
Authors’ copy downloaded from: https://sprite.utsa.edu/

Copyright may be reserved by the publisher.

https://sprite.utsa.edu/

Smartwatch-Based Keystroke Inference Attacks and
Context-Aware Protection Mechanisms

Anindya MaitiX, Oscar ArmbrusterX, Murtuza JadliwalaX, and Jibo HeO

XElectrical Engineering and Computer Science Department
OPsychology Department

Wichita State University, USA
{axmaiti, oxarmbruster, murtuza.jadliwala, jibo.he}@wichita.edu

ABSTRACT
Wearable devices, such as smartwatches, are furnished with
state-of-the-art sensors that enable a range of context-aware
applications. However, malicious applications can misuse
these sensors, if access is left unaudited. In this paper, we
demonstrate how applications that have access to motion or
inertial sensor data on a modern smartwatch can recover
text typed on an external QWERTY keyboard. Due to
the distinct nature of the perceptible motion sensor data,
earlier research efforts on emanation based keystroke infer-
ence attacks are not readily applicable in this scenario. The
proposed novel attack framework characterizes wrist move-
ments (captured by the inertial sensors of the smartwatch
worn on the wrist) observed during typing, based on the
relative physical position of keys and the direction of tran-
sition between pairs of keys. Eavesdropped keystroke char-
acteristics are then matched to candidate words in a dictio-
nary. Multiple evaluations show that our keystroke infer-
ence framework has an alarmingly high classification accu-
racy and word recovery rate. With the information recov-
ered from the wrist movements perceptible by a smartwatch,
we exemplify the risks associated with unaudited access to
seemingly innocuous sensors (e.g., accelerometers and gyro-
scopes) of wearable devices. As part of our efforts towards
preventing such side-channel attacks, we also develop and
evaluate a novel context-aware protection framework which
can be used to automatically disable (or downgrade) access
to motion sensors, whenever typing activity is detected.

CCS Concepts
•Security and privacy → Privacy-preserving proto-
cols; Side-channel analysis and countermeasures; •Human-
centered computing → Ubiquitous and mobile com-
puting;

Keywords
Smartwatch, keystroke, sensor, wearable, privacy.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS ’16, May 30-June 03, 2016, Xi’an, China
© 2016 ACM. ISBN 978-1-4503-4233-9/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2897845.2897905

1. INTRODUCTION
Technologies that fueled the rapid growth of modern elec-

tronic computers are also catalyzing development in wear-
able computing. Most modern wearable devices, such as
smartwatches, are capable of a range of context-aware ap-
plications, including personal assistance, health and well-
ness monitoring, personal safety, and corporate solutions,
to name a few. Behind the scenes, a wide range of highly
precise sensors provide the contextual information required
by these applications to provide a seamless and personalized
user experience.

Unfortunately, applications with malicious intents can also
covertly use these sensors to collect private information,
without user-consent. Many of the side-channel attacks im-
plemented for smartphones can be readily applied to smart-
watches. For example, a malicious application with appro-
priate hardware support can stealthily capture photos or
video of the user and their surroundings with camera[11],
record ambient sounds with microphone [21], and track and
predict location activities using GPS [18]. As modern smart-
phone operating systems recognized open access to these
sensors as apparent privacy risk, applications’ permission to
access these sensors were made user-manageable. Addition-
ally, use or access to certain sensors also include explicit
user-notifications, for example, a notification icon appears
on Android and iOS when the GPS sensor is being accessed
by an application. Yet, malicious applications found novel
side-channel attacks to infer private information through in-
direct means. For example, gyroscope, a sensor usually used
to detect changes in device orientation, can potentially be
used to detect and recover audio speeches [17]. Another
example of a distressing side-channel attack is inferring key-
strokes using emanations captured by motion sensors such
as accelerometer and gyroscope [16, 19].

Although many of the side-channel attacks designed for
smartphones are not directly applicable in wearable devices
such as smartwatches, we anticipate that innovative attacks
can hugely benefit by the way these wearable devices are
used. In practice, smartphone usage is highly intermittent
(for example, it has been shown that on an average a smart-
phone is used only 58 minutes per day [2]), and these de-
vices spend a majority of their time in a constrained (e.g., in
users’ pockets) or in an activity-less (e.g., on a table) setting
where most on-board sensors are partially (or completely)
non-functional, thereby limiting the inferential capabilities
of malicious applications that attempt to take advantage of
data from these sensors. On the contrary, wearable device

http://dx.doi.org/10.1145/2897845.2897905

usage is much more persistent as they are always carried by
users on their body in the same natural position as their
traditional counterparts and users are much more naturally
habituated to these devices. Our hypothesis is that, as wear-
able smart devices are persistently and uniquely used, sen-
sors on them are able to capture a continuous stream of user-
specific contextual data, access to which if not controlled
appropriately, can be potentially exploited by malicious ap-
plications to infer sensitive user information.

In this paper, we show that unaudited access to motion
sensors featured on most smartwatches can inadvertently
lead to significant leakage of information relating to users
and their surrounding. We demonstrate that a malicious ap-
plication, with access to motion sensor readings of a smart-
watch, can decode the keystrokes made on a QWERTY
keyboard while wearing the smartwatch on one hand. We
achieve this based on the observed relative physical position
of keystrokes and direction of transition between pairs of
keystrokes. We then recover the typed words by mapping
the captured ‘motion’ of each word to pre-formed motion
profiles of words in an English language dictionary. Due to
the distinctive nature of perceptible sensor data on smart-
watches, straightforward adaptation of earlier side-channel
keystrokes attacks based on emanation of electromagnetic,
acoustic or vibration pulses generated by a keystroke, is not
befitting. A comprehensive empirical evaluation of our key-
stroke inference framework show significantly high word re-
covery rates.

As evident from our experimental results, the threat to
privacy posed by side-channel attacks using wearable de-
vices is substantial. However, there have been very limited
efforts from the research community to effectively defend
against such side-channel attacks in a user-friendly fashion.
We propose and implement a new context-aware protection
framework which can automatically activate various protec-
tion mechanisms whenever typing activity is detected. We
also empirically evaluate the protection framework in real-
life usage scenario.

2. RELATED WORK
Emanation based side-channel inference attacks date back

to the World War II era [12]. The primary types of ema-
nations include electromagnetic signals, sounds, and vibra-
tions. Previous studies demonstrated the use of electro-
magnetic emanation to eavesdrop on contents displayed on
a CRT or LCD screen [24, 14] from a distance and with
opaque obstacles in between. Similar attacks using electro-
magnetic emanations have also been shown to work against
CPU chips [3], smart cards [20], data carrying cables [22],
and keyboards (wired or wireless) [25]. Optical emanation,
contained in the band of electromagnetic spectrum percep-
tible to human eyes, present a different form of leakage for
display devices. The light released from display devices may
reflect off various surfaces in front of the screen, and reach
an eavesdropper. Successful reconstruction of the displayed
information has been demonstrated based on reflection such
as from walls [13], shiny objects [7], and even from viewer’s
eyes [5]. While electromagnetic emanation based attacks are
certainly effective, the need of specialized equipment and it’s
concealed placement near to the target poses difficulty. Sim-
ilarly for side-channel attacks based on optical emanations,
the eavesdropping equipment must be placed in line of sight
of the target.

