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ABSTRACT

Wrist-wearables such as smartwatches and fitness bands are
equipped with a variety of high-precision sensors that support
novel contextual and activity-based applications. The presence of
a diverse set of on-board sensors, however, also expose an addi-
tional attack surface which, if not adequately protected, could be
potentially exploited to leak private user information. In this paper,
we investigate the feasibility of a new attack that takes advantage
of a wrist-wearable’s motion sensors to infer input on mechanical
devices typically used to secure physical access, for example, com-
bination locks. We outline an inference framework that attempts to
infer a lock’s unlock combination from the wrist motion captured
by a smartwatch’s gyroscope sensor, and uses a probabilistic model
to produce a ranked list of likely unlock combinations. We conduct
a thorough empirical evaluation of the proposed framework by
employing unlocking-related motion data collected from human
subject participants in a variety of controlled and realistic settings.
Evaluation results from these experiments demonstrate that mo-
tion data from wrist-wearables can be effectively employed as a
side-channel to significantly reduce the unlock combination search-
space of commonly found combination locks, thus compromising
the physical security provided by these locks.
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1 INTRODUCTION

Wrist-wearables such as smartwatches and fitness bands are gaining
popularity among mobile users, and will continue to be a prevalent
mobile technology in the future [3]. The presence of a diverse set
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of sensors on-board these devices, however, expose an additional
attack surface which, if not adequately protected, could be poten-
tially exploited to leak private user information. Weak or absent
access control and security policies vis-a-vis some of these sensors
have further compounded this problem. The research literature is
rife with proposals that demonstrate how data from wrist-wearable
sensors can be abused to infer private user information, such as,
keystrokes, activities and behavior [26, 30-32, 43, 47, 48, 50, 51]. The
continuous placement of wrist-wearables on users’ body, coupled
with their unique design and usage, also puts them at a significantly
higher risk of being targeted for such privacy threats.

Our focus is on threats that enable an adversary to infer private
inputs or interactions made by a target user on an input-interface
(of some system of interest to the adversary) by taking advantage of
zero-permission sensor data available from the user’s wrist-wearable.
Zero-permission sensors (i.e., sensors that are not regulated by
explicit user or system-defined access permissions) provide a rel-
atively unobstructed attack surface to the adversary. A majority
of research contributions in this direction have primarily focused
on threats that attempt to infer private user inputs on interfaces of
purely cyber or cyber-physical systems, for example, inference of
keystrokes or taps on physical keyboards or touchscreen keypads
[24,30-32, 47, 48]. We focus on a slightly different kind of threat in
this paper which is to investigate the feasibility of inferring a target
user’s private inputs or interactions on the interface of a purely
mechanical device by harnessing the sensor data available from
the user’s wrist-wearable. We specifically focus on inferring inputs
on mechanical devices typically used to secure physical access (on
doors and lockers), for example, combination locks. Such privacy
threats concerning mechanical safety devices, which may now be
feasible due to the upcoming wearable device technology, has the
potential of impacting the physical safety and security of users.

Our specific research goal in this paper is to investigate the fea-
sibility of inferring unlock combinations of commercially-available
mechanical combination locks and safes (Figure 1) by exploiting
inertial or motion sensor data from wrist-wearables such as smart-
watches. During the unlocking process of combination locks, the
wrist on the unlocking hand undergoes perceptible and unique
movements and rotations of its own, which is strongly correlated
with the unlock combination. Our hypothesis is that, if these mo-
tions can be accurately captured and characterized, then it can be
used to infer the lock’s combination. Our objective is to validate
the above hypothesis by empirically evaluating the accuracy and
effort with which such an inference attack can be executed using
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wrist-wearables. In line with this objective, we make the following
technical contributions:

(1) Anovel motion-based combination key inference framework com-
prising of: (i) an activity recognition component for efficiently
and accurately identifying unlocking-related data in the contin-
uous motion data stream, (ii) a segmentation component to sepa-
rate and appropriately characterize motion data corresponding
to each part of the multi-part combination or key, and (iii) an
attack component that maps the characterizations of the indi-
vidual parts obtained from the previous steps to a (or a set of)
valid combination key(s).

