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Abstract. Wireless network operators increasingly deploy WiFi hotspots
and low-power, low-range base stations in order to satisfy users’ growing
demands for context-aware services and performance. In addition to pro-
viding better service, such capillary infrastructure deployment threatens
users’ privacy with respect to their social ties and communities, as it
allows infrastructure owners to infer users’ daily social encounters with
increasing accuracy, much to the detriment of their privacy. Yet, to date,
there are no evaluations of the privacy of communities in pervasive wire-
less networks. In this paper, we address the important issue of privacy
in pervasive communities by experimentally evaluating the accuracy of
an adversary-owned set of wireless sniffing stations in reconstructing the
communities of mobile users. During a four-month trial, 80 participants
carried mobile devices and were eavesdropped on by an adversarial wire-
less mesh network on a university campus. To the best of our knowledge,
this is the first study that focuses on the privacy of communities in a
deployed pervasive network and provides important empirical evidence
on the accuracy and feasibility of community tracking in such networks.

1 Introduction

Every day, mobile operators collect large amounts of users’ data that is mined
for commercial and performance goals, such as billing, throughput, coverage and
usage statistics. In addition to the explicit information (such as cost, duration,
location) that can be derived from the communications, operators and infrastruc-
ture owners are able to gain additional knowledge based on the communication
and contextual patterns, without any action from the user for this regard [20,23].

? The co-author was with EPFL when this work was accomplished.



Users’ home/work locations [20,23], activities [31], interests [33] and social net-
works [10,30] can be inferred from their location and social interactions, much
to the detriment of not only their own privacy, but also to that of their peers.

More recently, telecom manufacturers have also added support for seam-
less, low-cost, wireless device-to-device communications, such as Nokia Instant
Community [37], AirDrop by Apple [2] and FlashlinQ by Qualcomm [9], thus
complementing existing infrastructure-based communications. The possibility of
real-time data sharing among devices, without the need for infrastructure, en-
ables people to form localized and short-lived groups or communities of users,
which can emerge in scenarios where the infrastructure is inadequate, expensive,
untrusted or hostile [36,16]. Although still an emerging research subject in the
wireless domain [39], pervasive communities and their structured networks of
interactions are able to significantly improve the performance of opportunistic
networks [26,8], by leveraging on the structural properties and patterns of the
evolving user interactions. In the literature, there are several routing and packet-
forwarding algorithms [25,27,8] that exploit the underlying evolving social inter-
actions to improve the network performance, mostly based on the frequency of
recorded Bluetooth encounters. Similarly, social communities have been studied
from the behavioral perspective [10,14,19], in order to analyze people’s prefer-
ences and group formation characteristics. The undoubted value of friendship
networks and social ties to service providers such as Facebook and Twitter has
also dramatically increased their monetary value [7], as more and more targeted
advertisements and tailored services are being proposed to groups of users with
similar attitudes and interests.

In spite of the soaring interest for the analysis and exploitation of perva-
sive communities in the wireless domain, in regard to privacy very little has
been achieved. Privacy of communities and their members is a major concern in
regions where the ability to keep such information from being inferred by un-
scrupulous third-party providers or suppressive governments is critical [36,16].
Furthermore, the increased availability of public WiFi hotspots and the rapid
deployment of low-power and low-range cellular base stations (femtocells) [15]
makes such inference even more accurate, as more precise user proximity data
can be collected, regardless of the kind of upper-layer protocols and applications.
The risks of unsolicited user profiling, data censorship, racial discrimination and
political repression, based on users’ physical proximity derived from short-range
communications, are a major concern. Because most of the existing literature on
communities in wireless networks has been primarily focused on performance or
human behavior, to the best of our knowledge there is no single empirical work
that has addressed the issue of the privacy of communities in deployed wireless
networks.

In this paper, we address the problem of community privacy by taking a
comparative analysis of the exposure of social relationships and encounters in a
deployed wireless peer-to-peer (P2P) network. Over a four-month trial (March-
June 2011) with 80 participants, we studied and quantified the extent of leak-
age of private community information by users, by providing empirical evidence
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about the network or infrastructure owner’s accuracy of reconstruction of the
social communities of people. Our work is unique in three respects:

– We provide the first privacy analysis of the extent of exposure of community
information in a deployed wireless network.

– We experimentally evaluate and compare the wireless sniffing stations owner’s
accuracy of reconstruction of the social communities of people, based on the
observed traffic patterns, with the local proximity and encounter data that
is collected by the mobile devices.