Side-channel attacks based on acoustic or sound emana-
tions are much more feasible because of the popularity of
personal devices featuring microphones. Microphones are
inexpensive, and can be easily concealed because of their
compact form factor. Furthermore, if a target’s microphone
enabled device (such as smartphones, tablets, etc.) is hi-
jacked, it can act as a disguised eavesdropping equipment.
As much as 90% of English text printed by a dot-matrix
printer can be successfully recovered, by learning the acous-
tic emanations released by the printer [6]. The other major
use of acoustic emanation has been in keystroke inference
attacks, which targets to recover key presses on a nearby
computer keyboard [4, 9]. Similar keystroke inference at-
tacks can be carried out using surface vibration emanation
generated during keystrokes [16, 8]. Vibrations of nearby
surfaces caused by human voice can also be recorded, and
used to decode speeches [17]. While systems to record vi-
brations may be difficult to conceal, Marquardt et al. [16]
proposed the use of a smartphone’s accelerometer to record
vibrations near keyboards. If an adversary is able to infect
their target’s smartphone with a malicious application which
can record and transmit sensor data stealthily, it can serve
as a very effective eavesdropping tool.

However, a critical requirement of learning based side-
channel attacks using electromagnetic, acoustic, or vibration
emanation, is that the target and eavesdropping equipment
must not be disturbed. Change in either’s position or orien-
tation will render the training data futile, thereby making
recovery of target information impossible. This also means
that training must be performed in the same setting as the
attack, which may not always be feasible. For example, in
case of [16], if the target person puts his/her smartphone
one day on the left side of the keyboard and another day on
the right side, the vibrations captured by the accelerome-
ter will be significantly different, resulting in failed recovery
of typed text. Our attack setting, which uses motion data
from a wearable device to infer keystrokes, is largely unaf-
fected due to similar constraints as most people wear and use
these devices in a very standard fashion (for example, smart-
watches are almost always worn on the left wrist by most
people). Moreover, our attack mechanism and wrist motion
characterization framework is very general and can be easily
extended to work in scenarios comprising of non-traditional
usage of these wearable devices (for example, users wearing
the watch on the right hand instead).

During the final phase of completing this work, we came
across recently published works which demonstrate the abil-
ity to infer keystrokes using smartwatch. Maiti et al. [15]
used machine learning to train classifiers based on the slight
differences in wrist movements observed while tapping nu-
meric keys on a handheld smartphone keypad, depending on
the location of the key on the screen. The trained classifiers
are then used on test data to perform multiclass classifica-
tion between the ten keys. Similar to our work, Wang et al.
[26] demonstrate the feasibility of keystroke inference attack
using a smartwatch, on a QWERTY keyboard. However,
their attack framework is very different from ours. We also
conduct a comprehensive evaluation of our attack framework
and preliminary results indicate that our approach leads to
better inference accuracy compared to [26]. However, [26]
has a different experimental setup, due to which we are un-
able to make a comprehensive comparison like we do with
[16] and [9].

Interestingly, none of the recent works on side-channel
keystroke inference attacks propose or implement a practi-
cal protection mechanism. Some of the previous work using
smartphone sensors as side-channels, briefly suggest oper-
ating system developers to provide users with fine-grained
control over application’s permissions to every sensors [10].
But without knowing which application is malicious, the
user may have to toggle sensor access back and forth for
all the installed applications. Other research efforts vaguely
suggest to restrict the precision at which applications are al-
lowed to access the sensors [19, 17, 15]. However, regulating
sensor precision will result in poor application performance,
for example, gaming applications will have slow controls and
response, mapping applications will be delayed/inaccurate,
etc. Moreover, some sensors (such as camera and micro-
phone) will be rendered unusable at very low sampling rates.
In the more recent work using smartwatches as a side-channel
[26], Wang et al. completely overlooked the necessity of
having protection mechanisms. In this paper, we not only
demonstrate the feasibility of keystroke inference attacks
using smartwatches as a side-channel, but we also design,
implement, and evaluate a new context-aware protection
framework to defend against such attacks.

3. ATTACK DESCRIPTION
In this paper, we demonstrate the feasibility of a key-

stroke inference attack against a user typing on an external
QWERTY keyboard by using smartwatch motion sensors.
Because of limitations faced by emanation-based keystroke
inference attacks, and multiple technical challenges in imple-
menting them on a smartwatch, we pursue a slightly differ-
ent approach for our attack where we focus on capturing and
using keystrokes related wrist motion or movement charac-
teristics.

We observed that the wrist movements made while typing
a fixed sequence of letters on a keyboard are highly similar
and consistent across multiple trials involving a single typer.
This gave us the intuition that an adversary can create a
dictionary of commonly used words (words are nothing but
fixed sequence of letters), along with their corresponding
wrist movement patterns. During the attack, the adver-
sary can simply match the eavesdropped wrist movement
pattern to the closest matching pattern in the dictionary.
Intuitively, the recovery can be highly accurate if the dictio-
nary is carefully created and comprises of all words that the
target is expected to type. However, the recovery rate also
depends on how the wrist movement patterns are character-
ized (which we will explain in Section 4.1) and the granular-
ity of the captured wrist movement data (which is generally
limited by the eavesdropping sensor’s maximum sampling
frequency).

For carrying out the proposed inference attack, an adver-
sary requires an eavesdropping device that is capable of con-
tinuously recording wrist movements, while avoiding detec-
tion. A modern commercial-off-the-shelf smartwatch, which
is generally equipped with a range of sensors (especially mo-
tion sensors), can easily serve as such an eavesdropping de-
vice. Other forms of wrist wearable devices such as activ-
ity trackers and fitness bands, are typically also equipped
with motion or inertial sensors, and can also be used as an
eavesdropping device for the proposed attack. In this work,
without loss of generality, let’s assume that the adversary
exploits the smartwatch as an eavesdropping device. How-

ever, a bigger challenge is how does an adversary gain access
to the motion data captured on the smartwatch. This can be
achieved by an adversary installing a malicious application
that has access to the motion sensors on the target’s smart-
watch such that the application is able to stealthily capture
and transfer the captured motion data to the adversary.

This is feasible because, even though an application’s ac-
cess to the some sensors (e.g., GPS and camera) is generally
user-managed or restricted on most modern mobile operat-
ing systems such as Android and iOS, access to motion sen-
sors (such as, accelerometer and gyroscope) remains highly
unregulated. An adversary can easily install the malicious
application on the target smartwatch by various means, for
example, by gaining physical access to the device or through
social engineering (e.g. masquerading as a legitimate appli-
cation, pretexting, baiting, phishing etc.). The malicious
application can then stealthily collect and transfer motion
data by masquerading as, or piggy backing on, useful ap-
plication data and network traffic. In other words, the in-
fected smartwatch now acts as an eavesdropping device that
the targets’ themselves place on their wrist, and unsuspect-
ingly have it on their wrist while typing on a keyboard, as
depicted in Figure 1.

The malicious adversarial application on the smartwatch
records the linear accelerometer data (linear accelerometer
measures the acceleration experience by the device, exclud-
ing the force of gravity) and microphone data. In the pro-
posed attack, the acoustic data recorded by the microphone
is not used for keystroke inference, but rather just to iden-
tify keystroke events (as explained in detail in Section 4.2.2).
Due to the impracticality of an on-screen keyboard on the
small smartwatch screens, an adversarial smartwatch appli-
cation can seek access to the microphone in order to support
voice commands or dictation, which is common. Alterna-
tively, keystroke events can also be recognized by solely us-
ing the motion sensors, as accomplished in Marquardt et al.
[16]. As mentioned earlier, the recorded sensor data is then
transmitted by the malicious application to the adversary
directly over the Internet by masquerading as useful com-
munication or by piggyback on communications from other
applications. In an effort to save battery power (necessary
for avoiding detection), the recording and communication
process may be initiated remotely by the adversary or based
on periodic activity tracking.

Figure 1: An exemplary setup where a person is
typing on a QWERTY keyboard, while wearing a
Samsumg Gear Live smartwatch on left hand. A
similar setup is used in our experiments.

