attacks in future.

The simplest way to protect against the presented attack would be to remove

the smartwatch from wrist while typing. But repetitive removal of the watch (and

remembering when to remove) can become a burden for the user, as a result of which,

175

MSAC

Sensors

Linear
Accelerometer

Accelerometer Magnetometer Pedometer

rTAD

En
er

gy

St
ep

 C
o

u
n

t

M
ag

n
et

ic
 F

ie
ld

C

h
an

ge

D
ir

e
ct

io
n

 o
f

G
ra

vi
ty

Tu
rn

ar
o

u
n

d
s

Other Motion
Sensors

Yes No

User
Typing?

Untrusted 3rd Party Applications

Figure 6.1: The protection framework against keystroke inference attacks. Third
party applications get unrestricted access to motion sensors only when rTAD reports
that the user is not typing at the moment.

the user may choose to ignore the threat altogether. To draw a favorable balance

between utility, usability and privacy while using wearable devices, we need smarter

sensor access controls. We feel that sensor access controls need to be context-aware

in order to automatically manage an application’s sensor permissions, without hav-

ing the user to manually change these settings repetitively. As part of our efforts

to prevent smartwatch based side-channel inference attacks demonstrated earlier in

Chapter 3, we design, implement and evaluate a context-aware access control frame-

work for smartwatch sensors. The framework (Figure 6.1) consists of two key com-

ponents: (i) a real-time typing activity detection (rTAD) and (ii) a motion sensor

access-controller (MSAC). Preliminary evaluations of the framework lead us to very

promising results.

176

1

2

3 Ground Truth Typing
Typing Activity Ground

Truth

Recognition Recognition
Typing Activity Recognition

(1 detection)

Typing Activity
Detection

15 minutes time
segment

Classification Result FN TP TN FP

(a) N=1

1

2

3 Ground Truth Typing
Typing Activity Ground

Truth

Recognition Recognition
Typing Activity Recognition

(2 detections within a minute)

Typing Activity
Detection

15 minutes time
segment

Classification Result FN TP TN FP

(b) N=2

Figure 6.2: From bottom to top, (1) the 10 second detection windows where typing
was detected are marked in red vertical lines, (2) when N detections occurs within a
minute, typing activity is recognized for that 15 minute time segment, and (3) the
ground truth collect by prompting the participant.

177

6.2.1 Typing Activity Recognition

Detecting when a smartwatch user is typing on a keyboard is not as straight-

forward as detecting contexts such as location or temperature. Running complex

machine learning based classification on very limited processors of smartwatches is

not a practical solution. Moreover, rTAD must be real-time so that protection mea-

sures can be activated proactively. The second bottleneck is the limited battery

capacity. Sampling sensors at high frequency and performing complex computations

discharges the smartwatch battery rapidly, requiring frequent recharge of the device.

For example, continuous sampling of the accelerometer and gyroscope at 50 Hz on

our Samsung Gear Live smartwatch completely drains the battery in less than an

hour of use, which will severely affect the usability. From these observations it is

evident that we have to identify features which are easy to compute and compatible

with low sensor sampling rates. However, reducing sampling frequency also means

compromising the accuracy of classification. To compensate the reduction in sam-

pling frequency, we design features using a assorted set of motion sensors (sampled

at approximately 15 Hz) in order to make a highly perceptive decision. Following

are the five feature we incorporate in our proposed rTAD component:

• Energy: Activity measured in terms of cumulative linear accelerometer read-

ings. An unworn watch lying on a table has zero energy, while an athlete’s

watch has high energy. Typing activity typically results in low but non-zero

energy. We apply a low pass filter over the linear accelerometer to eliminate

high-frequency noise caused by environmental factors.

178

• Turnarounds: Major positive to negative (or vice versa) changes on linear ac-

celerometer readings signify the turnarounds adjoining transitional movements

between key presses. Multiple turnarounds in close time proximity can be as-

sociated with many activities, such as brushing teeth, eating, playing drums,

etc. As a result, we need additional features to distinguish typing from other

similar activities.

• Magnetic Field Change: Wrists are not rotated significantly when a user

types on a QWERTY keyboard, while sitting in front of a stationary desk.

Rapid change in north, east and nadir vectors implies non-typing activity.

• Direction of Gravity: Gravity generally remains dominant on z-axis of ac-

celerometer while typing on a horizontally placed keyboard. Any major fluc-

tuations or gravity on x-axis or y-axis implies other activities.

• Step Count: We assume that the user will be stationary while typing on a

computer keyboard. Thus, whenever step count increases, we rule out typing

activity.

At the end of every 10 seconds, rTAD conducts a binary classification of weather

the user typed in the last 10 seconds or not. All features for the binary classification

resets at the starting of the next 10 second window. The cutoff parameters for

Energy and Turnarounds features are calculated using the test data collected in

Section 5.15, whereas cutoff parameters for Magnetic Field Change and Direction

of Gravity features are calculated heuristically. Cutoff parameter for Step Count is

straightforward, because any increase in the pedometer count indicates walking. The

179

Table 6.1: The rTAD’s binary classification uses the following parameters. At the
end of each 10 second windows, if any of the features are outside these parameter
ranges, then non-typing activity is identified, and vice versa.

Feature Parameters Ranges

Energy >= 10 and <= 200, after applying low-
pass filter

Turnarounds >= 6

Magnetic Field Change <= 2 samples with change in north di-
rection

Direction of Gravity >= 5 samples with fluctuations, or
gravity on x-axis or y-axis

Step Count <= PreviousStepCount

exact cutoff parameters of each feature used in our evaluation of rTAD can be found

in Table 6.1.

