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Abstract. Abuse of zero-permission sensors (e.g., accelerometers and
gyroscopes) on-board mobile and wearable devices to infer users’ per-
sonal context and information is a well-known privacy threat, and has
received significant attention in the literature. At the same time, efforts
towards relevant protection mechanisms have been ad-hoc and have main
focus on threat-specific approaches that are not very practical, thus gar-
nering limited adoption within popular mobile operating systems. It is
clear that privacy threats that take advantage of unrestricted access to
these sensors can be prevented if they are effectively regulated. How-
ever, the importance of these sensors to all applications operating on the
mobile platform, including the dynamic sensor usage and requirements
of these applications, makes designing effective access control/regulation
mechanisms difficult. Moreover, this problem is different from classical
intrusion detection as these sensors have no system- or user-defined poli-
cies that define their authorized or correct usage. Thus, to design effective
defense mechanisms against such privacy threats, a clean slate approach
that formalizes the problem of sensor access (to zero-permission sensors)
on mobile devices is first needed. The paper accomplishes this by em-
ploying game theory, specifically, signaling games, to formally model the
strategic interactions between mobile applications attempting to access
zero-permission sensors and an on-board defense mechanism attempt-
ing to regulate this access. Within the confines of such a formal game
model, the paper then outlines conditions under which equilibria can be
achieved between these entities on a mobile device (i.e., applications and
defense mechanism) with conflicting goals. The game model is further
analyzed using numerical simulations, and also extended in the form of
a repeated signaling game.
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1 Introduction

Modern mobile and wearable devices, equipped with state-of-the-art sensing and
communication capabilities, enable a variety of novel context-based applications
such as social networking, activity tracking, wellness monitoring and home au-
tomation. The presence of a diverse set of on-board sensors, however, also provide
an additional attack surface to applications intending to infer personal user in-
formation in an unauthorized fashion. In order to thwart such privacy threats,
most modern mobile operating systems (including, Android and iOS) have in-
troduced stringent access controls on front-end or user-accessible sensors, such
as microphone, camera and GPS. As a result, the focus of adversarial applica-
tions has now shifted to employing on-board sensors that are not guarded by
strong user or system-defined access control policies. Examples of such back-
end or user-inaccessible sensors include accelerometer, gyroscope, power meter
and ambient light sensor, and we refer to these as zero-permission sensors. As all
installed applications have access to them by default, and that they cannot be ac-
tively disengaged by users on an application-specific basis, these zero-permission
sensors pose a significant privacy threat to mobile device users, as it has been
extensively studied in the security literature [5, 24, 1, 21, 14, 19, 8, 17, 6, 15, 16, 18,
10, 26, 12, 25, 11, 23, 13].

At the same time, development of efficient and effective protection mecha-
nisms against such privacy threats is still an open problem [2]. One of the main
reasons why zero-permission sensors have limited or no access control policies
associated with them is because they are required by a majority of applications
(accessed by means of a common set of libraries or APIs) primarily for efficient
and user-friendly operation on the device’s small and constrained form factor
and display. For instance, gyroscope data is used by applications to re-position
front-ends (or GUIs) depending device orientation, while an ambient light sen-
sor is used to update on-screen brightness. Thus, a straightforward approach of
completely blocking access or reducing the frequency at which applications can
sample data from these sensors is not feasible, as it will significantly impact their
usability. Alternatively, having a static access control policy for each application
is also not practical as it will become increasingly complex for users to manage
these policies. Moreover, such an approach will not protect against applications
that gain legitimate access to these sensors (based on such static policies). Given
that all applications (with malicious intentions or not) can request access to these
sensors without violating any system security policy, an important challenge for
a defense mechanism is to differentiate between authentic sensor access requests
and requests that could be potentially misused.

In order to begin addressing this long-standing open problem, we take a
clean-slate approach by first formally (albeit, realistically) modeling the strategic
interactions between (honest or potentially malicious) mobile applications and
an on-board defense mechanism that cannot differentiate between their (sensor
access) requests. We employ game-theory as a vehicle for modeling and analyzing
these interactions. Specifically, we model the following scenario. A defense mech-
anism on a mobile operating system receives requests to access zero-permission
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sensors from two different types of applications: honest and malicious. Each of
these applications could send either a normal or a suspicious request for access
to on-board zero-permission sensors. A request could be classified as suspicious
or normal (non-suspicious) based on the context, frequency or amount of re-
quested sensor data. Although honest applications would typically make normal
requests, they could also make suspicious requests depending on application- or
context-specific operations and requirements to improve overall application per-
formance and usability. The goal of malicious applications, on the other hand,
is to successfully infer private user data from these requests. Normal requests
would give them some (probably, not enough) data to carry out these privacy
threats, however, suspicious requests could give them additional critical data
either to amplify or increase the success probability of their attacks. The defense
mechanism, on receiving the request, has one of the following two potential re-
sponses: (i) accept the request and release the requested sensor data, or (ii) block
the request preventing any data being released to the requesting application. It
should be noted that the defense mechanism does not know the type of the appli-
cation (i.e., honest or malicious) sending a particular request (i.e., suspicious or
non-suspicious), as all mobile applications can currently request zero-permission
sensor data without raising a flag or violating any policy. In other words, the
defense mechanism has imperfect information on the type of application sending
the request. The requesting application, on the other hand, has perfect infor-
mation about its type and potential strategies of the defense mechanism. Given
this scenario, the following are the main technical contributions of this paper:

1. We first formally model the strategic interactions between mobile applica-
tions and a defense mechanism (outlined above) using a two-player, imperfect-
information game, called the signaling game [3]. We refer to it as the Sensor
Access Signaling Game.

2. Next, we solve the Sensor Access Signaling Game by deriving both the pure-
and mixed-strategy Perfect Bayesian Nash Equilibria (PBNE) strategy pro-
files possible in the game.