4. THE ATTACK FRAMEWORK
In this section, we present our model for identifying key-

press events from raw motion sensor data. We then discuss
our attack framework, and an experimental setup for evalu-
ating the framework.

4.1 Modeling Key Press Events
With the maximum supported linear accelerometer sam-

pling rate (∼50-70Hz) being much lower than that of smart-
phones (∼200-300Hz), the difficulty in recognizing individ-
ual keys is greatly increased when using a smartwatch. To
overcome this shortcoming, we attempt to identify pairs of
key presses or keystrokes by learning the relationship be-
tween them. While typing a word, there will be one key
press for each character or letter in the word. Let Ki,Kj be
two consecutive key press events, signifying two consecutive
characters or letters of a word. We characterize the relation,
rel(Ki,Kj), between any two consecutive key press events
Ki,Kj as follows:

• Horizontal Position: The location loc(Ki) of each key-
stroke event relative to a ‘central-line’ dividing the key-
board into left (L) and right (R) halves. The rationale
behind this classification is that the wrist movement will
be more pronounced for typing a key on the same side as
the watch-wearing hand.

• Transitional Direction Between Consecutive Key
Presses: The direction dir(Ki,Kj) represents the direc-
tion of wrist movement between consecutive key presses
Ki and Kj on watch-wearing side of the keyboard. The
possible directions (or values for dir(Ki,Kj)) are N, E, S,
and W, representing geographical north, east, south, and
west, movement respectively. An additional classification
is O, if Ki = Kj . The rationale behind this classification is
that the direction of transition between a pair of keystrokes
will be reflected in the wrist movement.

With the above classification, the relationship between
two consecutive key press events is defined as follows:

• When either Ki, Kj , or both, occur on the non-watch
wearing side of the keyboard, rel(Ki,Kj) = loc(Ki) ||
X || loc(Kj), where ‘X ′ implies that direction cannot be
determined. The intuition behind such an assignment is
that it is not possible to determine the direction of tran-
sition when at least one of the pressed key is not on the
watch-wearing side of the keyboard.

• When both Ki and Kj occur on the watch-wearing side
of the keyboard, rel(Ki,Kj) = loc(Ki) || dir(Ki,Kj) ||
loc(Kj).

A word-profile for a word can then be derived by concate-
nating the relation between every consecutive pair of letters
in the word. For example, the word “boards” can be broken
down in to five pairs of keystrokes {bo, oa, ar, rd, ds}, i.e.,
word-profile for the word “boards” is rel(bo).rel(oa).rel(ar)
.rel(rd).rel(ds). With the setup for a QWERTY keyboard,
as shown in Figure 2, and the entire L/R and N/E/S/W/O
classification listed in Table 1, the word-profile of “boards”
will be:

RXR . RXL . LEL . LSL . LWL

Figure 2: The keyboard is divided in to left (L) and
right (R) halves, shown by the solid red line. Exam-
ples of N, E, S, and W classification are also shown.
Each direction has 90° field of view from center of
the key. Keys that fall on the boundary are catego-
rized in the direction where greater area of the key
lies.

Table 1: L/R classification of individual keys and
N/E/S/W/O classification of character-pairs, as-
suming smartwatch is worn on left hand.

L q, w, e, r, t, a, s, d, f, g, z, x, c, v

R y, u, i, o, p, h, j, k, l, b, n, m

N aq, aw, sw, se, de, dr, fr, ft, gt, zq, zw, ze, za, zs,
xw, xe, xr, xs, xd, ce, cr, ct, cd, cf, vr, vt, vf, vg

E qw, qe, qr, qt, qs, qd, qf, qg, qx, qc, qv, we, wr,
wt, wd, wf, wg, wc, wv, er, et, ef, eg, ev, rt, rg, ae,
ar, at, as, ad, af, ag, ax, ac, av, sr, st, sd, sf, sg,
sc, sv, dt, df, dg, dv, fg, zr, zt, zd, zf, zg, zx, zc,
zv, xt, xf, xg, xc, xv, cg, cv

S qa, qz, wa, ws, wz, wx, es, ed, ez, ex, ec, rd, rf, rx,
rc, rv, tf, tg, tc, tv, az, sz, sx, dx, dc, fc, fv, gv

W wq, eq, ew, ea, rq, rw, re, ra, rs, rz, tq, tw, te, tr,
ta, ts, td, tz, tx, sq, sa, dq, dw, da, ds, dz, fq, fw,
fe, fa, fs, fd, fz, fx, gq, gw, ge, gr, ga, gs, gd, gf,
gz, gx, gc, xq, xa, xz, cq, cw, ca, cs, cz, cx, vq, vw,
ve, va, vs, vd, vz, vx, vc

O qq, ww, ee, rr, tt, aa, ss, dd, ff, gg, zz, xx, cc, vv

The main idea behind our attack is that the adversary
will have a pre-processed dictionary of well-known (or tar-
geted) words and their corresponding word-profiles (formed
as discussed before). These word-profiles are used in dis-
tinguishing between candidate words from the dictionary.
Given the motion data, the adversary will attempt to infer
word-profiles from the motion data and then use the pre-
processed dictionary to determine the typed word by com-
paring the inferred word-profile to the word-profile in the
dictionary. However if the dictionary is large, more than
one word may have the same word-profile. Such collisions
may result in incorrect predictions, and thus, reduce the ac-
curacy of the inference attack by the adversary. In such
cases, a frequency-based selection (as discussed in Section
5) could yield better word recovery results. Similarly, defin-
ing word-profiles by using additional fine-grained directional
data (e.g., NE, SW, etc.) could reduce the number of col-
lisions and improve inference accuracy, however it will also
increase the attack execution time for the adversary.

4.2 Keystroke Inference Attack
Broadly, our proposed inference attack comprises of a

learning phase (Figure 3) that is followed by the attack

phase (Figure 4). However, before initiating the learning
phase, the adversary must define the classification param-
eters. This includes deciding the keys in L and R halves,
determining the hand on which the smartwatch is worn, and
accordingly form all perceptible transitions. In our experi-
ments, we suppose that the target is wearing the smartwatch
on his/her left hand and the keyboard is divided in L and
R halves as shown in Figure 2. Accordingly, all 196 possible
transitions with the watch-wearing hand are listed in Table
1. However, the proposed attack could easily be modified
(with little effort) for the watch worn on the right hand or
for other forms of L/R division of the keyboard. After these
parameters are determined, the learning phase can begin.

4.2.1 Learning Phase
The purpose of this phase is to construct trained clas-

sification and prediction models for use during the attack
phase. Training of these models comprises of the following
four steps: (i) data collection, (ii) feature extraction, (iii)
word labeling, and (iv) supervised learning. To ensure uni-
formity in the learning models, the training data is chosen
such that it has equally distributed features. This can be
achieved by using a large set of randomly generated words,
uniformly covering all keys and apprehensible transitions.

Data Collection: There are two types of data recorded
by our custom Android Wear attack (or data collection) ap-
plication. First, is the motion data just before and immedi-
ately after a keystroke. Second, is the entire transition data
between two keystrokes that occur on the watch-wearing side
of the keyboard. Both types of recorded data are the lin-
ear accelerations experienced by the smartwatch, as sensed
by it’s linear accelerometer sensor. The sampled linear ac-
celerometer readings are composed of instantaneous three
dimensional linear acceleration along the X, Y, and Z axes.
One of the authors (pretending to be the adversary) typed a
set of 1000 random English words which uniformly covered
all 26 keys and 196 transitions, without any fixed ordering or
timing. Note that the number of possible transitions will be
144 if the target wears the smartwatch on the right hand and
the keyboard is divided into the same L and R halves. The
data collection application also clocks and tags the ground
truth of the typed keys, which helps simplify the feature ex-
traction and labeling process later, which in turn, ensures
error-free training.