Like many other activity recognition problems, there is an inverse relationship

between precision (number of actual typing instances divided by number of all identi-

fied typing instances) and recall (number of identified actual typing instances divided

by number of actual typing instances), where it is possible to increase one at the cost

of reducing the other. A common approach to draw a favorable balance between

false positives and false negatives is to ‘recognize’ an activity only when multiple

instances of the activity are detected in close time proximity [107]. However, the use

of rTAD is very different than most informative activity detection applications. The

purpose of rTAD is to enable countermeasures against keystroke inference attacks

as soon as typing activity is identified. In other words, rTAD’s goal is to maximize

180

recall, but not to an extent where high false positives start affecting the utility of

other non-malicious applications installed on the smartwatch. We evaluate rTAD in

two different settings (visually explained in Figure 6.2):

• N=1: Typing activity is recognized whenever a 10 second window is classified

as a typing window. As a result, countermeasures against keystroke inference

attacks can be initiated as early as 10 seconds from when the user starts typing.

• N=2: Typing activity is recognized when two or more 10 second windows

are classified as typing windows within a minute. Countermeasures against

keystroke inference attacks can be initiated no sooner than 20 seconds from

when the user starts typing.

6.2.2 Protection

Once rTAD identifies that the user is typing, countermeasures against keystroke

inference attacks can be activated automatically in an non-intrusive fashion. And

since the protection mechanism is activated only when the user is identified to be

typing on a keyboard, the utility of the motion sensors is not affected when user

is actively using other applications on the smartwatch (such as playing games that

use motion sensors). Such smart protection measures can be undertaken by the

MSAC implemented in the operating system itself, or as a trusted middle-ware. For

the framework to work, we assume that all third party applications get access to

motion sensor data only via the MSAC and the MSAC has the ability to modify or

restrict the flow of motion sensor data. Although this assumption requires change in

operating system architecture, it should be a rudimentary task for operating system

181

developers. Also, it should be noted that this assumption does not require changes in

existing third party application, as long as the APIs to access motion sensors remain

unchanged. Since MSAC requires a change in the operating system architecture, we

are unable to implement a working MSAC. However, below we list out some of the

strategies that the MSAC can adopt when rTAD reports that the user is typing:

• Complete Blocking: This strategy is the safest as it will completely block the

side-channel, but it can also harm the utility of other non-malicious applications

that may want to perform passive computing with motion data.

• Reduced Sampling Rate: When a user types for significant amount of time

in a day, complete blocking of the motion sensor data from third party applica-

tions can greatly harm the utility of other non-malicious applications. In order

to preserve some of the utility, MSAC can provide third party applications

access to motion sensors at a reduced sampling rate. Restricting the precision

at which applications are allowed to access the sensors reduces the efficiency of

side-channel attacks [86, 79].

• Random Out of Order Blocks: A smarter MSAC can send out of order

blocks of sensor readings to third party applications. Random out of order

blocks of sensor data can greatly lower the inference accuracy of side-channel

attacks, but may still preserve utility for certain non-malicious application.

For example, a daily calorie counter may not be significantly affected by out

of order blocks of sensor readings. That is because the calorie count will be

accurate as long as all the motions are captured by the application, even if out

182

of order. Size of block and randomization algorithm will play a signification

role in determining how much an adversary can recover versus the utility of

randomly ordered blocks.

There can be other strategies that the MSAC can adopt as well. We think that it

will be best if users are allowed to choose among the MSAC protection strategies,

suitable for their personal lifestyles.

6.2.3 Evaluation

We implement and evaluate our proposed rTAD, because the effectiveness of

the entire protection mechanism relies on rTAD. To evaluate rTAD, we use the

same smartwatch setup detailed in Section 3.4.3. Preliminary evaluation involved

4 participants with varied lifestyles wearing the watch for long durations. If the

rTAD application does not recognize typing activity, it prompts the participant every

15 minutes to collect ground truth. If the rTAD application does recognize typing

activity, it prompts the user immediately for ground truth. In case the user continues

to type for long period of time, the rTAD application does not ask the user for

ground truth for 15 minutes after the initial detection. This avoids annoyance to the

participants and results in equitable ground truth collection. In real usage, the user

will not be prompted for ground truth, instead the MSAC will automatically start

acting as soon as typing activity is reported by rTAD.

One problem that we encountered when evaluating rTAD was that in certain cases

the Magnetic Field Change feature acted unexpectedly, introducing a lot of error in

classification. We observed that the unexpected behavior occurred only while the

183

participant typed on a laptop. Further investigation revealed that the magnet inside

the laptop’s hard drive (which are normally installed directly under the keyboard)

was responsible for this unexpected behavior. Since desktop keyboards are generally

placed away from the hard drives, the Magnetic Field Change feature performed in

an expected fashion in that case. For the remainder of the evaluation we do not use

the Magnetic Field Change feature because it will be hard for the participants to

remember and distinguish between laptop and desktop typing. However, as laptops

featuring non-magnetic solid state drives are becoming popular, the Magnetic Field

Change feature may eventually become useful in future.

The combined true positives (TP), true negatives (TN), false positives (FP), and

false negatives (FN) results from the 4 participants are shown in Figure 6.3. To

better visualize the difference between the two settings, the values in Figure 6.3 are

normalized with respect to the total number of ground truth collected in each setting.