– We characterize the evolution of the social interactions among the partici-
pants and evaluate the strength of their interactions by implementing three
different social interaction measures that take into account the number, the
proximity, the recency and aging effects of social relationships in the under-
lying wireless network.

The remainder of the paper is organized as follows. In Section 2 we introduce
and detail the trial framework, its system and network models, whereas in Section
3 we outline the community and privacy analysis. In Section 4 we present the
results of the analysis of communities and their privacy vis-à-vis the external
adversary. We discuss the related work in Section 5. We conclude the paper and
suggest ideas for further work in Section 6.

2 Trial Setup

During four months (March-June 2011), we conducted a large-scale trial with
80 participants on the EPFL university campus, in order to collect encounter
and proximity data. Similarly to previous data collection campaigns [18,22,13],
we programmed and distributed 80 Nokia N900 smartphones to the volunteering
participants, sampling a coherent population of master’s students and instructors
of two classes taught during the spring semester. The participants were asked to
carry their device with them as frequently as possible, and they were allowed to
use it as their primary phone. The complete description of the goals and methods
of the questionnaires and interviews is described in [1]. At the end of the trial,
we obtained useful information from 66 devices, amounting to almost ten GBs of
collected log data and over 8 million packets captured by the adversarial network.
The remaining 14 devices were either not used regularly or did not collect the
data properly, hence they were excluded from the analysis.

2.1 Device Configuration

The Nokia devices were configured with both standard infrastructure-based com-
munications, such as cellular and WiFi, as well as with a novel WiFi-based P2P
technology, called Nokia Instant Community or NIC [37]. Users could connect
to both standard Internet services using the WLAN or cellular interface of the
device, as well as to an experimental context-aware wireless P2P messaging plat-
form − in order to exchange information with their physical neighbors in a P2P

3



(a) Trial network architecture.

66 m

186 m

(b) Deployed wireless mesh network of 37 APs con-
trolled by the adversary.

Fig. 1. Trial setup and deployed eavesdropping network controlled by the adversary.

fashion (Fig. 1(a)). Moreover, several campus and course-related applications
were developed in order to stimulate and encourage the usage of the devices
throughout the duration of the trial. In order to enhance the context-awareness
of the pre-installed applications, the devices were running background services
that collected and stored, at regular intervals of [1-30] seconds, information such
as the list of neighbors, the associated Received Signal Strength Indicator (RSSI)
and the time stamp in the local memory. Whenever a participant connected to
the Internet with the device, the new encounter logs were uploaded on a central-
ized database storing all device logs. To preserve users’ anonymity, we removed
all personal identifier information (such as the mapping between MAC address
- IMEI - participant ID) from the database.

2.2 Adversarial Model and Infrastructure

We emulate a practical adversary who monitors a fixed area using a limited
number of wireless sniffing stations. Specifically, the adversary is the owner of
a deployed wireless mesh network of 37 APs (Asus WL-500gP APs running
OpenWRT Linux) in a specific region of the campus [3], covering one level of
six interconnected buildings which have a very high user (student) density (Fig.
1(b)). The coverage area includes the classrooms in which the two classes that
the students attended took place. We assume that the adversary passively eaves-
drops on the participants’ communications, and that he6 periodically uploads the
eavesdropped data to a centralized server, populating a unified log database for
each AP.

In order to perform the pervasive community reconstruction attack discussed
in the following section, we assume that the adversary collects the 3-tuple (Time
stamp, Source MAC, RSSI) from the messages sent by the participants’ smart-
phones. As encryption is sometimes used to protect the confidentiality of network
and application-layer data in real networks, we assume that the adversary does
not have access to such data. This reinforces the practicality and better em-
bodies real-world limitations that an external adversary might have, being much

6 For conciseness and without loss of generality, we refer to the adversary in the
masculine form, although both masculine and feminine forms apply.
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Fig. 2. Flowchart of the pervasive community privacy evaluation process.

weaker than the omniscient Dolev-Yao adversary [12]. Moreover, the information
collected by the adversary is present in almost all kinds of wireless networks and
technologies (such as Bluetooth, WiFi and cellular), which enlarges the appli-
cability and scope of the results. In this work, we assume that the adversary
does not have direct access to any information stored on the mobile devices, and
that all devices are honest (i.e., not colluding with the adversary). As part of
our future work, we will consider a stronger adversary that can collude and gain
access to some of the mobile devices as well.