3. Finally, by means of numerical simulations, we examine how the obtained
game solutions or equilibria evolve with respect to different system (or game)
parameters in both the single-stage and repeated (more practical) scenarios.

Our game-theoretic model, and the related preliminary results, is the first clean-
slate attempt to formally model the problem of protecting zero-permission sen-
sors on mobile platforms against privacy threats from strategic applications and
adversaries (with unrestricted access to it). Our hope is that this model will act
as a good starting point for designing efficient, effective and incentive-compatible
strategies for protecting against such threats.

2 Sensor Access Signaling Game

System Model. Our system (Figure 1a) comprises of two key entities residing
on a user’s (mobile) device. The first is applications (APP ) that utilize, and
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thus, need access to, data from zero-permission sensors. We consider two types
of applications: Honest (HA) and Malicious (MA). Honest applications provide
some useful service to the end-user with the help of zero-permission sensor data,
while malicious applications would like to infer personal/private information
about the user in the guise of offering some useful service. Both honest and
malicious applications can request sensor data in a manner which may look
normal/non-suspicious or suspicious (details next), regardless of their intentions
or use-cases. The second entity is a sensor access regulator, which we refer to as
the Defense Mechanism (DM). All sensor access requests (by all applications)
must pass through and processed by the DM . The ideal functionality that the
DM would like to achieve is to block sensor requests coming from MAs, while
allowing requests from HAs. As noted earlier, the DM itself does not know the
type (i.e., honest or malicious) of application requesting sensor access - otherwise
the job of the DM is trivial. This is also a practical assumption as currently all
applications can access these sensors without violating any system/user-defined
policy (to clarify, there is currently no way to set access control policies for
zero-permission sensors on most mobile platforms). As the DM has no way of
certainly knowing an application’s true intentions (and thus, its type), it must
rely on the received request (suspicious or non-suspicious, as described next) and
its belief about the requesting application’s type to determine whether it poses
a threat to user privacy or not.

Suspicious and Non-Suspicious Requests. Zero-permission sensor access
requests by the applications (to the DM) can be classified as either suspicious
(S) or non-suspicious (NS). Such a classification (generally, system-defined) can
be accomplished using contextual information available to both the applications
and the defense mechanism, such as, frequency, time, sampling rate, and rele-
vance (according to the advertised type of service offered by the application) of
these requests. Although there are several efforts in the literature in the direc-
tion of determining sensor over-privileges in mobile platforms [4, 7], we abstract
away this detail to keep our model general. We, however, assume that malicious
applications are able to masquerade themselves perfectly as honest applications
(in terms of the issued sensor requests), which is easy to accomplish when the
target of these applications is zero-permission sensors.

Other System Parameters. The strategic interactions between the (honest or
malicious) APP and DM can be characterized using several system parameters
which we summarize in Table 1. In addition to identifying these parameters, we
also establish the relationship between these parameters by considering realistic
network and system constraints as discussed next. For example, if the cost of
an application processing a successful S request (i.e., cS) or NS request (i.e.,
cNS) is expressed in terms of the CPU utilization (of the application), then it
is clear that cS ≥ cNS because suspicious requests would usually solicit fine-
grained (high sampling rate) sensor data compared to non-suspicious requests,
thus requiring more processing time. By a similar rationale, ψS ≥ ψNS , where
ψS and ψNS are the costs to a DM (or the system) for processing a S or NS
request, respectively. Now, the cost to the HA in terms of loss in usability when
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(b) Extensive form of the Sensor Access Signaling Game GD =< P,T, S,A,U, θ, (p, q) >.

Fig. 1: Overview of the system and game models.

its request is blocked by DM (i.e., γ) and benefit for the HA in terms of gain in
usability when its request is allowed by the DM (i.e., σ) are inversely propor-
tional (γ ∝ 1/σ). Similarly, benefit to the MA when it’s request is allowed by
DM (α) can be expressed in terms of monetary gains. An acute example would
be if MA is able to successfully infer user’s banking credentials using sensor data
[10, 25, 12, 23], and uses it for theft. A more clement example of monetary gain
could be through selling contextual data (inferred from sensor data) to adver-
tising companies, without user’s consent. Accordingly, MA is set back with a
proportional cost (τ) if its request is rejected by DM , i.e., α ∝ τ . On the other
hand, DM ’s cost of allowing a MA’s request (φ) versus benefit to the DM for
blocking MA’s request (β) are also inversely proportional (φ ∝ 1/β). DM ’s cost
of allowing a MA’s request is essentially borne by the user, but since the DM
is working in the best interest of the user, we combine their costs and benefits.
Consequently, in case DM blocks an HA’s request, it incurs a cost (κ) repre-
senting loss of utility/usability for the user. Lastly, we also capture the difference
in benefits for MA and HA, in case they send out a S versus NS request, as u
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Table 1: System entities and parameters.

Symbol Definition

DM Defense Mechanism

HA Honest Application

MA Malicious Application

θ Probability that Nature selects MA

S Suspicious sensor request

NS Non-suspicious sensor request

q Belief probability of the DM that the requester is of type MA on receiving a S request

p Belief probability of the DM that the requester is of type MA on receiving a NS request

B DM response to block a sender request

A DM response to allow a sender request

cS Cost of an application processing a successful S request

cNS Cost of an application processing a successful NS request

γ Cost to the HA when its request is blocked by DM

ψS Cost of a DM processing a S request

ψNS Cost of a DM processing a NS request

φ Cost to the DM when MA’s request is allowed

τ Cost to the MA when its request is blocked by the DM

κ Cost to the DM when HA’s request is blocked

α Benefit to the MA when its request is allowed by the DM

β Benefit to the DM for blocking MA’s request

σ Benefit to the HA when its request is allowed by the DM

u Benefit difference to MA for sending S instead of NS
v Benefit difference to HA for sending S instead of NS
m probability with which MA plays the S strategy

n probability with which HA plays the S strategy

x probability with which DM plays the B strategy on receiving a NS request

y probability with which DM plays the B strategy on receiving a S request

and v, respectively. In essence, u denotes the gain in benefit due to MA’s better
inference accuracy caused by sensor data obtained from S, and v denotes the
improvement of HA’s utility/usability due to sensor data obtained from S. We
also assume that these different (discrete) costs and benefits are appropriately
scaled and normalized such that their absolute values lie in the same range of real
values. Next, we outline the signaling game formulation to capture the strategic
interaction between the mobile applications (requesting zero-permission sensor
access) and the defense mechanism (attempting to regulating these requests).