As explained with examples in Figure 6.2, TP signifies that the user was typing and

rTAD correctly identified that the user was typing, and if rTAD failed to recognize

that the user was typing, it was recorded as FN. Similarly, TN signifies that the user

was not typing and rTAD correctly identified that the user was not typing, and if

rTAD identified that the user was typing, it was recorded as FP.

In case of N=1, we observe lesser FN and higher TP, but at the cost of higher

FP. In case of N=2, we observe lower FP, but at the cost of lower TP and higher

FN. In other words, rTAD can gain recall by trading-off precision, and vice versa.

Nevertheless, in both settings rTAD achieved high recall values, which asserts it’s

effectiveness in the protection framework.

184

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

TP TN FP FN TP TN FP FN

N=1 N=2

Precision = 0.585106383
Recall = 0.948275862

Precision = 0.867088608
Recall = 0.85625

Figure 6.3: Normalized true positive (TP), true negative (TN), false positive (FP),
and false negative (FN), along with precision and recall values.

6.2.4 Discussions

• Left or Right: Our keystroke inference attack framework, presented earlier in

Chapter 3, requires the adversary to have a differently trained framework for

targets wearing watch on their right hand. However, the design of rTAD (and

thus the whole protection framework) makes it independent of which hand the

smartwatch is worn on. As a result, rTAD can start working out of the box,

without manual setup.

• Usability: Our primary focus while designing the protection framework was

usability. We work towards a low processor intensive design, which in turn

consumes low battery power. We identify activities similar to typing on key-

board, and try to minimize false positives. The protection mechanism works in

an non-intrusive fashion as well, and we envision that the entire setup process

in a real-life implementation will be very simple.

185

• Non-Motion Sensor Features: We restrict ourselves to features from sensors

accessible by any third party application without explicit permissions from

the user. While it may be beneficial for rTAD to use other sensors as well

(such as, using the GPS sensors to track if the user is stationary), we decided

otherwise. The primary reason behind this decision is that, in case rTAD is not

implemented within the operating system, but installed as a trusted middle-

ware, we do not want rTAD to have access to additional sensors. So, even if

the trusted middle-ware misbehaves, it will not have access to any more sensor

data than what is currently accessible to all third party applications.

6.3 Conclusion

We proposed and evaluated a run-time protection framework to automatically

regulate zero-permission sensor access, aimed to improve typing activity privacy with-

out degrading the utility of wearable devices. Our run-time protection mechanism

can also be trivially extended to protect users performing other sensitive activities.

For example, when users are opening a combination padlock or safe as presented in

Chapter 4, a run-time protection framework can utilize the unlocking activity recog-

nition technique (Section 4.4.3) to detect the sensitive activity and start regulating

the zero-permission sensors.

Parts of this chapter appeared in [71].

186

CHAPTER 7
CONCLUSION

The first part of this dissertation was focused on developing a comprehensive

technical understanding of the privacy risks associated with inference of private user

interactions with other cyber and physical systems, primarily using wrist-wearables.

A detailed evaluation of novel attack frameworks validated the feasibility of inference

attacks on both cyber interfaces, such as mobile keypads and computer keyboards,

and on physical systems, such as combination padlocks and safes. The feasibility

of these attacks implies that manufacturers and developers should conduct critical

security and privacy analysis before introducing any new wearable device and/or

zero-permission sensor. It also indicates that new technologies, beyond wearables,

should also be throughly scrutinized before they make their way to consumers.

The second part of this dissertation was aimed to protect user interactions by

proposing new protection mechanisms, which took two different strategies. The

proposed design-time protection mechanisms tries to prevent inference attacks by

altering the interaction interfaces, and run-time protection mechanisms use contex-

tual information to dynamically regulate zero-permission sensor data when users are

detected to be vulnerable to a known inference attack. The usability of some of

these protection mechanisms were comprehensively studied with the help of human

subjects.

187

BIBLIOGRAPHY

188

BIBLIOGRAPHY

[1] IEEE Recommended Practices for Speech Quality Measurements. IEEE Trans-
actions on Audio and Electroacoustics (1969).

[2] Abawi, Daniel F, Bienwald, Joachim, and Dorner, Ralf. Accuracy in Optical
Tracking with Fiducial Markers: An Accuracy Function for ARToolKit. In
ACM International Symposium on Mixed and Augmented Reality (ISMAR)
(2004).

[3] aBlogtoWatch. Poll: What is Your Hand-Orientation & What
Wrist Do You Wear Your Watch On? www.ablogtowatch.com/

poll-your-hand-orientation-what-wrist-wear-your-watch/. Online; ac-
cessed 2017-06-07.

[4] Adelson, Edward H. Perceptual Organization and the Judgment of Brightness.
Science 262 (1993).

[5] Agrawal, Dakshi, Archambeault, Bruce, Rao, Josyula R, and Rohatgi, Pankaj.
The EM Side-channel(s). In Cryptographic Hardware and Embedded Systems
(2002).

[6] Ali, Kamran, Liu, Alex Xiao, Wang, Wei, and Shahzad, Muhammad.
Keystroke Recognition using WiFi Signals. In ACM International Conference
on Mobile Computing and Networking (MobiCom) (2015).

[7] Altun, Kerem, and Barshan, Billur. Human activity recognition using iner-
tial/magnetic sensor units. In International Workshop on Human Behavior
Understanding (2010), Springer.

[8] Asonov, Dmitri, and Agrawal, Rakesh. Keyboard Acoustic Emanations. In
IEEE Symposium on Security and Privacy (2004).