3 Community Analysis

In order to evaluate the extent of community information leakage in our setting,
we first need to define the analytical framework that captures the pervasive
community information from the collected data. In this section, we introduce
some background on communities in wireless networks and describe how we
evaluate communities and their privacy in our trial. A flowchart of the entire
process is depicted in Fig. 2.

3.1 Background

In society, people tend to organize themselves in social groups or communities,
such as family, work colleagues and hobby groups, where members usually have
stronger similarity traits with other members than with non-members [17]. From
a graph-theoretic perspective, people and their relationships can be represented
by an undirected graph G = (V,E,W ), where the vertex set V corresponds
to people, the edge set E expresses the existence of a relationship between
people, and the weight function W quantifies the intensity of such relation-
ship. In their simplest form, communities can then be represented as subgraphs
{Ci = (Vi, Ei,Wi, )}Mi=1, where Ci ⊆ G and M is the number of communities Ci.

Several community detection (or clustering) algorithms are present in the lit-
erature, and they work on either unweighted/weighted and undirected/directed
graphs. Although hierarchical clustering [21] and modularity-based algorithms
[32] − surveyed in [17] − have been applied to community detection, most of
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them lack a fundamental characteristic that is intrinsic to social communities.
People are often members of several communities at the same time, such as
friends, family members and work colleagues, and most of the aforementioned
algorithms assign a single vertex to only one community. In order to allow a
vertex to be assigned to multiple (possibly overlapping) communities, Palla et
al. [35] developed a technique, the Clique Percolation Method (CPM), which al-
lows different communities to share vertices. The idea is that communities are
formed by the union of adjacent k-cliques (complete graphs with k vertices),
where two k-cliques are adjacent if they share k − 1 vertices. Due to the social
nature of our trial and the experimental setting, we use the CPM algorithm to
detect pervasive communities based on physical proximity and encounter data.

After the pervasive communities have been discovered, several privacy-sensitive
statistics can be obtained from the community structure, their overlap and their
members. We describe the relevant statistics in Section 3.3.

3.2 Trial Framework

In order to model the collected encounter data using a graph, hereafter we de-
scribe the type of information that is used in order to define the existence and
intensity of relationships between users.

Trial Data In our trial, we have two sources of proximity information: (i) the
local device logs collected by the mobile devices and containing encounter (list
of neighbors, the time stamps and the RSSI values of received packets), and
(ii) the adversarial (sniffing) logs containing the headers of the packets sent by
the mobile devices, which include the time stamps and RSSI values of received
packets at the sniffing stations, as well as the device ID of the sender.

We use these two data sources in order to formulate the “strength” or in-
tensity of the social relationships between users and to define the weights of
the edges connecting the respective vertices in the social graph G = (V,E,W ).
There are two types of proximity information in our network: device-to-device
RSSI data (collected on the devices) and device-to-AP RSSI data (collected by
the adversary). From the local device logs, we can directly obtain the device-to-
device proximity information because the recorded RSSI values on the receiv-
ing device depend on the real distance to the sending device. However, this is
not exactly the case for the RSSI values recorded by the adversarial network,
as they depend on the distance between the sending device and the receiving
sniffing station, and not the receiving mobile device. Therefore, the adversary
needs to derive the device-to-device proximity information from the device-to-
AP RSSI values. Hence, we first need to estimate the position of a device, and
then compute the device-to-device proximity information in order to determine
the weights between vertices of the social graph.

To this end, we developed a robust localization algorithm based on RSSI tri-
lateration [5], which determines the estimated position of a received packet based
on the RSSI at all sniffing stations that received that packet. Using the position
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estimate, we then compute the distance and RSSI between mobile devices, as
described later in this section.

Social Interaction Intensity We define three distinct weight functions {w(d)
i,j }3d=1

between the vertices i, j ∈ V , taking progressively into account the proximity,
the intensity and the aging and recency of the relationships between users. We di-
vide the timeline of the trial into discrete time intervals {Tk}Nk=1, where N = 120
days, and for each day Tk we define the weights wi,j(Tk)(d) between users i, j.