Game Model. A classical signaling game [3] is a sequential two-player incom-
plete information game in which Nature starts the game by choosing the type of
the first player or player 1. Player 1 is the more informed out of the two players
since it knows the choice of Nature and can send signals to the less informed
player, i.e., player 2. Player 2 is uncertain about the type of player 1, and must
decide its strategic response solely based on the signal received from player 1.
In other words, player 2 must decide its best response to player 1’s signal with-
out any knowledge about the type of player 1. Both players receive some utility
(payoff) depending on the signal, type of player 1 and the response by player
2 (to player 1’s signal). Both the players are assumed to be rational and are
interested in solely maximizing their individual payoffs.
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Given the above generic description of the signaling game, let us briefly de-
scribe how our zero-permission sensor access scenario naturally lends itself as a
single-stage signaling game. We refer to this game as the Sensor Access Signaling
Game and is formally represented as GD = 〈P,T,S,A,U, θ, (p, q)〉, where P is
the set of players, T is the set of player 1 types, S is the set of player 1 signals,
A is the set of player 2 actions, U is the payoff/utility function, θ is the Nature’s
probability distribution function, and (p, q) are player 2’s belief functions about
player 1’s type. Each sensor access request by an application can be modeled as
a single stage of the above signaling game. In each such stage, P contains two
players, i.e., APP which is player 1 and the DM which is player 2. As there are
two types of applications (or player 1), i.e., honest (HA) and malicious (MA),
T ≡ {HA,MA}. As applications can send two types of signals (or requests), i.e.,
suspicious (S) and non-suspicious (NS), S ≡ {S,NS}. As the DM (or player
2) takes two types of actions depending on the received signal from player 1, i.e.,
Allow (A) or Block (B), A ≡ {A,B}. The utility function U : T×S×A→ (R,R)
assigns a real-valued payoff to each player (at the end of the stage) based on the
benefit received and the cost borne by each player, and is outlined in the exten-
sive form of the game depicted in Figure 1b. The first utility in the pair is the
APP ’s utility denoted as UAPP , while the second utility in the pair is the DM ’s
utility denoted as UDM .

Lastly, let ΓAPP = {µAPP |∀ti ∈ T,
∑
λ∈S µAPP (λ|ti) = 1;∀ti ∈ T} and

ΓDM = {µDM |∀λ ∈ S,
∑
a∈A µDM (a|λ) = 1;∀λ ∈ S} be the strategy spaces for

APP and DM , respectively. A strategy µAPP for the APP and µDM for the
DM can be either pure or mixed, as identified by parameters m, n, y and x
in Figure 1b. For pure strategies m,n, y, x ∈ {0, 1}, while for mixed strategies
0 < m,n, y, x < 1. Moreover, let us represent each of the DM ’s belief functions
by conditional (posterior) probability distributions as q = Pr(MA|S) and p =
Pr(MA|NS), which also imply that 1−q = Pr(HA|S) and 1−p = Pr(HA|NS).

Now, let’s characterize the set of equilibrium strategies in GD, i.e., a set of
strategy pairs that are mutual best responses to each other and no player has any
incentive to move away from their strategy in that pair. In order to determine
mutual best responses, we need to evaluate the actions (or strategies) of each
player at each information set of the game. APP ’s information set comprises of a
single decision point (i.e., to select a signal λ ∈ {S,NS}) after Nature makes its
selection of the type (HA or MA) and reveals it to APP . DM ’s information set,
on the other hand, comprises of two decision points because of its incomplete
information about the type of APP chosen by Nature. Thus, DM ’s strategy
is to select an action a ∈ {A,B} depending on its belief Pr(ti|λ) about the
type ti ∈ T of APP in that information set. Moreover, for each λ ∈ {S,NS},∑
ti
Pr(ti|λ) = 1.

Our goal is to determine the existence of Perfect Bayesian Nash Equilibria
(or PBNE) in GD, where strategies are combined with beliefs to determine the
mutual best responses of each player at the end of each stage. A PBNE of the
Sensor Access Signaling Game GD is a strategy profile µ∗ = (µ∗APP , µ

∗
DM ) and

posterior probabilities (or beliefs of the DM) Pr(ti|λ) such that:

µ
∗
APP ∈ argmaxµAPP∈ΓAPP UAPP (µAPP , µ

∗
DM , ti); ∀ti ∈ T
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where, UAPP (.) is the utility or payoff of APP for a particular pure or mixed
strategy µAPP against DM ’s best response to it, when the type ti selected by
Nature, and, ∀λ ∈ S = {S,NS} such that:

µ
∗
DM ∈ argmaxµDM∈ΓDM

∑
ti∈T

Pr(ti|λ) UDM (λ, µDM , ti)

where, UDM (.) is the payoff of DM for a particular pure or mixed strategy
µDM against the signal (λ) received from the APP , when the type ti selected
by Nature. Moreover, the DM ’s belief Pr(ti|λ) about the APP ’s type given a
received signal λ should satisfy Bayes’ theorem, i.e.,

Pr(ti|λ) =
Pr(λ|ti)Pr(ti)

Pr(λ)
=
µAPP (λ|ti)Pr(ti)

Pr(λ)

Four categories of PBNE can exist for a signaling game such as GD:

– Separating PBNE: This category comprises of strategy profiles where player
1 or APP of different types dominantly send different or contrasting types of
signals λ ∈ {S,NS}. This allows DM to infer APP ’s type with certainty. For
instance, in a separating strategy profile {(S,NS), µ∗DM}, APP of MA type
always selects S (i.e., m = 1) while HA always selects the NS (i.e., n = 0).