[9] Aviv, Adam J, Sapp, Benjamin, Blaze, Matt, and Smith, Jonathan M. Prac-
ticality of accelerometer side channels on smartphones. In ACM Annual Com-
puter Security Applications Conference (ACSAC) (2012).

[10] Backes, Michael, Chen, Tongbo, Duermuth, Markus, Lensch, Hendrik, and
Welk, Martin. Tempest in a teapot: Compromising reflections revisited. In
IEEE Symposium on Security and Privacy (2009).

189

[11] Backes, Michael, Dürmuth, Markus, Gerling, Sebastian, Pinkal, Manfred, and
Sporleder, Caroline. Acoustic Side-Channel Attacks on Printers. In USENIX
Security Symposium (2010).

[12] Backes, Michael, Durmuth, Markus, and Unruh, Dominique. Compromising
Reflections-or-How to Read LCD Monitors Around the Corner. In IEEE Sym-
posium on Security and Privacy (2008).

[13] Bailey, Rosemary A. Design of comparative experiments, vol. 25. Cambridge
University Press, 2008.

[14] Barisani, Andrea, and Bianco, Daniele. Sniffing Keystrokes with
Lasers/Voltmeters. Black Hat USA (2009).

[15] Beck, E, Christiansen, M, Kjeldskov, Jesper, Kolbe, Nikolaj, and Stage, Jan.
Experimental evaluation of techniques for usability testing of mobile systems
in a laboratory setting. In Australian Conference on Human-Computer Inter-
action (2003).

[16] Berger, Yigael, Wool, Avishai, and Yeredor, Arie. Dictionary Attacks using
Keyboard Acoustic Emanations. In ACM Conference on Computer and Com-
munications Security (CCS) (2006).

[17] Blaze, Matt. Rights amplification in master-keyed mechanical locks. IEEE
Security & Privacy (2003).

[18] Blaze, Matt. Safecracking for the computer scientist. U. Penn CIS Department
Technical Report (2004).

[19] Brooke, John, et al. SUS-A quick and dirty usability scale. Usability evaluation
in industry 189, 194 (1996).

[20] Cai, Liang, and Chen, Hao. Touchlogger: Inferring keystrokes on touch screen
from smartphone motion. In USENIX Summit on Hot Topics in Security (Hot-
Sec) (2011).

[21] Cai, Liang, and Chen, Hao. On the practicality of motion based keystroke infer-
ence attack. In International Conference on Trust and Trustworthy Computing
(2012), Springer.

[22] Cai, Liang, Machiraju, Sridhar, and Chen, Hao. Defending against sensor-
sniffing attacks on mobile phones. In ACM MobiHeld Workshop (2009).

190

[23] Cappos, Justin, Wang, Lai, Weiss, Rebecca, Yang, Yi, and Zhuang, Yanyan.
BlurSense: Dynamic Fine-Grained Access Control for Smartphone Privacy. In
IEEE Sensors Applications Symposium (2014).

[24] Caruana, Rich, Niculescu-Mizil, Alexandru, Crew, Geoff, and Ksikes, Alex.
Ensemble selection from libraries of models. In International Conference on
Machine Learning (ICML) (2004).

[25] Conti, Mauro, Nguyen, Vu Thien Nga, and Crispo, Bruno. CRePE: Context-
Related Policy Enforcement for Android. In Information Security. Springer,
2010.

[26] Crager, Kirsten, Maiti, Anindya, Jadliwala, Murtuza, and He, Jibo. Informa-
tion leakage through mobile motion sensors: User awareness and concerns. In
European Workshop on Usable Security (EuroUSEC) (2017).

[27] Deisenroth, Marc Peter, and Ohlsson, Henrik. A general perspective on gaus-
sian filtering and smoothing: Explaining current and deriving new algorithms.
In IEEE American Control Conference (2011).

[28] Denney, K., Uluagac, A. S., Akkaya, K., and Bhansali, S. A novel storage
covert channel on wearable devices using status bar notifications. In IEEE
Annual Consumer Communications Networking Conference (CCNC) (2016).

[29] Dewri, Rinku, Annadata, Prasad, Eltarjaman, Wisam, and Thurimella, Ra-
makrishna. Inferring trip destinations from driving habits data. In ACM
Workshop on Privacy in the Electronic Society (2013).

[30] Dix, Alan. Human-Computer Interaction. Springer, 2009.

[31] EPSON. Moverio BT-200. www.epson.com/MoverioBT200. Online; accessed
2017-06-07.

[32] Faruque, Al, Abdullah, Mohammad, Chhetri, Sujit Rokka, Canedo, Ar-
quimedes, and Wan, Jiang. Acoustic Side-Channel Attacks on Additive Manu-
facturing Systems. In ACM/IEEE International Conference on Cyber-Physical
Systems (ICCPS) (2016).

[33] Felt, Adrienne Porter, Finifter, Matthew, Chin, Erika, Hanna, Steve, and Wag-
ner, David. A survey of mobile malware in the wild. In ACM CCS Workshop
on Security and Privacy in Smartphones and Mobile Devices (SPSM) (2011).

191

[34] Foo Kune, Denis, and Kim, Yongdae. Timing Attacks on PIN Input Devices. In
ACM Conference on Computer and Communications Security (CCS) (2010).

[35] Friedman, Jeffrey. Tempest: A Signal Problem. NSA Cryptologic Spectrum
(1972).

[36] Fukano, Jun, Mashita, Tomohiro, Hara, Takahiro, Kiyokawa, Kiyoshi, Take-
mura, Haruo, and Nishio, Shojiro. A next location prediction method for
smartphones using blockmodels. In IEEE Virtual Reality (VR) (2013).