The first and simplest weight function is the (shifted, non-negative) average
of the RSSI value between a pair of users i, j for each day Tk, defined as

wi,j(Tk)(1) =

 1

ci,j(Tk)
·
ci,j(Tk)∑
q=1

RSSIi,j(Tk, q)

− rmin

where ci,j(Tk) is the sum of the number of packets received by i (and sent by
j) and received by j (and sent by i) during the day Tk, RSSIi,j(Tk, q) is the
RSSI value of a packet q received by a user i (and sent by j) or received by j
(and sent by i) during the day Tk, and rmin is the minimum RSSI value that
was recorded during the trial. For instance, we fix rmin = −100 dBm as no RSSI
values lower than −100 dBm have been recorded by any device. Apart from the
intensity, this weight function does not consider the duration of the encounters
(as it normalizes the intensity by the number of packets) between users or any
aging or recency effect.

The second weight function takes into account the duration of the encounters
through the sum of the (shifted, non-negative) RSSI values between users i, j,
for each day Tk. It is defined as

wi,j(Tk)(2) = ci,j(Tk) · wi,j(Tk)(1) =

ci,j(Tk)∑
q=1

(RSSIi,j(Tk, q)− rmin)

As the devices who are in continuous radio contact automatically exchange more
context messages than the non-connected devices, this weight function takes into
account the duration of the contacts, in addition to their intensity.

As communities of mobile devices are dynamic and evolve over time, the
third weight function captures the natural evolution of social relationships be-
tween individuals, where past experience, recency and current state determine
the intensity of interactions among people [34]. In this way, two users that have
spent much time together in the past, but have not met on a given day, would
still keep a relationship during that day (which is not the case for wi,j(Tk)(1) and
wi,j(Tk)(2)), even if its intensity is lower due to the aging effect − thus avoiding
strong temporal fluctuations. Inspired by the formulations in [34,38], we define
the third weight function as

wi,j(Tk)(3) = 1ci,j(Tk)>0

(
τ · w(3)

i,j (Tk−1) + (1− τ) · γi,j(Tk)
)

(1)

+ (1− 1ci,j(Tk)>0) ·
(
w

(3)
i,j (Tke) · θi,j(Tk, Te)

)
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where

γi,j(Tk) =
1

α
· wi,j(Tk)(2)

θi,j(Tk, Te) = exp

(
− λ(Tk − Te)

1 +
∑min(Tk−Te,Te)

r=0 mi,j(Te − r)

)

mi,j(Tk) =

{
1 if γi,j(Tk) > β

0 otherwise

and 1ci,j>0 is the indicator function, 0 ≤ τ ≤ 1 is the aging coefficient, α > 0 is
the normalization factor, 0 < λ ≤ 1 is the temporal decay value, 0 ≤ Te ≤ Tk−1
is the last day before Tk when users i, j exchanged messages, mi,j(Tk) ∈ {0, 1}
is the recency factor that indicates whether a meeting took place during Tk or
not, and β ≥ 0 is the meeting threshold value. The idea behind the formulation
is the following: If users i, j exchanged at least one message on a day Tk, then
the weight of their edge is an exponential moving average of the aged weight
− accumulated up to the day before (Tk−1) − and the recent day’s weight; on
the contrary, if i, j did not exchange any message on day Tk, the current day’s
weight is a function of the previously accumulated weight, the frequency of their
encounters just before the last encounter and the amount of time between the
last time i, j had exchanged messages (Te) and the current day Tk.

The weight functions can be directly applied to the local-device proximity
information, as the available proximity information (time stamps, RSSI values
from neighboring devices and their IDs) are sufficient for their computations.
However, an intermediate step is required in order to compute the weights by
using the external (adversarial) proximity information (time stamps, RSSI values
from devices to sniffing APs and device IDs). In the following we show how to
use the external proximity information in order to compute the edge weights.

User-Distance Estimation by the Adversary As the adversary does not
have access to device-to-device proximity data, he can decide to only use the esti-
mated positions of a user i in a day Tk, defined as Pi(Tk) = {pi(Tk, 1), . . . , pi(Tk, b)},
where b is the number of subintervals of a day Tk and pi(Tk, z) = (xi(Tk, z), yi(Tk, z)) ∈
R2 is the estimated position of user i in the subinterval z of day Tk. Moreover,
because there is a possibility that a user’s packet may not be detected in each
subinterval z, due to mobility or radio interference, we assume that the last po-
sition estimate pi(Tk, zlast) of a user i is valid in f subsequent subintervals, if no
{pi(Tk, zlast + 1), . . . , pi(Tk, zlast + f)} are available (Fig. 3).