Feature Extraction: Feature extraction aids in dimen-
sionality reduction by eliminating redundant measurements.
For (L/R) keystrokes we compute a comprehensive set of 24
type of features such as mean, median, variance, standard
deviation, skewness (measure of any asymmetry) and kurto-
sis (to measure any peakedness). We use multiple inter and
intra-axis time domain features to capture the correlation
between movement on the three axis, and frequency domain
features to identify the different rebounding (or oscillatory)
motion of the wrist. However, in case of (N/E/S/W/O) la-
beling, we observed that the transition period was varying
widely based on typing speed and word composition. As a
result, it is impossible to represent the entire transition in a
fixed length time-domain feature vector (as used in feature
vectors with (L/R) labels). As a solution, we use frequency-
domain features such as Fast Fourier Transformation (FFT)
of the transition data.

Labeling: Each training word is broken down into its
constituent characters and character-pairs. As a result, a

word of length n letters would be broken into n charac-
ters and n − 1 character-pairs. Feature vector of each key-
stroke is labeled (L/R) using the ground truth characters
recorded during data collection. Feature vectors of direc-
tions are labeled (N/E/S/W/O) by calculating the direc-
tion between character-pairs obtained from the same ground
truth. An additional processing is performed to select a set
of character-pairs with even distribution of L and R and N,
E, S, W and O labels. Note that the number of N, E, S, W
and O labels will be approximately one-fourth of the num-
ber of L L, L R, R L and R R pairs because the
direction is determined only in case of L L transition (or R

R if the target wears the smartwatch on right hand). For
L R, R L and R R character-pairs, the direction for
transition cannot be determined (which is denoted by X in
the word-profile), and thus, they are not used in the training
phase.

Supervised Learning: We created two separate training
models that will be used during the attack phase to classify
keystrokes and keystroke-pairs. The two trained models are
L-R and N-E-S-W-O neural networks for classifying (L/R)
and (N/E/S/W/O) feature vectors, respectively. Because of
the complex interactions possible between consecutive key-
strokes, we train our classifiers using neural networks. Neu-
ral networks are specifically useful in discovering these com-
plex interactions between the corresponding feature vectors,
and improving the classification model based on it. Our
L-R neural network uses a back-propagation algorithm for
learning at a rate of 0.01 and with a momentum of 0.99.
This neural network has 30 hidden layers and training was
performed for 2000 epochs. Our N-E-S-W-O neural network
also uses a back-propagation algorithm for learning at a rate
of 0.001 and with a momentum of 0.99. This neural net-
work has 100 hidden layers and the training was performed
for 1000 epochs. These parameters for our neural network
based classifiers were chosen heuristically. Training of these
neural networks completes the learning phase.

4.2.2 Attack Phase
The attack phase follows a similar procedure as the learn-

ing phase, with the exception that the goal here is to recover
test words using the trained neural networks-based classifi-
cation models from the learning phase. In order to do so,
the adversary must first create a dictionary of words, and
their corresponding word-profiles, that the target is most
likely of typing. The dictionary size can vary from a few
words to thousands of words, depending on the target and
his/her context. If the adversary is unaware of the target’s
context, he could also create a large dictionary of most pop-
ular or all words in the English language. The dictionary
creation involves a preprocessing step to obtain equivalent
word-profiles of each word in the L/R and X/N/E/S/W/O
representation (as discussed before). The attack phase is
then executed in sequential steps of: (i) data collection, (ii)
feature extraction, (iii) keystroke classification, and (iv) word
matching.

Data Collection: The same properties and operations
from the data collection operation of the learning phase also
applies to the data collection during the attack phase. The
only exception is that the malicious Android Wear applica-
tion does not have the ability to clock and tag ground truth
characters. As the smartwatch can only detect motion cause
by one (watch-wearing) hand, a significant challenge of the

Typing

Raw Linear
Accelerometer

Data

Feature
Extraction

Module

Position
Features

L/R
Labeler

Labeled L/R
Features

L-R Neural
Network

N/E/S/W/O
Labeler

Labeled
N/E/S/W/O

Features

N-E-S-W-O
Neural Network

Transition
Features

Random
Training
Words

Supervised
Learning Module

Figure 3: Learning Phase: A high level overview of the data processing architecture used to train the neural
networks.

Typing

Raw Linear
Accelerometer

Data

Feature
Extraction

Module

Position
Features

Transition
Features

Contextual
Dictionary

Classification and Word Matching Module

Acoustic Keystroke
Detection

Keystroke
Timestamps

Feature
Matching

Predicted
Words

N-E-S-W-O
Neural Network

Classifier

L-R Neural
Network
Classifier

Figure 4: Attack Phase: A high level overview of the data processing architecture used to analyze keyboard
input using the trained neural networks.

proposed inference attack is due to the inability to detect
keystrokes made by the non-watch-wearing hand. However,
our attack framework requires to know the number of typed
characters. To solve this problem, here we assume that the
adversary can employ an alternate source or sensor on the
smartwatch that can detect keystroke events typed by either
hand. The intention for using such an auxiliary sensor is not
to classify the keystrokes using it, but to clock the time when
a keystroke occurs in the stream of raw linear acceleration
data. A microphone can perfectly serve this purpose. Even
though a smartwatch’s microphone is not effective for recov-
ering keystrokes (due to the aforementioned reasons), it can
certainly be used to detect the occurrence of a keystroke it-
self, made by either hand. This is where the naturally close
positioning of the smartwatch near the keyboard is benefi-
cial. Thus, the malicious application uses the microphone
to detect keystroke acoustics, and in the case a keystroke
event is detected from the acoustic signal, it logs a key-
stroke event in the linear accelerometer data stream. Space
key press events are also clocked or logged because they act
as word separators. Fortunately, as we empirically deter-
mined, space keys are easy to identify in an audio recording
because of the key’s distinctive sound and frequency of use.

Feature Extraction: During the attack phase, the same
features as in the learning phase are extracted from the raw
linear acceleration data recorded by the malicious applica-
tion. The feature vectors are then used to create two sets of
data, one for classifying L vs. R, and one for classifying N
vs. E vs. S vs. W vs. O.

Keystroke Classification: The adversary initiates the
classification process after extracting all feature vectors. The
trained L-R neural network is used to predict the (L/R) label
for each individual keystroke. Only when a L L key-pair
is detected in the data stream by the L-R neural network,
the N-E-S-W-O neural network classification is conducted to
predict the transition direction label (N/E/S/W/O). Oth-
erwise, the transition direction is labeled as X. Using the
predicted labels (and the recognized space keys as described
earlier), a word-profile is constructed for each word in the
keystroke stream. All the constructed word-profiles are then
passed as input to a word matching algorithm described
next.

Word Matching: Word matching is the final step of the
attack phase, where each predicted word-profile of length m
is matched with all words of length m + 1 in the prepro-
cessed dictionary by the adversary. For each matched word

in the dictionary, a similarity score is computed based on
the number of matching labels between the predicted word-
profile and the corresponding word-profile in the dictionary
(see details in Algorithm 1). The dictionary word with the
highest similarity score is then output as the word corre-
sponding to the predicted word-profile. For some evaluation
experiments, we also use a ‘similarity list’ made of dictionary
words with descending order of similarity scores.