[37] Haigh, Ruth. The Ageing Process: A Challenge for Design. Applied Ergonomics
24, 1 (1993).

[38] Halevi, T., and Saxena, N. A closer look at keyboard acoustic emanations:
Random passwords, typing styles and decoding techniques. In ACM Sympo-
sium on Information, Computer and Communications Security (ASIACCS)
(2012).

[39] Hall, Mark, Frank, Eibe, Holmes, Geoffrey, Pfahringer, Bernhard, Reutemann,
Peter, and Witten, Ian H. The weka data mining software: an update. In
ACM SigKDD Explorations Newsletter 11, 1 (2009).

[40] Han, Jun, Owusu, Emmanuel, Nguyen, Le T, Perrig, Adrian, and Zhang, Joy.
Accomplice: Location inference using accelerometers on smartphones. In IEEE
International Conference on COMmunication Systems & NETworkS (2012).

[41] Hart, Sandra G, and Staveland, Lowell E. Development of NASA-TLX (Task
Load Index): Results of Empirical and Theoretical Research. Advances in
Psychology 52 (1988).

[42] Hayashi, Yuichi, Homma, Naofumi, Miura, Mamoru, Aoki, Takafumi, and
Sone, Hideaki. A threat for tablet pcs in public space: Remote visualiza-
tion of screen images using em emanation. In ACM Conference on Computer
and Communications Security (CCS) (2014).

[43] Hemminki, Samuli, Nurmi, Petteri, and Tarkoma, Sasu. Accelerometer-based
transportation mode detection on smartphones. In ACM Conference on Em-
bedded Networked Sensor Systems (2013).

[44] Ho, Bo-Jhang, Martin, Paul, Swaminathan, Prashanth, and Srivastava, Mani.
From pressure to path: Barometer-based vehicle tracking. In ACM BuildSys
(2015).

192

[45] Hojjati, Avesta, Adhikari, Anku, Struckmann, Katarina, Chou, Edward,
Tho Nguyen, Thi Ngoc, Madan, Kushagra, Winslett, Marianne S, Gunter,
Carl A, and King, William P. Leave Your Phone at the Door: Side Chan-
nels that Reveal Factory Floor Secrets. In ACM Conference on Computer and
Communications Security (CCS) (2016).

[46] Holmes, Ashton, Desai, Sunny, and Nahapetian, Ani. Luxleak: capturing com-
puting activity using smart device ambient light sensors. In ACM Workshop
on Interacting with Smart Objects (SmartObjects) (2016).

[47] Huang, Kuo-Ying. Challenges in Human-Computer Interaction Design for Mo-
bile Devices. In IAENG World Congress on Engineering and Computer Science
(2009).

[48] Huebler, Michael. The New Master Lock Speed Dial /ONE Combination Pad-
lock - An Inside View. In Hacking at Random (2009).

[49] Humayoun, Shah Rukh, Hess, Steffen, Kiefer, Felix, and Ebert, Achim. Pat-
terns for Designing Scalable Mobile App User Interfaces for Multiple Platforms.
In British Human Computer Interaction Conference (2014), BCS.

[50] IDC.com. Wearables Aren’t Dead, They’re Just Shifting Focus as the Market
Grows 16.9% in the Fourth Quarter, According to IDC. www.idc.com/getdoc.
jsp?containerId=prUS42342317/. Online; accessed 2017-06-07.

[51] Iqbal, Muhammad Usman, and Lim, Samsung. Privacy implications of auto-
mated gps tracking and profiling. IEEE Technology and Society Magazine 29,
2 (2010).

[52] Ishida, Masamitsu, Frank, Paul H, Doi, Kunio, and Lehr, James L. High
Quality Digital Radiographic Images: Improved Detection of Low-Contrast
Objects and Preliminary Clinical Studies. Radiographics 3, 2 (1983).

[53] Jackson, Wallace. Android UI Layout Conventions, Differences and Ap-
proaches. In Pro Android UI. Springer, 2014.

[54] Jahrer, Michael, Töscher, Andreas, and Legenstein, Robert. Combining pre-
dictions for accurate recommender systems. In ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD) (2010).

193

[55] Jermyn, Ian, Mayer, Alain, Monrose, Fabian, Reiter, Michael K., and Rubin,
Aviel D. The Design and Analysis of Graphical Passwords. In USENIX Security
Symposium (1999).

[56] Jones, Matt, and Marsden, Gary. Mobile Interaction Design. John Wiley &
Sons, 2006.

[57] Karatas, Cagdas, Liu, Luyang, Li, Hongyu, Liu, Jian, Wang, Yan, Tan, Sheng,
Yang, Jie, Chen, Yingying, Gruteser, Marco, and Martin, Richard. Leveraging
Wearables for Steering and Driver Tracking. In IEEE International Conference
on Computer Communications (INFOCOM) (2016).

[58] Karen Scarfone. The Next BYOD Challenge for Feds: Wear-
ables. https://fedtechmagazine.com/article/2017/05/

next-byod-challenge-feds-wearables. Online; accessed 2017-06-07.

[59] Kato, Hirokazu. Inside ARToolKit. In IEEE International Workshop on Aug-
mented Reality Toolkit (2007).

[60] Kuhn, Markus G. Optical Time-Domain Eavesdropping Risks of CRT Displays.
In IEEE Symposium on Security and Privacy (2002).