With such information, the adversary computes the edge weights as follows:

(1) ∀z ∈ {1, . . . , b}, compute pi(Tk, z) for all users i observed on day Tk.

(2) ∀z ∈ {1, . . . , b}, compute the estimated Euclidian distance di,j(Tk, z) =
||pi(Tk, z)− pj(Tk, z)|| between any two users i, j observed on day Tk.
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Fig. 3. Users’ positions estimates by the adversary. In this example, the adversary
has the position estimate of user u at z = 1 but not at subsequent subintervals. In
this case, u’s last position estimate (at z = 1) is assumed to be valid in f subsequent
subintervals. Here f = 1.

(3) ∀z ∈ {1, . . . , b}, compute the estimated RSSI value according to the adapted
Haka-Okumura model for indoor radio propagation [6]

R̂SSIi,j(Tk, z)[dBm] = Pt + 20 log

(
λ

4π

)
+ 10n log

(
1

di,j(Tk, z)

)
where Pt = 20 [dBm] is the transmission power of the mobile device, λ =
0.125 [m] is the wavelength, n = 4.8 is the path-loss exponent suited for
office environments such as the university buildings under observation. The

R̂SSIi,j(Tk, z) value replacesRSSIi,j(Tk, q) in the weight functions w
(d)
i,j (Tk),

where z ∈ {1, . . . , b}.

Weight Distributions Due to the different features of a social relationship
that each weight function models, their numeric values fall in different domains.

For example, if α = 100, β = 1, λ = τ = 0.5 we have 0 ≤ w
(1)
i,j < rmin,

0 ≤ w
(2)
i,j < 2.5 · 105 and 0 ≤ w

(3)
i,j < 600. It is therefore necessary to put them

on the same scale for the identification of communities, as simply comparing
the absolute values of the three weight functions is pointless. Hence, rather than
comparing absolute values, we compare the weight distributions relative to the
maximum of each weight function for each day Tk. To this end, we select an

equal number of bins I(d) for each weight function w
(d)
i,j (Tk). We then count the

number of weight values that fall inside each such bin for all weight types, and
we compare the distributions.

Fig. 4(a) and Fig. 4(b) show the relative edge weight distribution for a day
Tk, by using the internal (local device) and external (adversarial estimate) input
data, respectively. We see that, compared to the adversarial data, the local de-
vice data yields more pronounced characteristics for all three weight types and
provides a more discriminating information set for the subsequent community
detection phase, whereas the external data is less feature-rich due to the pres-
ence of uncertainty in the estimates of the proximity between users. This means
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Fig. 4. Relative edge weight distribution for different input data sets.

that the adversary will likely struggle to infer with high accuracy the community
characteristics for that day. We quantify such inaccuracies in Section 4.

Next, we describe the method we adopted to evaluate the extent of commu-
nity information leakage and the related privacy measures.

3.3 Communities and Privacy

Having quantified the social interaction intensity as edge weights between any
two trial participants, we now outline the community detection process, the
suitable community statistics and privacy measures used to evaluate community
privacy in our work.

Community Detection In its simplest form, the CPM community detection
algorithm is defined for undirected and unweighted graphs [34], thus requiring
only connectivity between vertices in order to discover communities. However,
in order to consider the “strength” of the interactions between vertices, it was
extended to work on weighted graphs by the use of a threshold weight w∗. In
its weighted version, the CPM algorithm considers the existence of an edge ei,j

between two vertices i, j if and only if the weight w
(d)
i,j > w∗. In order to determine

the threshold weight w∗, Palla et al. propose to choose a value such that “the
largest community becomes twice as big as the second largest one”[35], which is
below the critical value w∗crit for which a giant connected component arises [11].

In our experiment, we calibrated the {w∗q}Tq=1 threshold values on a per-day
basis, instead of keeping the same w∗ throughout the trial. Because most of the
participants followed one specific class that took place on Wednesdays, and the
remaining days they might or might not have followed any common classes, we
registered high RSSI proximity values on course days and more sparse values
on non-course days. Hence, the per-day threshold {w∗q}Tq=1 was better suited for
such bi-modal proximity patterns.
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Fig. 5. Detected communities on a day Tk based on internal (local device) and exter-
nal (adversarial estimates) data, respectively. The larger vertices are present in both
community sets.

To illustrate the output of CPM, Fig. 5(a)7 and 5(b) show an example of
the detected communities on a given day, based on the internal data and the
observations of the adversary respectively. As it can be seen, some communities
detected by the adversary are not present in the internal case; there is however an
overlap between the members (the larger vertices) of the two sets of communities.
We discuss and quantify this difference in Section 4.