– Pooling PBNE: This category comprises of strategy profiles where player 1
or APP of different types dominantly send the same type of signal λ. HereDM
cannot infer APP ’s type with certainty, but needs to update its belief (about
APP ’s type) based on the observed λ. For instance, in a pooling strategy
profile {(S,S), µ∗DM}, both MA and HA types always select S (i.e., m,n = 1).

– Hybrid PBNE: This category comprises of strategy profiles where one player
1 or APP type dominantly sends one type of signal, but the other type ran-
domizes its sent signal. For instance, in a hybrid strategy profile {(S, (S,NS)),
µ∗DM}, MA always selects S (i.e., m = 1), whereas HA randomizes between
S and NS (i.e., 0 < n < 1).

– Mixed PBNE: Finally, this equilibrium comprises of strategy profiles where
all player 1 or APP types send signals λ only in a probabilistic fashion (i.e.,
0 < m,n < 1).

3 Game Analysis

In this section, we find the PBNE for the sensor access signaling game GD.
We begin by evaluating the existence of pure strategy equilibria (i.e., separat-
ing, pooling and hybrid), including conditions and regimes for achieving these
equilibria. Following that we determine the mixed strategy equilibria for GD.

Theorem 1. There does not exist a separating equilibrium in the game GD.

Proof. There can be two possible separating strategy profiles for APP : (S, NS)
and (NS, S). First, let us analyze the existence of an equilibrium on (S,NS),
which means MA (malicious type) always selects S (i.e., m = 1) while HA
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(honest type) always selects NS (i.e., n = 0). DM ’s beliefs can be calculated
using Bayes’ theorem as follows:

Pr(MA|S) = q =
Pr(S|MA)× Pr(MA)

Pr(S)
=

Pr(S|MA)× Pr(MA)

Pr(S|MA)× Pr(MA) + Pr(S|HA)× Pr(HA)

=
m× θ

m× θ + n× (1− θ)
=

1× θ
1× θ + 0× (1− θ)

= 1

Therefore, Pr(HA|S) = 1 − q = 0. Similarly, we can show that p = 0, and
1 − p = 1. With these beliefs, the best response of DM can be calculated as
follows. The DM ’s expected utility/payoff (EUDM ) from playing B or A if MA
or HA selects S are:

EUDM (B,S) = 1× (β − ψS) + 0× (−κ− ψS) = β − ψS

EUDM (A,S) = 1× (−φ− ψS) + 0× (−ψS) = −φ− ψS

As EUDM (B,S) > EUDM (A,S), the DM ’s best response in this case is to play
Block, i.e., BRDM (S) = B. Similarly, the DM ’s expected utility/payoff from
playing B or A if MA or HA selects NS are:

EUDM (B,NS) = 0× (β − ψNS) + 1× (−κ− ψNS) = −κ− ψNS

EUDM (A,NS) = 0× (−φ− ψNS) + 1× (−ψNS) = −ψS

In this case, as EUDM (B,NS) < EUDM (A,NS), the DM ’s best response is
to play Allow, i.e., BRDM (NS) = A. In summary, if MA or HA plays S then
DM ’s best response is B, and if MA or HA plays NS then DM ’s best response
is A.

Check for Equilibrium: HA and MA will follow the strategy along the equi-
librium path as long as the payoff along that path is higher than the payoff it
will get if it deviates. There can be two scenarios: first if the MA deviates and
plays NS and second if the HA deviates and plays S. Let us first analyze the
case where MA deviates and plays NS. The DM ’s beliefs do not change, and
so, if it sees MA or HA playing NS, it will still always respond with it’s best
response, i.e., A. MA will receive a payoff of −τ if it plays S and will receive a
payoff of α−cNS if it plays NS. Thus, MA has an incentive to deviate from the
equilibrium path. Although it can be shown that HA does not have an incentive
to deviate, equilibrium does not exist in this case because at least one APP
(player 1) type has an incentive to deviate.

Next, let us analyze the existence of a separating equilibrium on (NS,S),
which means MA always selects NS (i.e., m = 0) and HA always selects S (i.e.,
n = 1). As before, the belief functions for the DM can be calculated as:

Pr(MA|NS) = p =
Pr(NS|MA)× Pr(MA)

Pr(NS)
=

1× θ
1× θ + 0× (1− θ)

= 1

Therefore, Pr(HA|NS) = 1 − p = 0. Similarly, we can also show that q = 0
and 1 − q = 1. Thus, the DM ’s expected utility/payoff from playing B or A if
MA or HA selects S are:

EUDM (B,S) = 0× (β − ψS) + 1× (−κ− ψS) = −κ− ψS
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EUDM (A,S) = 0× (−φ− ψS) + 1× (−ψS) = −ψS

In this case, as EUDM (B,S) < EUDM (A,S), the DM ’s best response is to play
Allow, i.e., BRDM (S) = A. And, DM ’s expected utility from playing B or A if
MA or HA selects NS are:

EUDM (B,NS) = 1× (β − ψNS) + 0× (−κ− ψNS) = β − ψNS

EUDM (A,NS) = 1× (−φ− ψNS) + 0× (−ψNS) = −φ− ψNS

As EUDM (B,NS) > EUDM (A,NS), in this case the DM ’s best response is to
Block, i.e., BRDM (NS) = B. In summary, if MA or HA plays S, then DM ’s
best response is A and if MA or HA plays NS, then DM ’s best response is B.