(2) A comprehensive empirical evaluation of the proposed attack
framework in order to assess its performance: (i) on a com-
mercially available padlock and safe, (ii) by using different key
spaces, (iii) in a cross-device setting, (iv) in a cross-hand setting,
and (iv) under real-life lock operation scenarios.

2 RELATED WORK

Threats that attempt to infer private information, user-contexts
or user-activities by capturing related electromagnetic, acoustic,
optical and/or mechanical emanations from a target device or user
and employing them as information side-channels have been well-
studied in the literature [4-9, 11, 21, 27, 28, 40, 46, 49]. With the
advent of smartphones, researchers started focusing on employing
the phone’s on-board hardware and software sensors to investigate
the feasibility of similar inference attacks [45]. One notable sen-
sor modality that now became available as an attack vector is the
smartphone’s inertial or motion sensors, such as, accelerometers and
gyroscopes, which are capable of capturing fine-grained linear and
angular motion of the user or object on which the phone was placed.
Smartphone inertial sensors have been exploited to infer keystrokes
on the phone itself as well as external keyboards [10, 14, 33, 39, 52],
to track user movements and locations [20, 22, 37], to infer private
user activities [38] and to decode human speech [34]. Similarly,
smartphone microphone and/or magnetometer have also been ex-
ploited to infer private user information [42] or trade secrets (such
as 3D-printer designs) [18, 23, 44], private user activities [41] and
natural handwriting [54]. Recently, aggregate power usage over a
period of time available from the smartphone’s power meter was
used to track user movements and locations [35].

The arrival of smartwatches and fitness bands have fueled a sim-
ilar line of research in the area of private user-input, activity and
context inference threats that take advantage of data available from
sensors on-board these commercial wrist-wearable devices. How-
ever, unlike smartphones, as smart wearables are always carried
by users on their body in the same natural position, the result-
ing continuous nature of sensor data available from them is more
vulnerable to misuse and related inference threats more likely to
succeed. Smartwatch motion sensors, similar to the smartphone
case, have been exploited to infer keystrokes [30-32, 47, 48], user-
activities [29, 43], handwriting [50, 51] and driving behavior [26].
Recently, ambient light sensors on these devices have also been used
to infer private keystroke information [24]. Given this plethora of
research results, it is clear that sensors on-board mobile and wear-
able devices pose a significant privacy threat. It is alarming though
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that common mobile and wearable device users are unaware of
such threats [16].

In this paper, we investigate the feasibility of a new kind of
privacy threat, i.e., inferring unlock combinations of mechanical
locks using wrist-wearable motion sensors, which has never been
investigated before. Several modern smart locks offer a numeric
keypad which can be compromised using known smartwatch-based
keystroke inference techniques in the literature [30-32, 47, 48].
However, in this paper we target traditional rotation-based me-
chanical locks which are still very popular and where existing
attack techniques will not work. Blaze [12, 13] systematically ex-
amined physical and design weaknesses in both combination and
pin-tumbler locks. However, our primary contribution in this work
is to show how external side-channel attacks can make even a
securely designed lock vulnerable.