Algorithm 1 Word Matching Algorithm

1: similarityScore = 0
2: for all words of len(m) ∈ dic do
3: for pair = 1 to m− 1 do
4: for label = 1 to 3 do
5: if dic.word.profile[pair][label] =

predicted.profile[pair][label] then
6: similarityScore++
7: end if
8: end for
9: end for

10: end for
11: return similarityScore

4.3 Experimental Setup
In our experimental evaluation of the proposed inference

attack and keystroke characterization framework, we use a
setup similar to the one shown in Figure 1. We recruit 25
participants1 who wear the smartwatch on their left wrist
and type test words on an external QWERTY keyboard. All
data recorded by the smartwatch was transferred to a remote
server. Both the training and attack phases are executed on
this remote server which is assumed to possess enough com-
putational and storage resources in order to carry out these
operations. The specifications of important hardware and
software components used in our experiments are outlined
below:

1. Smartwatch and sensor hardware: We used the Sam-
sung Gear Live smartwatch running Android Wear build
1.1.1.1944630. The Gear Live is equipped with an In-
venSense ICS-43430 microphone and an InvenSense MP-
92M 9-axis Gyro + Accelerometer + Compass sensor.
The maximum average linear accelerometer sampling rate
achieved in our experiments was 50 Hz. Our data collec-
tion application can be readily used on any Android Wear
smartwatch, which makes the attack framework compat-
ible with a diverse set of smartwatches.

2. Keyboard hardware: We chose to use the Anker A7726121
bluetooth keyboard because of its generic design. The
bluetooth connectivity aided in accurate labeling of sen-
sor data, by allowing us to aggregate recorded sensor data
and corresponding typed character on the smartwatch in
very close to real time.

3. Signal processing tool: Most of the features are calculated
using MatLab 2015a libraries.

4. Supervised machine learning tool: We used PyBrain v0.31
to train and test the neural networks in our framework.

1Our experiments have been approved by Wichita State Uni-
versity’s Institutional Review Board (IRB).

PyBrain is an open-source modular machine learning li-
brary for Python, supporting easy integration with un-
derlying environment.

5. EVALUATION
We first perform two preliminary experiments (involving

only one participant) in order to evaluate (i) the base accu-
racy of the L-R and N-S-E-W-O classifiers by analyzing a set
of test sentences from the set of Harvard sentences [1] and
(ii) the word recovery accuracy of the proposed inference at-
tack strategy by using a dictionary of ten Harvard sentences
and attempting to recover each of the same ten sentences as
test data. We choose Harvard sentences because they are
phonetically-balanced. In the two preliminary experiments
we make the assumption of ‘perfect typing’, i.e. the par-
ticipant follows our L/R separation. After the preliminary
experiments, we conduct more realistic experiments involv-
ing all 25 participants, real-life sentences, larger dictionaries,
and without the assumption of perfect typing.

5.1 Feature Accuracy
In the first experiment, we examine the base accuracy of

both L-R and N-S-E-W-O classifiers in correctly distinguish-
ing between L/R region for individual letters and N/S/E/
W/O transition between pairs of letters. We evaluate our
trained classifiers using all the ten sentences in List 6 of
Harvard sentences. Interestingly, without any typing errors,
the L-R classifier was able to correctly identify 100% of the
individual key press events as left or right. However, the
N-E-S-W-O classifier had two mis-classifications, resulting
in 95% accuracy.

5.2 Basic Text Recovery
Our next experiment examines the percentage of text (in

terms of words) correctly matched by the word matcher.
In this preliminary experimental results, we observed that
the overall percentage of words correctly matched notice-
ably dropped due to mismatched two and three letter words
in the analyzed text. The smaller number of features in
these words results in several of these ‘small’ words having
the same word-profile, thus causing more collisions during
matching. We also observed that most of these words are
generally articles and conjunctions (e.g. an, the, and, or),
which can be easily interpolated by analyzing the language
semantics of the recovered text. As a result, we opted to
consider only ‘long’ words of four letters or more in all fi-
nal percentages of recovered words in our remaining experi-
ments. The ‘short’ words are instead denoted with asterisks
(“*”) in the recovered sentences.

In this experiment, we used the same ten sentences in
List 6 of Harvard sentences, as from the first experiment.
Among the 48 words of length four or more, only three
were erroneous (93.75% successful recovery). Out of the

Typed Text: The show was a flop from the very start.

Recovered: *** sums *** * flop from *** very start.

Colliding Word-Profiles:

Show: LXR . RXR . RXL , Sums: LXR . RXR . RXL

Figure 5: Sentence 4 from List 6 of Harvard Sen-
tences. The words ‘show’ and ‘sums’ have the same
word-profile resulting in a collision in the dictionary.

0

10

20

30

40

50

60

70

80

90

P
7

P
5

P
1

1

P
2

4

P
2

0

P
1

6

P
1

9

P
1

8

P
9 A P
3

P
1

7

P
2

3

P
8

P
4

P
2

5

P
1

4

P
1

3

P
1

0

P
1

P
2

P
6

P
1

5

P
2

1

P
2

2

P
1

2

W
o

rd
 R

e
co

ve
ry

 P
e

rc
e

n
ta

ge
 (

To
p

 1
)

Increasing Order of Time Taken by Participant to Type All Words

Among All 40 Words Typed Among 27 Words in Dictionary

Participants who Typed
Faster than Adversary

Participants who Typed
Slower than Adversary

Figure 6: Contextual Dictionary: Percentage of
words recovered per participant, presented in de-
scending order of typing speed of the participants.

three, two had incorrect N/E/S/W/O classification, while
the other was due to collisions in the word-profiles. Fig-
ure 5 shows the sentence where the collision occurred. The
problem of collision will increase with increasing size of the
dictionary. However, if we also take in to account second
and third ranked similar word-profiles during word match-
ing, this problem can be moderated. Errors in word recovery
(especially, due to collisions) can be further diminished by
analyzing language semantics, and then selecting the word
(from the multiple colliding words in the dictionary) that is
semantically best fit.

5.3 Contextual Dictionary
This experiment evaluates how our attack performs when

the adversary has some knowledge about what their targets
are typing. All the 25 participants typed a paragraph of 40
words (of length four or more) that appear in a National
Public Radio (NPR) news article on Greece debt crisis, and
this experiment simulates eavesdropping on a reporter typ-
ing the NPR news article. The dictionary is formed with
words that appear in six other news articles related to Greece
debt crisis, that were published a week before the target arti-
cle. The dictionary is also sorted based on frequency of word
appearances in the six chosen news articles, which improves
our chances of successfully solving a word-profile collision.
Figure 6 shows the percentage of words recovered per par-
ticipant. As one should expect in a real-life attack, out of
the 40 words in the target paragraph, only 27 were present
in the contextual dictionary. Even so, our framework was
able to recover as many as 21 words (for 3 participants), by
matching with just the first ranked word in the sorted list of
similarity scores (Figure 6). In other words, 21 words were
uniquely identified without any ambiguity, for the 3 partic-
ipants. On the lower end, only 4 words were recovered for
3 participants, but the recovery can be improved by con-
sidering words with lower rank in the sorted similarity list.
The mean word recovery using only the first ranked word
was 31.2% (or 46.2% if we consider only the words present
in the dictionary).

5.4 Typing Behavior and Speed
During data collection, we observed that in many instances

participants did not follow our assumed layout. Some of the
participants frequently used their left hand to press a key
on the right side of the keyboard, and vice versa. Upon fur-

0

10

20

30

40

50

60

70

80

90

100

Top 10 Top 25 Top 50 Top 100 Top 200

P
er

ce
n

ta
ge

 W
o

rd
 R

ec
o

ve
ry

Our Attack Marquardt et al. Berger et al.