Check for Equilibrium: If MA deviates and plays S, DM will respond with
it’s best response A. As a result, MA will receive a payoff of −τ if it plays NS
and will receive a payoff of α+ u− cS if it plays S. Thus, MA has an incentive
to deviate from the equilibrium path. Again, although it can be shown that HA
does not have an incentive to deviate, equilibrium does not exist in this case
either because at least one APP (player 1) type has incentive to deviate.

Thus, neither of the separating strategy profiles {(S,NS), (B,A),
p, q} and {(NS,S), (A,B), p, q} is a PBNE.

Theorem 2. There exists pooling equilibria on APP strategies of (S,S) and
(NS,NS) in the game GD.

Proof. An APP strategy profile (S,S) means both MA and HA types always
select S (i.e., m,n = 1). DM ’s beliefs in this strategy profile can be calculated
as:

Pr(MA|S) = q =
Pr(S|MA)× Pr(MA)

Pr(S)
=

1× θ
1× θ + 1× (1− θ)

= θ

Therefore, Pr(HA|S) = 1 − q = 1 − θ. Accordingly, expected payoff for DM
from playing B or A if either MA or HA selects S are:

EUDM (B,S) = θ × (β − ψS) + (1− θ)× (−κ− ψS)

= θ(β + κ)− κ− ψS

EUDM (A,S) = θ × (−φ− ψS) + (1− θ)× (−ψS)

= −φ× θ − ψS

Now, DM ’s best response to the APP ’s pooling strategy of (S,S) would be to
select B (over A) if and only if the following condition holds:

θ(β + κ)− κ− ψS ≥ −φ× θ − ψS ≡ θ ≥
κ

β + κ+ φ

To analyze the existence of an equilibrium at the APP ’s strategy of (S,S),
given the DM ’s best response, we must check if APP of either type (MA or
HA) has an incentive to deviate and play NS. Here, if HA or MA deviate and
play NS and DM chooses A, HA gains a payoff of σ − cNS compared to −γ if
it plays S, while MA gains a payoff of α − cNS compared to −τ if it plays S.
Thus, in this case both HA and MA have an incentive to deviate and play NS
and there is no equilibrium. Here, if HA or MA deviate and play NS and DM
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chooses B, HA will receive a payoff of −γ, same as if it plays S, while MA will
receive a payoff of −τ , same as if it plays S. Thus, in this case, both HA and
MA do not have any incentive to switch to NS and an equilibrium exists. In
summary, an equilibrium on the APP ’s pooling strategy of (S,S) exists when
θ ≥ κ

β+κ+φ .

Inversely, the DM ’s best response to APP ’s pooling strategy of (S,S) would
be to select A (over B) if and only if the following holds:

θ(β + κ)− κ− ψS ≤ −φ× θ − ψS ≡ θ ≤
κ

β + κ+ φ

Here, if HA or MA deviate and play NS and DM chooses A, HA will receive
a payoff of σ − cNS if it plays NS and will receive a payoff of σ + v − cS if it
plays S. On the other hand, MA will receive a payoff of α− cNS if it plays NS
and will receive a payoff of α+ u− cS if it plays S. Thus, in this case, there will
be a pooling equilibrium if and only if:

σ + v − cS ≥ σ − cNS ≡ v ≥ cS − cNS , and

α+ u− cS ≥ α− cNS ≡ u ≥ cS − cNS

Here, if HA or MA deviate and play NS and DM chooses B, HA will receive
a payoff −γ compared to σ+ v− cS if it plays S, while MA will receive a payoff
of −τ compared to α+u−cS if it plays S. Thus, in this particular case, HA and
MA do not have any incentive to deviate as well. In summary, an equilibrium
on APP ’s pooling strategy of (S,S) also exists when θ ≤ κ

β+κ+φ .

As the proof of a pooling equilibrium on the APP strategy of (NS,NS)
follows an analogous methodology, it is omitted to conserve space. In summary,
equilibrium on the APP ’s pooling strategy of (NS,NS) exists when θ ≥ κ

β+κ+φ ,

or when θ ≤ κ
β+κ+φ . For complete proofs, please refer to [9].

Theorem 3. There exists hybrid equilibria on the APP strategy profiles (S,
(S,NS)), (NS, (S,NS)), ((S,NS),S) and ((S,NS),NS), in the game GD.

Proof. An APP strategy profile (S, (S,NS)) means that MA always selects
S (i.e., m = 1), whereas HA selects S with some probability n and NS with
probability 1 − n where (0 < n < 1). DM ’s beliefs in this strategy profile can
thus be calculated as:

Pr(MA|S) = q =
Pr(S|MA)× Pr(MA)

Pr(S)
=

1× θ
1× θ + n× (1− θ)

=
θ

θ(1− n) + n

Pr(MA|NS) = p =
Pr(NS|MA)× Pr(MA)

Pr(NS)
=

0× θ
0× θ + (1− n)× (1− θ)

= 0

Now, let’s compute the DM ’s best response for each of the strategies S and
NS of APP . In order to determine that, we need to first compute the expected
utilities/payoffs obtained by DM for playing B or A if APP (MA or HA) selects
NS or S, which is given by:

EUDM (B,NS) = p× (β − ψNS) + (1− p)× (−κ− ψNS) = −κ− ψNS

EUDM (A,NS) = p× (−φ− ψNS) + (1− p)× (−ψNS) = −ψNS
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EUDM (B,S) = q × (β − ψS) + (1− q)× (−κ− ψS)

EUDM (A,S) = q × (−φ− ψS) + (1− q)× (−ψS)