3 ADVERSARY MODEL

We consider the scenario of a target user who is wearing a wrist-
wearable such as a smartwatch and is entering the unlock combina-
tion or key on the circular dial of a mechanical combination lock
(targeted by the adversary) with the watch-wearing hand. The goal
of the adversary is to infer the unlocking combination of the lock
by employing the inertial or motion sensor data available from
the smartwatch worn by the target user. We assume that the ad-
versary has knowledge of the exact type (make and model) of the
target combination lock and that the dial of the lock has sufficient
resistance to prevent rotation by mere movement of fingers. The
adversary is able to record and obtain the inertial or motion sensor
data from the target smartwatch through several different modali-
ties. One way an adversary can achieve this is by creating a trojan
app and then tricking the unsuspecting target user or victim into
downloading and installing this trojan onto their wearable device.
In case the adversary is a popular service provider, gaining access in
such a fashion is much more straightforward as unsuspecting users
may download and install the malicious app on their own volition.
This malicious eavesdropping app samples the on-device sensors
of interest (specifically, the gyroscope sensor data is used for this
particular attack) and transfers the sampled sensor data to a remote
server controlled by the adversary through some covert commu-
nication channel, say by hiding it within useful communications.
We assume that the malicious app has the required permissions to
access these sensors of interest. As the proposed attack employs
the gyroscope sensor, which is a zero-permission sensor on popular
wearable operating systems such as Android Wear and watchOS,
the adversary has a relatively unobstructed attack path once the
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Figure 1: Targeted combination locks: (a) Master Lock 1500T
padlock, (b) First Alert 2087F-BD safe.
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malicious app is installed on the device. We also assume that the
adversary maintains a remote server with sufficient storage and
computational resources to archive the eavesdropped data and to
perform offline inference computations. The above adversary model
is practically feasible and has been a standard assumption for simi-
lar lines of investigations. In addition to the above cyber resources,
the adversary also has a limited amount of physical access to the
target lock (in order to conduct the actual physical attack on the
lock by trying out the inferred combination), but not long enough
to manually brute-force the lock’s combination. The adversary
presets/notes the position of the (lock’s) dial before the target user
begins the unlocking operation. However, the adversary has no
visual access to the dial during the unlocking operation itself.

4 BACKGROUND

4.1 Mechanical Combination Locks

After studying the technical specifications of several commercially
available mechanical combination locks, we decided to focus on
two specific types of locks whose internal mechanical structure and
physical operation are representative and commonly found in most
rotary combination locks: (i) padlocks, and (ii) consumer-grade safes.
For the padlock we chose a Master Lock 1500T model lock (Figure
1a), while for the safe we chose a First Alert 2087F-BD safe (Figure
1b).

The front dial of the Master Lock 1500T is used to enter the
unlock combination key and has 40 numbers on its face. As the
combination key comprises of three numbers (each taking a value
between 0 and 39) which must be entered sequentially, the resulting
theoretical combination key space is 403 = 64,000. In order to
unlock the Master Lock 1500T, a user must turn the dial clockwise
two full rotations and stop at the first number of the combination
key on the third turn (phase 1), then turn it counter-clockwise past
the first number of the combination key to the second number of
the key (phase 2), and finally turn the dial clockwise to the third
number of the combination key (phase 3). Let traversing from one
number to it’s sequential number (in any direction) be called a
“unit” of traversal. Then it should be noted that, depending on
the combination key being entered, in phase 1 the user traverses
anywhere between 81 and 120 units in the clockwise direction,
in phase 2 he traverses anywhere between 41 and 80 units in the
counter-clockwise direction, and in phase 3 he traverses anywhere
between 1 and 40 units in the clockwise direction. If this procedure
is correctly followed, and if the entered combination key is correct,
the indentations on the lock’s cams align correctly allowing the
hasp to be released and opening the lock.

The First Alert 2087F-BD safe’s lock dial comprises of 100 num-
bers (from 0 to 99) on its face. It’s combination key comprises of
four numbers (each taking a value between 0 and 99) which must
be entered sequentially, thus resulting in a theoretical combination
key space of 100%. In order to unlock the safe, a user must turn the
dial counter-clockwise four full rotations and stop at the first num-
ber of the combination key on the fifth turn (phase 1), then turn it
clockwise twice past the first number to the second number (phase
2), then turn it counter-clockwise past the second number to stop at
the third number (phase 3), and finally turn the dial clockwise to the
fourth number (phase 4). Depending on the combination key being
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entered, in phase 1 the user traverses anywhere between 401 and
500 units in the counter-clockwise direction, in phase 2 he traverses
anywhere between 201 and 300 units in the clockwise direction, in
phase 3 he traverses anywhere between 101 and 200 units in the
counter-clockwise direction, and in phase 4 he traverses anywhere
between 1 and 100 units in the clockwise direction. Similar to the
Master Lock 1500T, if this procedure is correctly followed and if
the entered combination key is correct, the safe opens.