Figure 7: A comparison of accuracy of our attack
with Marquardt et al. [16] and Berger et al. [9].
Note that in spite of not having wrist movement
information available from the non-watch-wearing
hand, our results are roughly comparable for a very
large (60,000 words) dictionary.

ther investigation we also found that participant who typed
slower, were less likely to follow the left and right division of
the keyboard. This phenomenon explains why participants
who took longer to type all the 40 words saw lesser word
recovery rate in Section 5.3 experiments. Figure 6 shows
the time taken by the adversary (whose typing was used as
the training data) to type the 40 words as A on the hor-
izontal axis. Participants on the right of A typed slower
than the adversary, and we can see a trend that the recov-
ery rate drops with slower typing. Interestingly, we see a
similar trend on the left of A as well, indicating that recov-
ery rate drops with faster typing. Our speculation is that
due to fast typing there may occur overlapping feature re-
gions leading to poorly performing L/R classification, and
incorrect L/R classification can significantly affect recovery
of words. Combining both the trends we arrive at a con-
clusion that participants who typed at a similar speed as
the adversary were more vulnerable to the attack. For an
adversary, the take-home message from this conclusion is
that the attack framework can be optimized by training it
with a typing speed and style expected from the potential
victim(s).

5.5 Comparison to Previous Work
From the above experiments, we saw that relying on ex-

act match with first ranked words may not always result
in the best inference accuracy. As pointed out by earlier
emanation based keystroke inference attacks [16, 9], more
intelligent adversaries may be able to form target sentences
with lower ranked words from the sorted similarity list. So,
we re-create the experiments conducted by Marquardt et al.
[16] and Berger et al. [9] in order to be able to compare
our attack framework directly with theirs. We use a simi-
lar sized English dictionary of 60,000 words (of length 4 or
more), sorted based on frequency of usage in English liter-
ature. We reuse 38 of the 40 words typed by participants
in Section 5.3 experiment, while remaining 2 (first and last
name of former Greek finance minister) are not contained in
the 60,000 word dictionary. Figure 7 shows the comparison.

Our attack framework demonstrates comparable accura-
cies to that of Marquardt et al. and Berger et al. It was
able to correctly map test words to the top 10 words in the

sorted similarity list 50.5% of the time, which happen to be
significantly higher than the earlier works using smartphone
sensors. The word recovery steadily improves as we increase
the size of selection from the sorted similarity list, but our
attack trails behind the other two in case of very large selec-
tions. Note that the complexity of forming sentences with
ambiguously recovered words grow exponentially with the
selection size. Therefore, achieving a better recovery rate
with just top 10 words is more significant than having a bet-
ter recovery rate using top 500 words. It is also important
to remember the distinct challenge faced by our technique
where no wrist movement information is available from the
non-watch-wearing hand.

We are unable to compare equitably with Wang et al.
[26] because of their different experimental setup. However,
using a smaller dictionary of only 5,000 words, they were
able to narrow down a typed word to 24 possibilities with a
50% chance. In contrast, we use a much larger dictionary of
60,000 words, and our attack is still able to narrow down a
typed word to only 25 possibilities with about 52.5% chance.

6. LIMITATIONS
Our proposed movement-based keystroke inference attack

using smartwatches circumvents some of the limitations of
emanation-based attacks, but it faces new challenges. In
this section, we discuss some of them.

• Ambient Wrist Movement: In case the target par-
ticipates in some other activity (for example, having a
periodic sip of drink) in between typing, the introduced
noise can lead to incorrectly predicted words. However,
since each word is treated separately, the error will not
propagate.

• Left and Right Handedness: Although the same at-
tack framework is applicable independent of the hand on
which the smartwatch is worn, classifiers trained using
data with the smartwatch worn on the left hand cannot
be used to predict words typed while wearing the smart-
watch on the other hand, and vice-versa.

• Inferring Non-Dictionary Text: Our attack performs
well for dictionary words, but is incapable of recovering
numeric keys and special characters. As a result, if the ad-
versary is interested in learning data with numbers and/or
special characters (such a credit card numbers, strong
passwords, etc.), the presented framework and attack will
not be directly applicable. However, wrist movements can
still be useful in determining approximate position of keys
pressed, which may significantly reduce the search space.

7. SMART MITIGATION
Our proposed attack demonstrates the need for reforms on

how sensors on smartwatches, and other wearable devices,
are accessed by applications. Even innocuous sensors can be
used as side-channels to indirectly infer private information.
However, there is no straightforward remedy to such privacy
threats. In this section, we present a smart countermeasure
to prevent such attacks in future.

The simplest way to protect against the presented attack
would be to remove the smartwatch from wrist while typing.
But repetitive removal of the watch (and remembering when
to remove) can become a burden for the user, as a result of

MSAC

Sensors

Linear
Accelerometer

Accelerometer Magnetometer Pedometer

rTAD

En
er

gy

St
ep

 C
o

u
n

t

M
ag

n
et

ic
 F

ie
ld

C

h
an

ge

D
ir

e
ct

io
n

 o
f

G
ra

vi
ty

Tu
rn

ar
o

u
n

d
s

Other Motion
Sensors

Yes No

User
Typing?

Untrusted 3rd Party Applications

Figure 8: The protection framework against key-
stroke inference attacks. Third party applications
get unrestricted access to motion sensors only when
rTAD reports that the user is not typing at the mo-
ment.

which, the user may choose to ignore the threat altogether.
To draw a favorable balance between utility, usability and
privacy while using wearable devices, we need smarter sen-
sor access controls. We feel that sensor access controls need
to be context-aware in order to automatically manage an
application’s sensor permissions, without having the user to
manually change these settings repetitively. As part of our
efforts to prevent smartwatch based side-channel inference
attacks demonstrated earlier in this paper, we design, imple-
ment and evaluate a context-aware access control framework
for smartwatch sensors. The framework (Figure 8) consists
of two key components: (i) a real-time typing activity de-
tection (rTAD) and (ii) a motion sensor access-controller
(MSAC). Preliminary evaluations of the framework lead us
to very promising results.

7.1 Typing Activity Recognition
Detecting when a smartwatch user is typing on a key-

board is not as straightforward as detecting contexts such as
location or temperature. Running complex machine learn-
ing based classification on very limited processors of smart-
watches is not a practical solution. Moreover, rTAD must
be real-time so that protection measures can be activated
proactively. The second bottleneck is the limited battery
capacity. Sampling sensors at high frequency and perform-
ing complex computations discharges the smartwatch bat-
tery rapidly, requiring frequent recharge of the device. For
example, continuous sampling of the accelerometer and gy-
roscope at 50 Hz on our Samsung Gear Live smartwatch
completely drains the battery in less than an hour of use,
which will severely affect the usability. From these observa-
tions it is evident that we have to identify features which are
easy to compute and compatible with low sensor sampling
rates. However, reducing sampling frequency also means
compromising the accuracy of classification. To compen-
sate the reduction in sampling frequency, we design features
using a assorted set of motion sensors (sampled at approxi-
mately 15 Hz) in order to make a highly perceptive decision.
Following are the five feature we incorporate in our proposed
rTAD component:

• Energy: Activity measured in terms of cumulative lin-
ear accelerometer readings. An unworn watch lying on a
table has zero energy, while an athlete’s watch has high
energy. Typing activity typically results in low but non-
zero energy. We apply a low pass filter over the linear

1

2

3 Ground Truth Typing
Typing Activity Ground

Truth

Recognition Recognition
Typing Activity Recognition

(1 detection)

Typing Activity
Detection

15 minutes time
segment

Classification Result FN TP TN FP

(a) N=1

1

2

3 Ground Truth Typing
Typing Activity Ground

Truth

Recognition Recognition
Typing Activity Recognition

(2 detections within a minute)

Typing Activity
Detection

15 minutes time
segment

Classification Result FN TP TN FP

(b) N=2

Figure 9: From bottom to top, (1) the 10 second detection windows where typing was detected are marked
in red vertical lines, (2) when N detections occurs within a minute, typing activity is recognized for that 15
minute time segment, and (3) the ground truth collect by prompting the participant.

accelerometer to eliminate high-frequency noise caused by
environmental factors.