Community Statistics In addition to detecting communities and their mem-
bers, we compute five privacy-relevant and common community statistics {S(i)(Tk)}5i=1

that will be compared in the accuracy evaluation process. In particular, for each
day Tk of the trial we compute and compare the following statistics: S1 is the
community degree (the number of edges shared between two communities), S2

is the distribution of the community size (the number of members of each com-
munity), S3 is the community density (proportion of edges out of all possible
edges relative to the sparsest set with |Ci| − 1 vertices), S4 is the ratio of total
out- and in-degree of communities and S5 is the community membership value
(the number of communities a vertex belongs to). The difference between the
results obtained using the internal and external input data is defined by Eq. (2)
as the ratio between the absolute difference of the observed statistics over the
maximum value

∆Si(Tk) =
|Sext

i (Tk)− Sint
i (Tk)|

max
∀Tk

(
Sext
i (Tk), Sint

i (Tk)
) (2)

We have ∆Si(Tk) = 0 when the adversary’s statistics is exactly the same as the
statistics obtained using the internal proximity data, and ∆Si(Tk) = 1 when the

7 The figure is obtained by using the CFinder application developed by the authors
of the CPM algorithm, freely available on www.cfinder.org.
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two statistics have the largest discrepancy (or lowest similarity). We define the
adversary’s accuracy in inferring the community statistics as 1−∆Si(Tk).

Community Privacy In addition to the differences in statistics ∆Si(Tk), it
is crucial to assess the similarity of the community composition in order to
ascertain in a comprehensive way the privacy leakage of community information.
To this end, we compute the well-established Jaccard index measure [28] for
community similarity on each day Tk, which is a statistic that computes the
similarity between two sample sets (or communities) Ci, Cj , where values close
to zero mean that the adversary did not accurately infer the communities and
their members, whereas values close to one indicate a very good adversarial
accuracy in inferring the same communities. The Jaccard index is defined as

J(Ci, Cj , Tk) =
|Ci(Tk)

⋂
Cj(Tk)|

|Ci(Tk)
⋃
Cj(Tk)|

(3)

In order to evaluate the adversary’s accuracy of reconstruction of the com-
munities in our pervasive network, we compute the Jaccard index on each day
Tk between the communities Ci(Tk), detected using internal device data, versus
the reconstructed communities Cj(Tk), detected using the adversarial estimated
proximity information. Given J(Ci, Cj , Tk) for each i, j on a day Tk, we define
the Jaccard index matrix JMat(Tk), where each element of the matrix is defined
as JMat(Tk)i,j = J(Ci, Cj , Tk), i.e., the Jaccard index for all pairs of communi-
ties Ci and Cj . Without having access to the internal data, the adversary has no
prior knowledge about which community Ci corresponds to which reconstructed
community Cj . Therefore, in order to consider the best possible match for any
pair of internal/reconstructed communities for each day Tk, we choose the match
(Ci(Tk), Cj(Tk)) that maximizes JMat(Tk)i,j . We then compute the aggregated
Jaccard index over all such best matches as

JI(Tk) = avg∀i

(
max
∀j

(JMat(Tk)i,j)

)
(4)

for each day Tk of the trial where there is at least one community detected by
using both the internal and adversarial proximity information.

In the next section we quantify the community privacy leakage by computing
the accuracy measure 1 − ∆Si(Tk), and similarity JI(Tk) for each day Tk and

weight function {w(d)
i,j }3d=1, comparing the results obtained using the internal

(local device) and external (adversarial) input data respectively.

4 Privacy Evaluation

In this section we provide the experimental evaluation of the privacy of perva-
sive communities through a comparative analysis of the adversary’s accuracy of
reconstruction of both community statistics and memberships. First, we eval-

uate the privacy across the three weight functions {w(d)
i,j }3d=1 (inter-weight ac-

curacy), by comparing the similarity between communities and the accuracy of
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(b) Community statistics accuracy.

Fig. 6. Adversary’s accuracy of reconstruction of the pervasive communities for the
three weight functions.

their statistics obtained by using the internal (local device) proximity informa-
tion with the external (adversarial estimates) data collected by the set of wireless
sniffing stations. This will allow us to observe the evolution of the accuracy while
increasing the sophistication of the weight functions, taking progressively into ac-
count several features of human and social behavior such as proximity, intensity,
aging and recency of social relationships. Second, we perform an intra-weight

comparison for the more realistic weight function w
(3)
i,j , in order to characterize

the effect of the aging factor τ on the similarity and accuracy of community
reconstruction attained by the adversary.