4.2 Combination Key and Wrist Movements

Before designing an inference framework, we need to develop a
clear understanding of how the activity of entering a combination
key on a lock’s dial impacts the wrist movement of the unlocking
hand, and if it is possible to accurately and consistently characterize
this movement using the motion sensor data obtained from modern
wrist wearables such as smartwatches. More concretely, we would
like to first understand the relationship between the amount of move-
ment of a lock’s dial and the corresponding amount of movement of
the user’s wrist. We quantify the amount of movement of a lock’s
dial using the parameter transition, which measures the number
of units traversed when inputing a particular number of the combi-
nation. As the unlock combination key of the Master Lock 1500T
padlock has three numbers (and correspondingly, the unlocking
procedure has three phases), the amount of movement of the lock’s
dial during the unlocking process can be completely characterized
by three transitions. Similarly, as the First Alert 2087F-BD safe
has a four number combination, the amount of movement of the
lock’s dial during unlocking can be completely characterized by
four transitions. We quantify the amount of movement (or rotation)
of a user’s wrist by computing the angular displacement from the
observed smartwatch gyroscope data. As the gyroscope measures
angular velocity, the corresponding angular displacements can be
calculated by integrating the obtained angular velocity readings.

In order to quantify the relationship between transitions on a
lock’s dial and the wrist’s angular displacements, we conduct some
preliminary unlocking experiments on the Master Lock 1500T pad-
lock. Specifically, we collected smartwatch gyroscope samples at a
sampling rate of 200 Hz from three human subjects who unlocked
the padlock wearing a Samsung Gear Live. The subjects in our
preliminary experiments entered 40 different combinations on the
Master Lock 1500T padlock which covered all the 120 possible tran-
sitions (40 possible transitions per number in any combination key).
While entering each combination, the subjects always started from
a known position (number 0)% and entered the combination by
correctly following the unlocking procedure described in Section
4.1. For each subject, we plot the angular displacement (in radians),
calculated by integrating the corresponding angular velocities ob-
served on the x-axis of the smartwatch’s gyroscope, for each each
transition in either direction (Figure 2a).

From Figure 2 we first observe that, for each transition (irrespec-
tive of the direction of rotation), the angular displacement of the
wrist calculated from the raw smartwatch gyroscope data is not
the same as the angular displacement of the lock’s dial. These inac-
curacies could be attributed to the discrete nature of the gyroscope

2The starting point can be any number on the dial. However, the key inference function
(Equations 1 and 2) must be initialized accordingly, during the inference phase.
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readings, which are limited by the maximum sampling rate of the
gyroscope hardware. In addition to this, the cartilaginous joints be-
tween the fingers and the wrist, do not allow for a perfect rotation of
the wrist during the unlocking operation. As a result, an adversary
cannot simply use the angular displacement of the wrist calculated
from the raw smartwatch gyroscope data to determine the angular
displacement, and thus the corresponding transition, on the lock’s
dial. Our second observation is that the angular displacement of the
wrist calculated from the raw smartwatch gyroscope data can be
approximated as an increasing linear function of the transitions on
the lock’s dial. Although intuitive, the interesting and encouraging
aspect here is that this relationship is consistent for all three sub-
jects. Lastly, we observe that this linear relationship is reasonably
homologous or similar across different subjects. We only used the
x-axis of the gyroscope data for these plots because we observed
that the x-axis remains perpendicular to the lock (Figure 1a) during
the unlocking operation and provides a more accurate measure of
angular displacement than the other two axes.