[61] Kuhn, Markus G, and Anderson, Ross J. Soft Tempest: Hidden Data Trans-
mission Using Electromagnetic Emanations. In Information Hiding, Lecture
Notes in Computer Science (1998).

[62] Kumar, Manu, Garfinkel, Tal, Boneh, Dan, and Winograd, Terry. Reducing
Shoulder-Surfing by Using Gaze-Based Password Entry. In Symposium On
Usable Privacy and Security (SOUPS) (2007).

[63] Kwapisz, Jennifer R, Weiss, Gary M, and Moore, Samuel A. Activity recog-
nition using cell phone accelerometers. ACM SigKDD Explorations Newsletter
12, 2 (2011).

[64] Kwon, Taekyoung, Shin, Sooyeon, and Na, Sarang. Covert Attentional Shoul-
der Surfing: Human Adversaries Are More Powerful than Expected. IEEE
Transactions on SMC: Systems 44, 6 (2014).

[65] Lashkari, Arash Habibi, Abdul Manaf, Azizah, Masrom, Maslin, and Daud,
Salwani Mohd. Security evaluation for graphical password. In Digital Infor-
mation and Communication Technology and Its Applications: International
Conference (DICTAP) (2011), Springer.

194

[66] LG User Guide. Lock screen. www.lg.com/us/mobile-phones/VS985/

Userguide/426.html. Online; accessed 2017-06-07.

[67] Li, Mengyuan, Meng, Yan, Liu, Junyi, Zhu, Haojin, Liang, Xiaohui, Liu, Yao,
and Ruan, Na. When csi meets public wifi: Inferring your mobile phone pass-
word via wifi signals. In ACM Conference on Computer and Communications
Security (CCS) (2016).

[68] Lifehacker. Crack a Master Combination Padlock Redux. www.lifehacker.

com/5376442/crack-a-master-combination-padlock-redux/. Online; ac-
cessed 2017-06-07.

[69] Liu, Li, Peng, Yuxin, Wang, Shu, Liu, Ming, and Huang, Zigang. Complex
Activity Recognition Using Time Series Pattern Dictionary Learned from Ubiq-
uitous Sensors. Information Sciences 340 (2016).

[70] Liu, Xiangyu, Zhou, Zhe, Diao, Wenrui, Li, Zhou, and Zhang, Kehuan. When
Good Becomes Evil: Keystroke Inference with Smartwatch. In ACM Confer-
ence on Computer and Communications Security (CCS) (2015).

[71] Maiti, Anindya, Armbruster, Oscar, Jadliwala, Murtuza, and He, Jibo.
Smartwatch-based keystroke inference attacks and context-aware protection
mechanisms. In ACM Symposium on Information, Computer and Communi-
cations Security (ASIACCS) (2016).

[72] Maiti, Anindya, Crager, Kirsten, Jadliwala, Murtuza, He, Jibo, Kwiat, Kevin,
and Kamhoua, Charles. Randompad: Usability of randomized mobile keypads
for defeating inference attacks. In IEEE EuroS&P Workshop on Innovations
in Mobile Privacy & Security (IMPS) (2017).

[73] Maiti, Anindya, Heard, Ryan, Sabra, Mohd, and Jadliwala, Murtuza. To-
wards Inferring Mechanical Lock Combinations using Wrist-Wearables as a
Side-Channel. ACM Conference on Security and Privacy in Wireless and Mo-
bile Networks (WiSec) (2018).

[74] Maiti, Anindya, Jadliwala, Murtuza, He, Jibo, and Bilogrevic, Igor.
(Smart)Watch Your Taps: Side-channel Keystroke Inference Attacks Using
Smartwatches. In ACM International Symposium on Wearable Computers
(ISWC) (2015).

195

[75] Maiti, Anindya, Jadliwala, Murtuza, He, Jibo, and Bilogrevic, Igor. Side-
Channel Inference Attacks on Mobile Keypads using Smartwatches. IEEE
Transactions of Mobile Computing (2018).

[76] Maiti, Anindya, Jadliwala, Murtuza, and Weber, Chase. Preventing shoulder
surfing using randomized augmented reality keyboards. In IEEE International
Conference on Pervasive Computing and Communications Workshops (Per-
Com Workshops) (2017).

[77] Marquardt, Philip, Verma, Arunabh, Carter, Henry, and Traynor, Patrick.
(sp)iPhone: Decoding Vibrations From Nearby Keyboards Using Mobile Phone
Accelerometers. In ACM Conference on Computer and Communications Se-
curity (CCS) (2011).

[78] Matic, Aleksandar, Osmani, Venet, and Mayora, Oscar. Speech activity detec-
tion using accelerometer. In IEEE International Conference on Engineering in
Medicine and Biology Society (EMBC) (2012).

[79] Michalevsky, Yan, Boneh, Dan, and Nakibly, Gabi. Gyrophone: Recognizing
Speech from Gyroscope Signals. In USENIX Security Symposium (2014).

[80] Michalevsky, Yan, Schulman, Aaron, Veerapandian, Gunaa Arumugam,
Boneh, Dan, and Nakibly, Gabi. Powerspy: Location tracking using mobile
device power analysis. In USENIX Security Symposium (2015).

[81] Miluzzo, Emiliano, Varshavsky, Alexander, Balakrishnan, Suhrid, and Choud-
hury, Romit Roy. Tapprints: your finger taps have fingerprints. In ACM Inter-
national Conference on Mobile Systems, Applications, and Services (MobiSys)
(2012).