• Turnarounds: Major positive to negative (or vice versa)
changes on linear accelerometer readings signify the turn-
arounds adjoining transitional movements between key
presses. Multiple turnarounds in close time proximity can
be associated with many activities, such as brushing teeth,
eating, playing drums, etc. As a result, we need additional
features to distinguish typing from other similar activities.

• Magnetic Field Change: Wrists are not rotated sig-
nificantly when a user types on a QWERTY keyboard,
while sitting in front of a stationary desk. Rapid change
in north, east and nadir vectors implies non-typing activ-
ity.

• Direction of Gravity: Gravity generally remains domi-
nant on z-axis of accelerometer while typing on a horizon-
tally placed keyboard. Any major fluctuations or gravity
on x-axis or y-axis implies other activities.

• Step Count: We assume that the user will be stationary
while typing on a computer keyboard. Thus, whenever
step count increases, we rule out typing activity.

At the end of every 10 seconds, rTAD conducts a binary
classification of weather the user typed in the last 10 sec-
onds or not. All features for the binary classification resets
at the starting of the next 10 second window. The cutoff
parameters for Energy and Turnarounds features are calcu-
lated using the test data collected in Section 5, whereas cut-
off parameters for Magnetic Field Change and Direction of
Gravity features are calculated heuristically. Cutoff param-
eter for Step Count is straightforward, because any increase
in the pedometer count indicates walking. The exact cutoff
parameters of each feature used in our evaluation of rTAD
can be found in Table 2.

Like many other activity recognition problems, there is
an inverse relationship between precision (number of actual
typing instances divided by number of all identified typing
instances) and recall (number of identified actual typing in-
stances divided by number of actual typing instances), where
it is possible to increase one at the cost of reducing the other.
A common approach to draw a favorable balance between
false positives and false negatives is to ‘recognize’ an activity
only when multiple instances of the activity are detected in
close time proximity [23]. However, the use of rTAD is very
different than most informative activity detection applica-
tions. The purpose of rTAD is to enable countermeasures

Table 2: The rTAD’s binary classification uses the
following parameters. At the end of each 10 second
windows, if any of the features are outside these
parameter ranges, then non-typing activity is iden-
tified, and vice versa.

Feature Parameters Ranges

Energy >= 10 and <= 200, after applying low-
pass filter

Turnarounds >= 6

Magnetic
Field Change

<= 2 samples with change in north di-
rection

Direction of
Gravity

>= 5 samples with fluctuations, or grav-
ity on x-axis or y-axis

Step Count <= PreviousStepCount

against keystroke inference attacks as soon as typing activ-
ity is identified. In other words, rTAD’s goal is to maximize
recall, but not to an extent where high false positives start
affecting the utility of other non-malicious applications in-
stalled on the smartwatch. We evaluate rTAD in two differ-
ent settings (visually explained in Figure 9):

• N=1: Typing activity is recognized whenever a 10 sec-
ond window is classified as a typing window. As a result,
countermeasures against keystroke inference attacks can
be initiated as early as 10 seconds from when the user
starts typing.

• N=2: Typing activity is recognized when two or more 10
second windows are classified as typing windows within
a minute. Countermeasures against keystroke inference
attacks can be initiated no sooner than 20 seconds from
when the user starts typing.

7.2 Protection
Once rTAD identifies that the user is typing, countermea-

sures against keystroke inference attacks can be activated
automatically in an non-intrusive fashion. And since the
protection mechanism is activated only when the user is
identified to be typing on a keyboard, the utility of the mo-
tion sensors is not affected when user is actively using other
applications on the smartwatch (such as playing games that
use motion sensors). Such smart protection measures can be
undertaken by the MSAC implemented in the operating sys-
tem itself, or as a trusted middle-ware. For the framework to
work, we assume that all third party applications get access

to motion sensor data only via the MSAC and the MSAC
has the ability to modify or restrict the flow of motion sensor
data. Although this assumption requires change in operat-
ing system architecture, it should be a rudimentary task for
operating system developers. Also, it should be noted that
this assumption does not require changes in existing third
party application, as long as the APIs to access motion sen-
sors remain unchanged. Since MSAC requires a change in
the operating system architecture, we are unable to imple-
ment a working MSAC. However, below we list out some of
the strategies that the MSAC can adopt when rTAD reports
that the user is typing:

• Complete Blocking: This strategy is the safest as it will
completely block the side-channel, but it can also harm
the utility of other non-malicious applications that may
want to perform passive computing with motion data.

• Reduced Sampling Rate: When a user types for sig-
nificant amount of time in a day, complete blocking of
the motion sensor data from third party applications can
greatly harm the utility of other non-malicious applica-
tions. In order to preserve some of the utility, MSAC can
provide third party applications access to motion sensors
at a reduced sampling rate. Restricting the precision at
which applications are allowed to access the sensors re-
duces the efficiency of side-channel attacks [19, 17].

• Random Out of Order Blocks: A smarter MSAC can
send out of order blocks of sensor readings to third party
applications. Random out of order blocks of sensor data
can greatly lower the inference accuracy of side-channel
attacks, but may still preserve utility for certain non-
malicious application. For example, a daily calorie counter
may not be significantly affected by out of order blocks of
sensor readings. That is because the calorie count will
be accurate as long as all the motions are captured by
the application, even if out of order. Size of block and
randomization algorithm will play a signification role in
determining how much an adversary can recover versus
the utility of randomly ordered blocks.

There can be other strategies that the MSAC can adopt as
well. We think that it will be best if users are allowed to
choose among the MSAC protection strategies, suitable for
their personal lifestyles.

7.3 Evaluation
We implement and evaluate our proposed rTAD, because

the effectiveness of the entire protection mechanism relies
on rTAD. To evaluate rTAD, we use the same smartwatch
setup detailed in Section 4.3. Preliminary evaluation in-
volved 4 participants with varied lifestyles wearing the watch
for long durations. If the rTAD application does not rec-
ognize typing activity, it prompts the participant every 15
minutes to collect ground truth. If the rTAD application
does recognize typing activity, it prompts the user immedi-
ately for ground truth. In case the user continues to type for
long period of time, the rTAD application does not ask the
user for ground truth for 15 minutes after the initial detec-
tion. This avoids annoyance to the participants and results
in equitable ground truth collection. In real usage, the user
will not be prompted for ground truth, instead the MSAC
will automatically start acting as soon as typing activity is
reported by rTAD.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

TP TN FP FN TP TN FP FN

N=1 N=2

Precision = 0.585106383
Recall = 0.948275862

Precision = 0.867088608
Recall = 0.85625

Figure 10: Normalized true positive (TP), true neg-
ative (TN), false positive (FP), and false negative
(FN), along with precision and recall values.

One problem that we encountered when evaluating rTAD
was that in certain cases the Magnetic Field Change feature
acted unexpectedly, introducing a lot of error in classifica-
tion. We observed that the unexpected behavior occurred
only while the participant typed on a laptop. Further inves-
tigation revealed that the magnet inside the laptop’s hard
drive (which are normally installed directly under the key-
board) was responsible for this unexpected behavior. Since
desktop keyboards are generally placed away from the hard
drives, the Magnetic Field Change feature performed in an
expected fashion in that case. For the remainder of the
evaluation we do not use the Magnetic Field Change feature
because it will be hard for the participants to remember
and distinguish between laptop and desktop typing. How-
ever, as laptops featuring non-magnetic solid state drives are
becoming popular, the Magnetic Field Change feature may
eventually become useful in future.

The combined true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN) results from
the 4 participants are shown in Figure 10. To better visu-
alize the difference between the two settings, the values in
Figure 10 are normalized with respect to the total number
of ground truth collected in each setting. As explained with
examples in Figure 9, TP signifies that the user was typing
and rTAD correctly identified that the user was typing, and
if rTAD failed to recognize that the user was typing, it was
recorded as FN. Similarly, TN signifies that the user was not
typing and rTAD correctly identified that the user was not
typing, and if rTAD identified that the user was typing, it
was recorded as FP.