It is clear from these expected utilities obtained by the DM in this strategy
profile that it will always plays A (i.e., A always dominates B) when the APP
plays NS. On the contrary, there are two possibilities in terms of the DM ’s best
response to an application’s strategy of S. The first possibility is for the DM to
always Block or B, i.e., B would dominate A. This, however, holds only if the
following is true:

q(β − ψS) + (1− q)(−κ− ψS) ≥ q(−φ− ψS) + (1− q)(−ψS) ≡ q ≥
(1− q)κ
β + φ

Now, as DM always plays A forNS, HA has more incentive to playNS because
it will gain σ− cNS compared to −γ if it plays S. Also, MA has more incentive
to play NS since it will gain α − cNS compared to −τ if it plays S. In other

words, APP is not indifferent between playing S and NS when q ≥ (1−q)κ
β+φ , and

strongly prefers playing NS. Thus, there is no hybrid equilibria at (S, (S,NS))

when q ≥ (1−q)κ
β+φ .

The second possibility, in terms of the DM ’s best response to an APP ’s
strategy of S, is for the DM to Accept or A (i.e., A dominates B) which is

true if q ≤ (1−q)κ
β+φ . This combined with the fact that the DM always plays A

for NS, it is clear that when q ≤ (1−q)κ
β+φ , DM invariantly plays A for both the

S and NS strategies of the APP . In this case, if MA deviates and plays NS
it will gain α − cNS compared to α + u − cS if it plays S. Similarly, HA will
gain σ − cNS instead of σ + v − cS if it plays S. Therefore, in order to make
APP indifferent between playing S and NS so that a hybrid equilibrium can be
achieved at (S, (S,NS)), the following conditions must be satisfied:

α− cNS ' α+ u− cS ≡ cS − cNS ' u

σ − cNS ' σ + v − cS ≡ cS − cNS ' v

In summary, a hybrid equilibrium is possible at (S, (S,NS)) if and only if the
above conditions hold.

In order to conserve space, we omitted the proofs for hybrid equilibria on the
APP strategies (NS, (S,NS)), ((S,NS),S) and ((S,NS),NS). The proofs for
all these three strategies follow an analogous methodology, all of which result in
a hybrid equilibrium under certain conditions. Table 2 summarizes these equi-
librium conditions for all the hybrid equilibria in the game GD.

Theorem 4. There exists a mixed strategy PBNE in the game GD.

Proof. First, let’s determine the conditions for each APP type to randomize (or
be indifferent) between its choices. Let’s assume DM plays the mixed strategy
(yB, (1−y)A) for S (i.e., suspicious requests) and (xB, (1−x)A) forNS (i.e, non-
suspicious requests). Then for the APP type MA, the expected utilities/payoffs
of playing S and NS are:

EUMA(S) = y ×−τ + (1− y)× (α+ u− cS)
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Table 2: List of PBNEs.

Conditions Range of θ PBNE Profiles

−− θ ≥ κ
β+κ+φ PBNE = {(S,S), (B,B), p, q}

v ≥ cS − cNS , u ≥ cS − cNS θ ≤ κ
β+κ+φ PBNE = {(S,S), (A,A), p, q}

−− θ ≤ κ
β+κ+φ PBNE = {(S,S), (A,B), p, q}

−− θ ≥ κ
β+κ+φ PBNE = {(NS,NS), (B,B), p, q}

v ≤ cS − cNS , u ≤ cS − cNS θ ≤ κ
β+κ+φ PBNE = {(NS,NS), (A,A), p, q}

−− θ ≤ κ
β+κ+φ PBNE = {(NS,NS), (B,A), p, q}

cS − cNS ' u, cS − cNS ' v q ≤ (1−q)κ
β+φ PBNE = {(S, (S,NS)), (A,A), p, q}

cS − cNS ' u, cS − cNS ' v p ≤ (1−p)κ
β+φ PBNE = {(NS, (S,NS)), (A,A), p, q}

−− q ≥ (1−q)κ
β+φ PBNE = {((S,NS),S), (B,B), p, q}

−− p ≥ (1−p)κ
β+φ PBNE = {((S,NS),NS), (B,B), p, q}

EUMA(NS) = x×−τ + (1− x)× (α− cNS)

MA is indifferent between playing S andNS if EUMA(S) = EUMA(NS), which
gives:

y(τ + α+ u− cS)− x(τ + α− cNS) = u− cS + c
NS

(1)

Similarly, for the APP type HA, the expected utilities/payoffs of playing S and
NS are:

EUHA(S) = y ×−γ + (1− y)× (σ + v − cS)

EUHA(NS) = x×−γ + (1− x)× (σ − cNS)

HA is indifferent between playing S and NS if EUHA(S) = EUHA(NS), which
gives:

y(γ + σ + v − cS)− x(γ + σ − cNS) = v − cS + c
NS

(2)

Solving Equations 1 and 2 for x and y, we get DM ’s mixed strategy for which
each APP type is indifferent between playing S and NS. Let this x = x∗ and
y = y∗.

Now let’s determine the conditions for DM to randomize (or be indifferent)
between its choices. First, if DM observes APP (MA or HA) played S, its
expected payoffs from playing B and A are:

EUDM (B) = q × (β − ψS) + (1− q)× (−κ− ψS)

EUDM (A) = q × (−φ− ψS) + (1− q)×−ψS
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Now, DM is indifferent between playing B and A on seeing S if, EUDM (B) =
EUDM (A), which gives:

q =
κ

κ+ β + φ
= q
∗

Similarly, DM ’s expected utilities/payoffs from playing B and A, when it sees
NS are:

EUDM (B) = p× (β − ψNS) + (1− p)× (−κ− ψNS)