[82] Mow, Van C, Ratcliffe, Anthony, and Woo, Savio LY. Biomechanics of Di-
arthrodial Joints, vol. 1. Springer Science & Business Media, 2012.

[83] Narain, Sashank, Vo-Huu, Triet D, Block, Kenneth, and Noubir, Guevara.
Inferring user routes and locations using zero-permission mobile sensors. In
IEEE Symposium on Security and Privacy (2016).

[84] Nguyen, L., Cheng, H., Wu, P., Buthpitiya, S., and Zhang, Y. Pnlum: System
for prediction of next location for users with mobility. In Nokia Mobile Data
Challenge Workshop (2012).

196

[85] Ortiz, Reyes, and Luis, Jorge. Smartphone-Based Human Activity Recognition.
Springer Theses, 2015.

[86] Owusu, Emmanuel, Han, Jun, Das, Sauvik, Perrig, Adrian, and Zhang, Joy.
ACCessory: Password Inference using Accelerometers on Smartphones. In
ACM Workshop on Mobile Computing Systems and Applications (HotMobile)
(2012).

[87] Passfaces. Two Factor Authentication - Graphical Passwords. www.realuser.
com. Online; accessed 2017-06-07.

[88] Pattison, Matthew, and Stedmon, Alex W. Inclusive Design and Human Fac-
tors: Designing Mobile Phones for Older Users. Psychnology Journal 4, 3
(2006).

[89] Quisquater, Jean-Jacques, and Samyde, David. ElectroMagnetic Analysis
(EMA): Measures and Countermeasures for Smart Cards. In Smart Card Pro-
gramming and Security, Lecture Notes in Computer Science (2001).

[90] Rayner, Keith, Slattery, Timothy J, and Bélanger, Nathalie N. Eye movements,
the perceptual span, and reading speed. Psychonomic Bulletin & Review 17,
6 (2010).

[91] Rossi, Mirco, Feese, Sebastian, Amft, Oliver, Braune, Nils, Martis, Sandro,
and Troster, G. Ambientsense: A real-time ambient sound recognition system
for smartphones. In IEEE International Conference on Pervasive Computing
and Communications Workshops (PerCom Workshops) (2013).

[92] Roth, Volker, Richter, Kai, and Freidinger, Rene. A PIN-entry Method Re-
silient Against Shoulder Surfing. In ACM Conference on Computer and Com-
munications Security (CCS) 2004.

[93] Ryu, Young Sam, Koh, Do Hyong, Aday, Brad L, Gutierrez, Xavier A, and
Platt, John D. Usability Evaluation of Randomized Keypad. Journal of Us-
ability Studies 5, 2 (2010).

[94] Schlegel, Roman, Zhang, Kehuan, Zhou, Xiao-yong, Intwala, Mehool, Kapa-
dia, Apu, and Wang, XiaoFeng. Soundcomber: A Stealthy and Context-Aware
Sound Trojan for Smartphones. In The Network and Distributed System Secu-
rity Symposium (NDSS) (2011).

197

[95] Sears, Andrew, and Zha, Ying. Data Entry for Mobile Devices using Soft
Keyboards: Understanding the Effects of Keyboard Size and User Tasks. In-
ternational Journal of HCI 16, 2 (2003).

[96] Shoaib, Muhammad, Bosch, Stephan, Incel, Ozlem Durmaz, Scholten, Hans,
and Havinga, Paul JM. Complex human activity recognition using smartphone
and wrist-worn motion sensors. Sensors 16, 4 (2016).

[97] Shrestha, Prakash, Mohamed, Manar, and Saxena, Nitesh. Slogger: Smashing
motion-based touchstroke logging with transparent system noise. In ACM
Conference on Security and Privacy in Wireless and Mobile Networks (WiSec)
(2016), ACM.

[98] Simon, Laurent, and Anderson, Ross. Pin skimmer: inferring pins through the
camera and microphone. In ACM CCS Workshop on Security and Privacy in
Smartphones and Mobile Devices (SPSM) (2013), ACM.

[99] Smulders, Peter. The Threat of Information Theft by Reception of Electro-
magnetic Radiation from RS-232 Cables. Computers & Security 9, 1 (1990).

[100] Snedecor, George W. Statistical methods: Applied to experiments in agricul-
ture and biology. Iowa State University Press.

[101] Software House. Scramble Keypad SP-100. www.swhouse.com/products/.
Online; accessed 2017-06-07.

[102] Song, Chen, Lin, Feng, Ba, Zhongjie, Ren, Kui, Zhou, Chi, and Xu, Wenyao.
My Smartphone Knows What You Print: Exploring Smartphone-Based Side-
Channel Attacks Against 3D Printers. In ACM Conference on Computer and
Communications Security (CCS) (2016).

[103] Spehar, Branka, and Owens, Caleb. When Do Luminance Changes Capture
Attention? Attention, Perception and Psychophysics 74, 4 (2012).

[104] Steenbekkers, LPA, Dirken, JM, and Beijsterveldt, CEMV. Design-Relevant
Functional Capacities of the Elderly, Assessed in the Delft Gerontechnology
Project. In Triennial Congress of the International Ergonomics Association
(1997).

[105] Sun, Jingchao, Xiaocong, Chen, Yimin, Zhang, Jinxue, Zhang, Yanchao, and
Zhang, Rui. VISIBLE: Video-Assisted Keystroke Inference from Tablet Back-
side Motion. In The Network and Distributed System Security Symposium
(NDSS) (2016).