In case of N=1, we observe lesser FN and higher TP, but
at the cost of higher FP. In case of N=2, we observe lower
FP, but at the cost of lower TP and higher FN. In other
words, rTAD can gain recall by trading-off precision, and
vice versa. Nevertheless, in both settings rTAD achieved
high recall values, which asserts it’s effectiveness in the pro-
tection framework.

7.4 Discussions

• Left or Right: Our attack framework, presented ear-
lier in this paper, requires the adversary to have a dif-
ferently trained framework for targets wearing watch on
their right hand. However, the design of rTAD (and thus
the whole protection framework) makes it independent of
which hand the smartwatch is worn on. As a result, rTAD
can start working out of the box, without manual setup.

• Usability: Our primary focus while designing the pro-
tection framework was usability. We work towards a low
processor intensive design, which in turn consumes low
battery power. We identify activities similar to typing on
keyboard, and try to minimize false positives. The pro-
tection mechanism works in an non-intrusive fashion as
well, and we envision that the entire setup process in a
real-life implementation will be very simple.

8. CONCLUSION
This paper presents a novel keystroke inference attack

which utilizes wrist-motion data gathered from a smart-
watch as side-channel information. In order to harvest the
information masked in wrist movements for inferring key-
strokes, we designed and validated a novel learning-based
attack framework which is specifically targeted towards re-
covering text typed by a smartwatch wearing user on an
external QWERTY keyboard. By showing the feasibility of
the proposed classification and prediction mechanisms, we
validate our hypothesis that wearable devices such as smart-
watches can leak sensitive personal information if access to
sensors (on these devices) is not appropriately regulated. We
also present a smart protection framework to automatically
regulate sensor access, aimed to improve privacy without
degrading utility of the device.

9. ACKNOWLEDGMENTS
Research reported in this publication was partially sup-

ported by the Division of Computer and Network Systems
(CNS) of the National Science Foundation (NSF) under aw-
ard number 1523960 and by the Information Institute of the
U.S. Air Force Research Lab (AFRL) under the summer
faculty fellowship extension grant. The content is solely the
responsibility of the authors and does not necessarily repre-
sent the official views of the NSF or the AFRL. The authors
would also like to thank Dr. Kevin Kwiat and Dr. Charles
Kamhoua for their valuable inputs and suggestions.

10. REFERENCES
[1] IEEE Recommended Practices for Speech Quality

Measurements. IEEE Transactions on Audio and
Electroacoustics, 1969.

[2] Experian Marketing Services - Simmons Connect.
http://tinyurl.com/experiansmartphones, May 2013.
[Online; accessed 8-June-2015].

[3] D. Agrawal, B. Archambeault, J. R. Rao, and
P. Rohatgi. The EM Side-channel(s). In Cryptographic
Hardware and Embedded Systems, 2002.

[4] D. Asonov and R. Agrawal. Keyboard Acoustic
Emanations. In IEEE S&P, 2004.

[5] M. Backes, T. Chen, M. Duermuth, H. Lensch, and
M. Welk. Tempest in a Teapot: Compromising
Reflections Revisited. In IEEE S&P, 2009.

[6] M. Backes, M. Dürmuth, S. Gerling, M. Pinkal, and
C. Sporleder. Acoustic Side-Channel Attacks on
Printers. In USENIX Security, 2010.

[7] M. Backes, M. Durmuth, and D. Unruh.
Compromising Reflections-or-How to Read LCD
Monitors Around the Corner. In IEEE S&P, 2008.

[8] A. Barisani and D. Bianco. Sniffing Keystrokes with
Lasers/Voltmeters. Black Hat USA, 2009.

[9] Y. Berger, A. Wool, and A. Yeredor. Dictionary
Attacks using Keyboard Acoustic Emanations. In
ACM CCS, 2006.

[10] J. Cappos, L. Wang, R. Weiss, Y. Yang, and
Y. Zhuang. BlurSense: Dynamic Fine-Grained Access
Control for Smartphone Privacy. In IEEE Sensors
Applications Symposium, 2014.

[11] T. Fiebig, J. Krissler, and R. Hänsch. Security Impact
of High Resolution Smartphone Cameras. In USENIX
WOOT, 2014.

[12] J. Friedman. Tempest: A Signal Problem. NSA
Cryptologic Spectrum, 1972.

[13] M. G. Kuhn. Optical Time-Domain Eavesdropping
Risks of CRT Displays. In IEEE S&P, 2002.

[14] M. G. Kuhn and R. J. Anderson. Soft Tempest:
Hidden Data Transmission Using Electromagnetic
Emanations. In Information Hiding, Lecture Notes in
Computer Science, 1998.

[15] A. Maiti, M. Jadliwala, J. He, and I. Bilogrevic.
(Smart)Watch Your Taps: Side-channel Keystroke
Inference Attacks Using Smartwatches. In ACM
ISWC, 2015.

[16] P. Marquardt, A. Verma, H. Carter, and P. Traynor.
(sp)iPhone: Decoding Vibrations From Nearby
Keyboards Using Mobile Phone Accelerometers. In
ACM CCS, 2011.

[17] Y. Michalevsky, D. Boneh, and G. Nakibly.
Gyrophone: Recognizing Speech from Gyroscope
Signals. In USENIX Security, 2014.

[18] L. T. Nguyen, H.-T. Cheng, P. Wu, S. Buthpitiya, and
Y. Zhang. PnLUM: System for Prediction of Next
Location for Users with Mobility. In Nokia Mobile
Data Challenge Workshop, 2012.

[19] E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang.
ACCessory: Password Inference using Accelerometers
on Smartphones. In ACM HotMobile, 2012.

[20] J.-J. Quisquater and D. Samyde. ElectroMagnetic
Analysis (EMA): Measures and Countermeasures for
Smart Cards. In Smart Card Programming and
Security, Lecture Notes in Computer Science, 2001.

[21] R. Schlegel, K. Zhang, X.-y. Zhou, M. Intwala,
A. Kapadia, and X. Wang. Soundcomber: A Stealthy
and Context-Aware Sound Trojan for Smartphones. In
ISOC NDSS, 2011.

[22] P. Smulders. The Threat of Information Theft by
Reception of Electromagnetic Radiation from RS-232
Cables. Computers & Security, 9(1), 1990.

[23] E. Thomaz, I. Essa, and G. D. Abowd. A Practical
Approach for Recognizing Eating Moments with
Wrist-mounted Inertial Sensing. In ACM UbiComp,
2015.

[24] W. Van Eck. Electromagnetic Radiation from Video
Display Units: An Eavesdropping Risk? Computers &
Security, 4(4), 1985.

[25] M. Vuagnoux and S. Pasini. Compromising
Electromagnetic Emanations of Wired and Wireless
Keyboards. In USENIX Security, 2009.

[26] H. Wang, T. T.-T. Lai, and R. Roy Choudhury. Mole:
Motion leaks through smartwatch sensors. In ACM
MobiCom, 2015.

http://tinyurl.com/experiansmartphones

	Introduction
	Related Work
	Attack Description
	The Attack Framework
	Modeling Key Press Events
	Keystroke Inference Attack
	Learning Phase
	Attack Phase

	Experimental Setup

	Evaluation
	Feature Accuracy
	Basic Text Recovery
	Contextual Dictionary
	Typing Behavior and Speed
	Comparison to Previous Work

	Limitations
	Smart Mitigation
	Typing Activity Recognition
	Protection
	Evaluation
	Discussions

	Conclusion
	Acknowledgments
	References