Fig. 6 and 7 show the adversarial reconstruction similarity and accuracy
results with respect to the communities detected using internal data, for the
inter-weight and intra-weight scenarios respectively. For Fig. 6(a) and 7(a), a
value of JI(Tk) = 0 means that on day Tk there were no communities detected
either using the internal proximity data or the external one. The complete list of
the experimental parameters − selected in order to provide as much information
as possible − can be found in the Appendix, which is provided as a supporting
file to this document.

4.1 Inter-Weight Accuracy

By observing Fig. 6(a), we first notice that the adversary is able to correctly
reconstruct communities and identify their members in 20%− 40% of the cases,
compared to the communities detected by using internal proximity data. In
general, we observe that there is a significant difference in terms of similarity

results between the first two weight functions w
(1)
i,j , w

(2)
i,j and the third function

w
(3)
i,j . The former two functions are solely based on the observations made on

each particular day and independently of what happened in the previous days.
Therefore one noticeable characteristic is the increased fluctuations in the simi-
larity from one day to the other, which is a much less visible aspect for the latter

weight function. As w
(1)
i,j , w

(2)
i,j are very exposed to the periodicity of the course

schedule of the participants, the adversary’s similarity of reconstruction of the
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(b) Community statistics accuracy.

Fig. 7. Adversary’s accuracy of reconstruction of the pervasive communities for three
different values of the aging factor τ .

actual communities and their members greatly depends on the amount of data
collected by his wireless mesh network. We notice that for the days when most
students attended a particular class, the reconstruction similarity is higher (up
to 40%) than for days in which students do not attend classes together. Hence
even the two basic weight functions are able to provide a sensible similarity to
the adversary when the users’ movements are tracked by several sniffing stations
simultaneously.

Contrary to w
(1)
i,j and w

(2)
i,j , w

(3)
i,j is able to capture more proximity information

and allow the CPM algorithm to detect communities on the days in which the
other two weight functions were unable to provide a sufficient amount of data.
At the same time, however, the peaks of similarity tend to be much lower (25%)

compared to the other functions. This suggests that w
(3)
i,j , while being able to

produce more community information with scarce data, performs worse in the
identification of the members in each community.

Regarding the difference in community statistics, depicted in Fig. 6(b), we

observe a better accuracy for w
(3)
i,j compared to w

(1)
i,j and w

(2)
i,j . In four out of

five community statistics, w
(3)
i,j has an almost 40% better accuracy compared

to the other functions, which indicates that the former function provides better
results on a higher structural community level rather than on an lower, individual
community member level.

In general, we observe that all three weight functions are better able to
produce accurate community statistics (Fig. 6(b)) than to identify the correct

community members (Fig. 6(a)). In particular, w
(3)
i,j shows that it is possible to

achieve very accurate community statistics only by relying on externally collected
data, thus shrinking the discrepancy between the community statistics based on
internal data and adversarial’s estimates down to 9%. This result indicates that,
by collecting and analyzing radio information passively and without access to
the devices themselves, an adversary is able to breach the privacy of community
information very successfully, although the more fine-grained identification of
members of any given community remains a more challenging task.
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4.2 Intra-Weight Accuracy

Fig. 7(a) shows the adversary’s performance in correctly identifying the commu-

nities and their individual members when using w
(3)
i,j with three different values of

the aging factor τ = {.25, .5, .75}. According to its definition in Eq. (1), we assign

an increasing coefficient to the past accumulated weight information w
(3)
i,j (Tk−1)

in the computation of the current day’s weight function w
(3)
i,j (Tk). The goal is to

study the effect of the “retention” of the intensity from the past on the privacy
(or lack thereof) of community information.

One recurring characteristic, present also in the inter-weight comparison, is
that the CPM algorithm detects communities in all days of the trial, indepen-
dently of the amount of information available to the adversary on each particular
day, even for a small value of τ . When τ = .25, as expected the similarity fluc-
tuates more when compared to τ = .5, especially at the beginning of the trial.