So, what do these observations mean to an adversary who wants
to infer the combination key entered by some target user? The
adversary is unable to accurately determine the angular displace-
ment or transition on the lock’s dial (and thus the corresponding
number in the combination) directly from the corresponding an-
gular displacement of the wrist computed using the smartwatch’s
gyroscope data. However, an adversary could use the above ob-
servations to construct a learning-based inference framework that
translates angular displacements of the wrist (computed from the
smartwatch’s gyroscope data) to transitions on the lock’s dial, and
train this framework using some representative training data. The
adversary could then employ such a trained inference framework
to infer the combination (entered by the target user) from the smart-
watch gyroscope data. We develop such an inference framework
in Sections 5 and 6. However, there are two additional challenges
that we need to overcome. First, in a long sequence of time-series
gyroscope data, how does the adversary identify data correspond-
ing to the unlocking motion? Second, to accurately compute the
angular displacement of the wrist for each phase of the unlocking
procedure, the adversary needs to divide or segment the gyroscope
time-series into individual phases. We address these issues by de-
veloping an unlocking activity recognition technique (Section 4.3),
and a segmentation technique (Section 4.4).
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4.3 Unlocking Activity Recognition

Before attempting to infer combinations from the target user’s wrist
motions, one critical challenge for the adversary is to precisely de-
tect when the unlock event takes place. In order to overcome this
challenge, we design an offline activity recognition technique to de-
tect and record timestamps of unlocking operations on combination
locks. Our activity recognition technique does not require any ad-
ditional adversarial capabilities or resources as it employs only the
gyroscope data stream (specifically, the x-axis data) which is already
recorded by the adversary for the inference task. While analyzing
characteristics of the time-series gyroscope data during unlocking,
we observed that the integrated angular displacement increases on
both positive and negative axis in successive periods. This is be-
cause after rotating the dial (clockwise or counter-clockwise) to an
extent, users release the dial, go back in reverse (counter-clockwise
or clockwise, respectively), again grab the dial, and continue en-
tering the remaining part of the combination key (clockwise or
counter-clockwise, respectively). We refer to one such clockwise-
counterclockwise (or vice-versa) motion during combination key
entry as a “spin”, which is primarily related to the comfortable wrist
rotation ability (or desire) of humans. Such spin-ing is repeated
multiple times during any combination key entry, approximately
every half a turn (7) and over a maximum duration of approxi-
mately 5 seconds. We can observe this phenomenon in the sample
gyroscope (x-axis) time-series corresponding to a padlock unlock-
ing operation (Figure 3). We utilize the above observations in the
design of the following four features which will be employed by
our activity recognition technique:

e Positive Displacements (*«): Integration of positive x-axis
gyroscope samples.

e Negative Displacements ("«): Integration of negative x-axis
gyroscope samples.

e Summed Displacement (*a + “): Sum of integrated positive
and negative x-axis samples.

e Total Displacement Magnitude (*a + | a|): Sum of the mag-
nitudes of integrated positive and negative x-axis samples.

In order to confirm the above observations, we computed the
means and standard deviations of the above four features over all the
5 second windows (maximum duration of a spin) in the preliminary
unlocking-related gyroscope data collected earlier (Figure 2a). We
observed that the mean values of the magnitudes of "o and "«
are approximately similar in a spin, the mean value of the total
displacement magnitude is approximately double of both *& and ",
and the mean value of the summed displacement is close to zero. We
employ these learned mean and standard deviation values to form
a decision-tree for detecting spins. During the activity recognition,
the above four features are recursively computed for every 5 second
window, and the decision-tree classifies a window as a spin if all the
four features are within one standard deviation of the learned means.
In the case of padlock, if 5 (minimum number of spins observed
for the shortest padlock combination: 39-0-39) or more spins are
observed within a short time window (empirically determined based
on the maximum unlocking time observed in data) an unlocking
activity is recognized. A similar strategy could be used to recognize
unlocking operation on a safe.
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4.4 Segmentation