198

[106] Tari, Furkan, Ozok, Ant, and Holden, Stephen H. A Comparison of Perceived
and Real Shoulder-Surfing Risks Between Alphanumeric and Graphical Pass-
words. In Symposium On Usable Privacy and Security (SOUPS) (2006).

[107] Thomaz, Edison, Essa, Irfan, and Abowd, Gregory D. A Practical Approach
for Recognizing Eating Moments with Wrist-mounted Inertial Sensing. In ACM
International Joint Conference on Pervasive and Ubiquitous Computing (Ubi-
Comp) (2015).

[108] Tiwari, Vishnu Shankar, Arya, Arti, and Chaturvedi, S. Route prediction
using trip observations and map matching. In IEEE International Advance
Computing Conference (IACC) (2013).

[109] Tizon, Xavier, and Smedby, Örjan. Segmentation with Gray-Scale Connected-
ness Can Separate Arteries and Veins in MRA. Journal of Magnetic Resonance
Imaging 15, 4 (2002).

[110] Uluagac, A Selcuk, Subramanian, Venkatachalam, and Beyah, Raheem. Sen-
sory channel threats to cyber physical systems: A wake-up call. In IEEE
Conference on Communications and Network Security (CNS) (2014).

[111] UXmatters. How do users really hold mobile devices? www.uxmatters.com/

mt/archives/2013/02/how-do-users-really-hold-mobile-devices.php.
Online; accessed 2017-06-07.

[112] Van Eck, Wim. Electromagnetic Radiation from Video Display Units: An
Eavesdropping Risk? Computers & Security 4, 4 (1985).

[113] Vuagnoux, Martin, and Pasini, Sylvain. Compromising electromagnetic em-
anations of wired and wireless keyboards. In USENIX Security Symposium
(2009).

[114] Wang, Chen, Guo, Xiaonan, Wang, Yan, Chen, Yingying, and Liu, Bo. Friend
or Foe?: Your Wearable Devices Reveal Your Personal Pin. In ACM Symposium
on Information, Computer and Communications Security (ASIACCS) (2016).

[115] Wang, He, Lai, Ted Tsung-Te, and Roy Choudhury, Romit. Mole: Motion
leaks through smartwatch sensors. In ACM International Conference on Mobile
Computing and Networking (MobiCom) (2015).

199

[116] Wen, Hongyi, Ramos Rojas, Julian, and Dey, Anind K. Serendipity: Finger
gesture recognition using an off-the-shelf smartwatch. In ACM CHI Conference
on Human Factors in Computing Systems (2016).

[117] Xu, Chao, Pathak, Parth H, and Mohapatra, Prasant. Finger-writing with
smartwatch: A case for finger and hand gesture recognition using smartwatch.
In ACM Workshop on Mobile Computing Systems and Applications (HotMo-
bile) (2015).

[118] Xu, Zhi, Bai, Kun, and Zhu, Sencun. Taplogger: Inferring user inputs on
smartphone touchscreens using on-board motion sensors. In ACM Conference
on Security and Privacy in Wireless and Mobile Networks (WiSec) (2012).

[119] Yan, Qiang, Han, Jin, Li, Yingjiu, Zhou, Jianying, and Deng, Robert H. De-
signing Leakage-resilient Password Entry on Touchscreen Mobile Devices. In
ACM Symposium on Information, Computer and Communications Security
(ASIACCS) (2013).

[120] York, Derek. Least-Squares Fitting of a Straight Line. Canadian Journal of
Physics 44, 5 (1966).

[121] Yu, Tuo, Jin, Haiming, and Nahrstedt, Klara. Writinghacker: Audio based
eavesdropping of handwriting via mobile devices. In ACM International Joint
Conference on Pervasive and Ubiquitous Computing (UbiComp) (2016).

[122] Yue, Qinggang, Ling, Zhen, Fu, Xinwen, Liu, Benyuan, Ren, Kui, and Zhao,
Wei. Blind Recognition of Touched Keys on Mobile Devices. In ACM Confer-
ence on Computer and Communications Security (CCS) (2014).

[123] Zhang, Mi, and Sawchuk, Alexander A. A feature selection-based framework
for human activity recognition using wearable multimodal sensors. In ICST
International Conference on Body Area Networks (2011).

[124] Zhang, Shumei, McCullagh, Paul, Nugent, Chris, and Zheng, Huiru. Activity
monitoring using a smart phone’s accelerometer with hierarchical classification.
In IEEE International Conference on Intelligent Environments (2010).

[125] Zhang, Yang, Xia, Peng, Luo, Junzhou, Ling, Zhen, Liu, Benyuan, and Fu, Xin-
wen. Fingerprint Attack Against Touch-enabled Devices. In ACM CCS Work-
shop on Security and Privacy in Smartphones and Mobile Devices (SPSM)
(2012).

200

[126] Zhu, Tong, Ma, Qiang, Zhang, Shanfeng, and Liu, Yunhao. Context-free at-
tacks using keyboard acoustic emanations. In ACM Conference on Computer
and Communications Security (CCS) (2014).

[127] Zhuang, Li, Zhou, Feng, and Tygar, J. D. Keyboard acoustic emanations
revisited. ACM Transactions on Information and System Security (2009).

[128] Zimmerman, Donald W. Teacher’s Corner: A Note on Interpretation of the
Paired-Samples t Test. Journal of Educational and Behavioral Statistics 22, 3
(1997).

[129] Zuffi, Silvia, Brambilla, Carla, Beretta, Giordano, and Scala, Paolo. Human
computer interaction: Legibility and contrast. In International Conference on
Image Analysis and Processing (ICIAP) (2007).

201