However, Fig. 7(a) shows that the stabilization of the similarity is not achieved
by simply increasing the value of τ from .25 to .75; in fact, for the intermediate
value of τ = .5, we notice that the fluctuations are less pronounced than for a
smaller or larger value. This suggests that, for relatively small or large values of
the aging factor, the similarity achieved by the adversary tends to diverge more
frequently from steady values, indicating that a stable value for the aging factor
is more likely to be in the middle of the possible values [0.25,0.75], rather than at
any of the extremes. When τ = .75, the adversarial similarity increases sharply
as the time passes, especially towards the end of the trial. This is somewhat
surprising, as we would expect that by increasing the emphasis on the past −
rather than on the current weight information − the similarity would be more
stable when going through the trial. This is an interesting aspect to consider in
further studies on our community data.

When observing the results on the accuracy of the community statistics, as
shown in Fig. 7(b), we notice that, among the three considered values of τ , τ = .5
is the least accurate, compared to smaller or larger values of τ . Moreover, in four
out of five statistics, the largest value of τ = .75 produces the best accuracy on
average over the trial duration. This suggests that, although not converging
towards a stable interval for the accuracy in identifying the communities and
their members, putting more emphasis on the past accumulated information does
increase (on average) the adversary’s accuracy in computing correct community
statistics using only passively collected data from fixed WiFi access points.

Overall, the results indicate that although less stable and more accurate at
inferring community structures, emphasizing the past yields better accuracy for
both community detection, identification of their members and for generic com-
munity statistics. This finding in particular is concerning in regard to privacy, as
the amount of individual and community data that is collected by external par-
ties might provide very accurate statistics, especially for group and community-
targeted services. These results are significant, as they show how the message
source ID, contained in almost any kind of radio message, not only is enough to
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provide accurate social community statistics, but it is also sufficient to success-
fully infer almost half of the members of such communities.

5 Related Work

The structural properties of short-lived communities in pervasive networks have
been recently investigated from the performance [26,8] and routing [25,27,8]
perspectives; the authors of [10,14,19] investigated similar issues on the socio-
behavioral level while studying people’s preferences and group formation char-
acteristics. For instance, it is shown that performance of packet-forwarding al-
gorithms could greatly benefit from the human mobility and sporadic nature
of inter-contacts [26], as the different connection frequencies between members
of the same community with respect to members of other communities could
significantly improve intra-community packet-forwarding while not disrupting
inter-community communications. Similarly, [27] shows how forwarding perfor-
mances similar to state-of-the-art algorithms could be achieved at a sensibly
lower resource utilization if structural properties of communities are considered.

With respect to privacy, several works on location privacy address the risk
and propose protection mechanisms for users’ locations [4,24,29]. These contri-
butions focus mostly on individual mobile users and their current neighbors.
However, to the best of our knowledge, there is no prior study on the increas-
ingly important issue of pervasive community privacy and its evaluation on a
deployed network. This work constitutes the first building block for analyzing
community privacy issues in pervasive networks.

6 Conclusion and Future Work

In this paper, we have addressed the important aspect of community privacy
in pervasive networks. We have conducted an experimental analysis of the ad-
versary’s accuracy of reconstruction, on one hand, of the communities and their
individual members and, on the other hand, of the generic community statistics
that are less dependant on the correct identification of individual users inside
such communities.

Through a fine-grained characterization of the intensity of social contacts
among people, we quantified the accuracy in both community reconstruction and
community statistics for the whole duration of the trial, showing that even basic
social intensity functions capture very accurately the generic statistics, such as
the degree of a community, its size and density of links. However, reconstructing
more specific information about the composition of each community and their
individual members remains more challenging, even when using a more com-
prehensive model for characterizing the intensity of social relationships, which
considers recency, aging, and contact frequency in addition to proximity and
duration. As a result, there is a substantial risk that accurate community infor-
mation may be easily collected, inferred and misused by external third-parties,
much to the detriment of users’ community privacy.
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Our results provide empirical evidence about the two distinct levels of com-
munity information leakage to external observers, who may be able to infer with
high accuracy the different social groups and generic communities of people in
pervasive networks, while being much less accurate in determining the affiliation
of any particular individual to a community. As part of our future work, we
intend to pursue the analysis of this dual flow of community information leakage
and derive mitigation mechanisms in order to reduce information leakage and
the gap between the accuracy of both generic statistics and specific people’s af-
filiations to communities. We also intend to study the adversary’s accuracy of
classification of the communities and their members based on the type of their
relationship, such as friends, classmates, study group and strangers.
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