Segmentation of the time-series gyroscope data representing the
entire combination key input into data corresponding to individual
phases or transitions (three for the padlock and four for the safe)
will simplify the overall design of the inference framework. This is
because the combination inference problem can then be reduced to
the problem of independently inferring the combination number
corresponding to each segmented transition. In order to design a
reliable segmentation technique, we leverage on the observation
from our earlier experiments that humans tend to slow down when
they approach a number in their combination key. We believe that
this phenomenon is due to the cognitive processing of the human
brain governing the physiological action of stopping at a particular
number, which causes the subjects to slow down when approaching
the intended number in their combination key or risk overshooting
it (and thus having to restart the entire key entry process). We
can observe this phenomenon in the time-series gyroscope data
corresponding to the unlocking operation of the Master Lock 1500T
padlock by one of the subjects, where we can clearly see (Figure
3) the sharp decreases in the angular velocity (red line) when ap-
proaching the combination key number near the end of each phase.
In order to automate the process of segmentation, we design an
algorithm to detect the relative decrease in angular velocity, and
use the peaks (representing slowest movement) to segment the
entire time-series. The algorithm first computes the absolute values
of all samples in the gyroscope time-series data, inverts, and then
amplifies the time-series by a factor of 10 (for better visualization).
Then, on the resultant time-series, a Gaussian filter with a moving
window [17] of 15 samples (learned empirically, at 200 Hz sampling
frequency) is applied. Finally, the algorithm performs a search for
top-2 global peaks in the resultant time-series, which represents
approximate timestamps for the first and second number of the
combination key, in chronological order. The blue (top) line in Fig-
ure 3 is an example of the visualized output of our segmentation
algorithm, showing the detected peaks and resulting segmentation
timestamps. Our algorithm also works on gyroscope data from the
safe, using top-3 peaks.

5 DETERMINISTIC ATTACK FRAMEWORK

We develop two learning-based inference frameworks to infer num-
bers of the combination key inputted on the lock’s dial from the
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segmented smartwatch gyroscope data. We first outline a determin-
istic framework which outputs a single inferred combination key
from the segmented time-series gyroscope input.

5.1 Padlock Attack Model

Assuming that the starting point s on the padlock’s dial is
fixed/known (say, to be 0), we can define ®; = ({81,82..,120},
dy = {41,42..,80} and @3 = {1, 2..,40} as the sets of possible pad-
lock transitions in phase 1, phase 2 and phase 3 of the unlock-
ing procedure, respectively. Now for a given 3-number combina-
tion key k = (a,b,c) of the Master Lock 1500T padlock, where
a,b,c € {0,1..,39}, let 05% € @y, 2% € By and 67¢ € @3 be the
actual transitions or number of units traversed (on the lock’s dial)
between consecutive numbers of the combination key k, i.e., 054,

ng and Gllc’c are the number of units traversed between 0 and a,

between a and b, and between b and c, respectively. Let alsc“, azb

and (xllzc denote the corresponding angular displacements of the
target user’s wrist (ignoring the direction or sign) calculated from
the segmented smartwatch gyroscope data. The inference frame-
work comprises of a training phase and an attack phase. During the
training phase, the adversary collects training data (from a set of
human participants) comprising of a set of  and corresponding
a values for a sample set of combinations covering all possible
transitions. As indicated by our preliminary results (Figure 2a),
the relationship between angular displacements of the wrist and
transitions on the lock’s dial can be approximated by a linear func-
tion. Thus, the adversary can use the training data to learn such
a linear function @ = m@ + n that best fits all (0, @) points in each
of the [s, a], [a, b] and [b, c] transition ranges of the training data.
The adversary can employ a least squares [53] technique in order
to learn such a linear function (Figure 2b). Then during the attack
phase, for an unknown combination key k= (a, b, ¢), the adversary
first segments the gyroscope data and computes the correspond-
sa

ing angular displacements az’, agb and ag ¢ The adversary’s goal

then is to determine a combination k’, as an inference of l% by first
approximating or estimating the 92‘2 € 9y, Gl‘gb € @, and 625 € ds3
values from the corresponding angular displacements (az a azb and
aII;’ ¢ respectively). Let these approximations of Q;Cd, ng and 92‘3 be
denoted as 854, 3% and §%¢, respectively. In order to accomplish
this, the adversary employs the linear function (¢ = m6 + n) learned

earlier. Once the transition in each phase has been estimated, k’
can be computed as:

K =((-=0°% +s) mod 40),
(09% + (=64 +5)) mod 40), 1)
(=0%¢ + (09P + (=64 + 5))) mod 40))

5.2 Safe Attack Model

Similar to the padlock, we can define ¥ = {401, 402..,500}, ¥, =
{201, 202..,300}, ¥3 = {101,102..,200} and ¥4 = {1,2..,100} as
the sets of possible safe transitions in phase 1, phase 2, phase 3
and phase 4 of the safe unlocking procedure, respectively. For a
given 4-number safe combination k = (a, b, ¢, d), where a,b,c,d €
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{0,1..,99}, let 03¢ € ¥y, 0¢° € Wy, 02¢ € W3 and 679 € 4 be the
actual transitions between consecutive numbers of the combination
key k. Also, let a7, azb, a]lc’c and a¢? denote the corresponding
angular displacements of the target user’s wrist (ignoring the direc-
tion) calculated from the segmented smartwatch gyroscope data.
Similar to the padlock case, the adversary collects training data
(from a set of human participants) comprising of a set of 6 and
corresponding o values for a sample set of combinations covering
all possible transitions, and uses it to learn a linear function (of the
form of @ = pf + q) by employing a least squares [53] technique.
Then during the attack phase, for an unknown combination key
k= {a, l;, ¢, a?), the adversary first segments the time-series gyro-
scope data and computes the corresponding angular displacements
2‘3, al‘zb, ocgé and al‘::d. The adversary’s goal then is to determine a

combination k’ as an inference of k by first estimating the 02 decy,

o

9ab ¢ ¥, 9b¢ ¢ Y3 and §%d ¢ ¥, values from the corresponding
angular displacements. In order to accomplish this, the adversary
employs the linear function (¢ = pf + q) learned earlier. Then the
adversary computes k’ as:

K = ((6°% +s) mod 100),

(=696 + (654 +5)) mod 100), o
(%€ + (=09% + (8% + 5))) mod 100),
(=6% + (65¢ 1+ (=09 4 (§5@ + 5)))) mod 100))

6 PROBABILISTIC ATTACK FRAMEWORK

One shortcoming of the deterministic framework is that it outputs
only a single prediction, which if incorrect, is not very useful to the
adversary. A ranked list of predictions (“close” to the actual com-
bination) would be useful in reducing the search space and more
desirable, especially if the combination predicted by the determinis-
tic framework is incorrect. Empirical analysis of our deterministic
framework (Section 7.2) shows that the inference error (for each
inferred number in the combination) has a low standard deviation,
which suggests that numbers neighboring an incorrect inference
have a higher likelihood of being part of the real combination key
than numbers farther away. We use this observation in the design
of our probabilistic framework.

6.1 Ranking of Padlock Key Predictions

The goal of the probabilistic framework is to create an ordered
list of inferred combinations, ranked based on the probability of a
combination being the actual combination. We achieve this ob-

jective by giving priority to transitions closer to 64, §4b and
G¢ (calculated by the deterministic model), than transitions fur-
ther away from it. This is done by assigning probabilities to all
possible transitions in ®1, ®; and ®3 using three normal distribu-

tions N (659, crszﬁ), N(H_‘”;, 0'21;) and N(Q_I;é, 0'26), respectively. The
means and standard deviations of these distributions are learned
from the deterministic model presented in Section 5.1. Specifi-
cally, we calculate probabilities P(X las?) ~ N(05¢, Uszd) for all
possible transitions Xed beir}g the actual transition performed

in phase 1, P(Ylagb) ~ N(64P, 025) for all possible transitions
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Y € @, being the actual transition performed in phase 2, and
P(ZIoclgé) ~ N(él;é, agé) for all possible transitions Z € ®3 being
the actual transition performed in phase 3.