EUDM (A) = p× (−φ− ψNS) + (1− p)×−ψNS

DM is indifferent between playing B and A on seeing NS if EUDM (B) =
EUDM (A), which gives:

p =
κ

κ+ β + φ
= p
∗

Now, we determine APP (MA or HA) randomization (mixed strategy) that is
consistent with DM ’s beliefs. For that, we use Bayes rule to calculate the DM ’s
beliefs q and p as:

q = q
∗

=
m× θ

m× θ + n× (1− θ)
(3)

p = p
∗

=
(1−m)× θ

(1−m)× θ + (1− n)× (1− θ)
(4)

We can solve Equations 3 and 4 for m and n, to obtain MA’s and HA’s mixed
strategy for which they are indifferent in playing S and NS consistent with
the DM ’s beliefs. It is easy to show that there exists a system of (cost/benefit)
parameters for which such a solution exists. Let these solutions be represented
as m∗ and n∗. Then, the mixed strategy PBNE µ∗ will occur at:
µ∗APP : MA plays (m∗S + (1−m∗)NS) and HA plays (n∗S + (1− n∗)NS)
µ∗DM : DM plays y∗B + (1− y∗)A to S and x∗B + (1− x∗)A to NS
DM ’s beliefs: q = Pr(MA|S) = q∗ and p = Pr(MA|NS) = p∗

Example of a mixed equilibrium: Substituting θ = 1
2 , q = 1

4 and p = 3
4 in

Equations 3 and 4, and solving for m and n, results in m = 1
4 and n = 3

4 .

4 Numerical Analysis

We perform numerical simulations to analyze how the various PBNEs in our
Sensor Access Signaling Game GD evolves with respect to the various game and
system parameters. Specifically, we evaluate the MA’s payoff, HA’s payoff and
DM ’s expected utility (EUDM ) in a representative separating strategy profile
(S,NS), a pooling strategy profile (S,S), a hybrid strategy profile ((S,NS),S)
and a mixed strategy profile, by varying the value of θ (Nature’s selection prob-
ability). The results are outlined in Figure 2, and the set of system parameters
chosen for the numerical simulations are summarized in Figure 2f. The para-
metric values chosen for our numerical analysis were primarily to showcase the
trends observable in different strategy profiles. They may or may not be reflec-
tive of their values in real-life, but we did our best to establish the inequalities
between parameters as completely as possible.
Separating strategy (S,NS). As proved earlier, there is no equilibrium in any
of the separating strategy profiles, and the same can also be observed in Figure
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(a) Separating Strategy (S,NS) (b) Pooling Strategy (S,S)

(c) Hybrid Strategy ((S,NS),S) (d) Hybrid Strategy ((S,NS),S)

(e) Mixed Strategy

 0-1

 9

 6.5

S 1

 1

u 1

cS 1

 2.5

 4

 4

 8

 1

NS 0.01

cNS 0.01

(f) Simulation Parameters

Fig. 2: (a-e) Effect of θ on different strategy profiles. Each point is a average of
500 iterations. (f) Default simulation parameters.
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2a. We observe that EUDM is linearly increasing, which implies that DM is
blocking suspicious requests from MA, as the only way DM can increase it’s
utility is by playing B. Both MA’s and HA’s payoffs are linearly decreasing
because DM is playing B more than A.
Pooling strategy (S,S). In Figure 2b we observe that the HA’s payoff and
DM ’s expected utility initially decrease while MA’s payoff increases, for increas-
ing values of θ. However, beyond a certain value of θ the trend reverses, i.e, HA’s
payoff and DM ’s expected utility increase linearly while MA’s payoff decreases.
Hybrid strategy ((S,NS),S). In this strategy profile (Figure 2c), EUDM is
affected by random signals coming from MA. However, we can also observe that
as θ increases EUDM gradually increases. EUDM also stabilized for higher values
of θ. On the other hand, HA’s and MA’s payoffs are decreasing as expected when
increasing θ (Figure 2d).
Mixed strategy. In Figure 2e we observe the effect of a mixed strategy in each
player’s payoff/utility. The payoffs and utilities are highly unstable as m, n, x
and y are all drawn from a random distribution for the mixed strategy.

In summary, our numerical evaluations validate our game-theoretic results.

5 Repeated Game

So far, we have outlined PBNE results and related numerical analysis for the
Sensor Access Signaling Game GD in the single stage (or single-shot) scenario.
In practice, however, the game GD will be repeated several times (possibly, as
long as the system is running). Thus, it is important to analyze how the game
GD will evolve in a repeated scenario.

5.1 Background

Before proceeding ahead, let us provide some technical background on repeated
games. There are two broad categories of repeated games:
(i) Finite Repeated Games: Here, a stage game is repeated for a finite num-
ber of times. Repeated games could support strategy profiles (also known as
reward and punishment strategies) that support deviation from stage game
Nash Equilibria through cooperation. Players could cooperate and play a re-
ward strategy (also referred to as a Subgame Perfect Equilibrium (SPE)) that
is not a Nash Equilibrium strategy, if the expected utility of every player is
strictly greater than the expected utility from the Nash Equilibrium strategy
[20]. Due to the lower expected utility, the Nash Equilibrium strategy becomes
the punishment strategy, which would be applied if any of the players deviate
from the SPE. However, if a finite repeated game consists of stage games that
each have a unique Nash Equilibrium, then the repeated game also has a unique
SPE of playing the stage game Nash Equilibrium in each stage. This can be ex-
plained by unravelling from the last stage, where players must play the unique
Nash Equilibrium. In the second-to-last stage, as players cannot condition the
future (i.e., the last stage) outcomes, again they must play the unique Nash
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Equilibrium for optimal expected utility. This backward induction continues un-
til the first stage of the game, implying that players must always play the Nash
Equilibrium strategy to ensure overall optimal expected utility. This (players not
cooperating on a reward strategy) is a limitation of finite repeated games with
a unique Nash Equilibrium, that can be solved if the game is repeated infinitely.
(ii) Infinite Repeated Games: In a repeated game with an infinite (or un-
known) number of stages, players can condition their present actions upon the
unknown future. Without a known end stage, players will be more inclined to
cooperate on a mutually beneficial reward strategy, rather than a static Nash
Equilibrium as seen in a finite repeated game. The payoff/utility for a player i in
an infinite repeated game can be computed by discounting the expected utilities
in future stages using a discount factor δ (0 ≤ δ ≤ 1) as:

ui = u
1
i + δu

2
i + δ

2
u
2
i + . . .+ δ

t−1
u
t−1
i + . . . =

∞∑
t=1

δ
t−1

u
t
i

And, the average (normalized) expected utility for player i is (1−δ)
∑∞
t=1 δ

t−1uti.
In an infinitely repeated game, players can effectively employ a reward-and-
punishment strategy, but to do so each player must maintain a history of the
past actions taken by all players. Let Ht denote the set of all possible histories
(ht) of length t and let H = ∪∞t=1Ht be the set of all possible histories. A pure
strategy (ωi) for player i is a mapping ωi : H → Ωi that maps histories (H) into
player actions (Ωi) of the stage game. In an infinitely repeated game G(t, δ) of
n players, a strategy profile ω = (ω1, ..., ωn) is a Subgame Perfect Equilibrium
(SPE) if and only if there is no player i and no single history ht−1 for which
player i would gain by deviating from ωi(ht−1). Next, let us analyze the Sensor
Access Signaling Game GD for the infinite repeated scenario.

5.2 Repeated GD with History: A Case Study

Let us analyze one of the possible scenarios of an infinitely repeated game
GD(t), where we assume {(S,NS),NS, (B,A), q, p} as the reward strategy and
{(S,NS),NS, (B,B), q, p} as the punishment strategy. In this scenario, HA
may start sending S at a later point in the game in order to increase its payoff
from σ−cNS to σ+v−cS . However, as each player maintains a history of action
sets for every player, as soon as HA deviates from the SPE, DM will enforce the
punishment strategy profile, thus blocking all the incoming requests whether it
is S or NS. MA is randomizing between S and NS according to the feasible
reward strategy profile, so it does not matter to DM if MA deviates or not. It is
not logical to assume that DM will deviate as it is DM ’s responsibility to keep
check on the deviations of APP . Moreover, each stage in the game GD(t) is a
sequential game, where DM reacts to APP ’s signal in every stage of the game.

After each stage of the game, the set of actions of player APP and the
corresponding responses of player DM will be known to all players. Players
may change their strategy after a certain period or stage, based on the history
information until that stage. Figure 3a shows the effect of history on the repeated
games. We observe that HA’s utility fluctuates whenever it deviates from the
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(a) Utilities with history. (b) Utilities with history and discount factor.

Fig. 3: Cumulative utilities for DM , MA, and HA in repeated games.

cooperative reward strategy. With a strategy reset interval of 100 stages, we
observe that HA’s utility follows a up-down pattern in every interval, reflective
of a start with reward strategy, then HA’s deviation from reward strategy, and
followed by DM ’s switch to the punishment strategy. Overall, MA’s cumulative
payoff is lower than HA’s cumulative payoff, which is desired in our system as
we want the DM to thwart MA while allowing HA to function normally.

We also study the effect of discount factor δ (on the game GD(t, δ)), which
determines players’ patience. If the value of δ is high, then there is a high chance
that game is going to progress to the next stage, prompting player to cooperate
on the reward strategy for longer. In Figure 3b, we initially observe HA’s utility
increasing and MA’s utility decreasing as per the reward strategy. However, as
the game progresses, the cumulative utilities converge because (i) the utilities
are heavily discounted, and (ii) players switch to the Nash Equilibrium strategy
as a result of the discounted utility.

6 Related Work

Several recent works demonstrated the feasibility of side-channel inference at-
tacks using mobile [5, 24, 1, 21, 14, 19, 8, 17, 6, 15, 16, 18] and wearable [10, 26, 12,
25, 11, 23, 13] device sensors. Some of these works also propose defense mecha-
nism against the specific type of attack that was demonstrated. For example,
Miluzzo et al. [17] proposed to drastically reduce the maximum allowed sensor
sampling rate, in order to prevent keystroke inference attacks on mobile key-
pads using mobile device motion sensors. However, reducing the sensor sampling
rate for all applications may cause certain applications to malfunction, leading
to poor user experience. To minimize unnecessary regulation of sensors at all
times, Maiti et al. [12] proposed an activity recognition-based defense frame-
work. In their framework, the defense mechanism continuously monitors user’s
current activity (using smartwatch motion sensors data), and regulates third
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party applications’ access to motion sensor only when typing activity is detected
(in order to prevent keystroke inference). However, while such ad-hoc defense
approaches are effective in preventing a specific type of attack, they may not be
effective against other types of side-channel attacks. In this work, we general-
ize the problem of side-channel attacks using mobile and wearable sensors, by
modeling all different types of attacks as a Bayesian signaling game between a
mobile application and a defense mechanism [22].

7 Conclusion

In this paper, we modeled the problem of zero-permission sensor access control
for mobile applications using game theory. By means of a formal and practi-
cal signaling game model, we proved conditions under which equilibria can be
achieved between entities with conflicting goals in this setting, i.e., honest and
malicious applications who are requesting sensor access to maximize their util-
ity and attack goals, respectively, and the defense mechanism who wants to
protect against attacks without compromising system utility. By means of nu-
merical simulations, we further studied how the different theoretically derived
equilibria will evolve in terms of the payoffs received by the application and the
defense mechanism. Our results in this paper have helped shed light on how a de-
fense mechanism can act in a strategically optimal manner to protect the mobile
system against malicious applications that take advantage of zero-permission
sensors to leak private user information and are impossible to detect otherwise.
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