Once P(Xlalfc‘i), P(YlaZB) and P(Zlagé) for all possible transi-

tions X, Y and Z are computed, the probability P(k = k’) of each of
the 64K possible combination keys k’ being the actual combination
k entered by the target user can be determined as:

Pk =k') = P(X|a£ﬁ)p(y|a]§5)P(Z|a£é); Y(X, Y, Z) 3)

Where k’ can be obtained by substituting §5¢, §4° and §%¢ with
X, Y and Z in Equation 1, respectively. All the 64K combinations
k’ can then be ordered or ranked using P(k = k'), with a higher
value of P(k = k’) indicating that k’ is more likely to be the actual
combination k. Such a ranked list of combinations, denoted as K,
provides the adversary with a targeted search space to carry out the
inference attack. If the actual combination key k lies in the top-r of
K, then the attack framework is said to succeed after r attempts in
the worst-case. The adversary would obviously like 7 to be as small
as possible.

6.2 Ranking of Safe Key Predictions

The above probabilistic model for the padlock can be trivially
extended to the safe. This is done by calculating probabilities

P(Wlalfcd);VW € ¥y, P(X|a]‘?;i’);VX €W, P(Ylallgé);\lY € ¥3 and

Pz |a£”i);VZ € V¥4 using normal distributions N (93‘3,032‘3),

N(é‘il;, 0'%1;), N(él;é, O'b% )and N(éé‘;, O'AZdA), respectively. Then, the
a c c

probability P(k = k’) of each of the 100* possible combination keys
k’ being the actual combination k entered by the target user can
be determined as:

Pk = K) = P(w|a]§é)P(X|a]§’3)P(Y|a;;’f)P(Z|aI§3) (4)

Where k’ can be obtained by substituting 9_3‘2, é&é, O_I;é and 9_6‘2 with
W, X, Y and Z in Equation 2, respectively. All 100* combinations k’
can then be similarly ranked in a decreasing order using P(k = k”).

6.3 Search Space Reduction

Although the theoretical combination space for both the Master
Lock 1500T and the First Alert 2087F-BD are large enough to make
manual brute-force attacks impractical, the padlock has some well-
known design limitations. In practice, only a set of 4000 keys
are used in the production design of Master Lock, as pointed out
in a LifeHacker article [1]. Accordingly, after studying how our
probabilistic attack model performs on the entire 40° key space,
we also analyze how our attack can improve predictions within
the already reduced space of |K|= 4000 combinations. We are not
aware of similar limitations in the First Alert safe.

7 EVALUATION

We conduct thorough empirical evaluations of the proposed infer-
ence frameworks in order to assess their performance under realistic
lock operation scenarios. Our evaluation results are outlined next.
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7.1 Experimental Setup

We evaluate the proposed inference frameworks by means of smart-
watch gyroscope data collected from a set of human subject par-
ticipants who performed unlocking operations on the Master Lock
1500T padlock and the First Alert 2087F-BD safe with the watch-
wearing hand. For our experiments, we employed a Samsung Gear
Live smartwatch which runs Android Wear 1.5 mobile OS and is
equipped with an InvenSense MP92M 9-axis Gyro + Accelerom-
eter + Compass sensor. The smartwatch’s gyroscope sensor was
sampled at 200 Hz, and the samples were transmitted over a Blue-
tooth connection to a paired Android smartphone (specifically, a
Samsung 19500 Galaxy S4). The smartphone recorded the received
sensor data stream into labeled files, which were later used for
training and validation (testing). All preprocessing, training and
testing were performed on a server equipped with dual Intel Xeon
L5640 processors and 64 GB of RAM. During the data collection,
participants are clearly explained the unlocking procedure for each
lock. The locks are placed on a flat table and participants sit on
a chair across the table while unlocking. For the first part of our
evaluation (sections 7.2 and 7.3), we collect and use data from the
participants’ right hand (i.e., the right hand was used to unlock) in a
controlled setting. In this setting, each combination is dictated one
at a time to the participants who would then correctly enter it on
the lock. Our only objective for collecting unlocking-related motion
data from participants was to employ it for a realistic evaluation
of the proposed inference frameworks. Our data collection proce-
dure posed no safety or ethical risks to participants, and no private
or personally identifiable information (including, combinations of
personal locks/safes) was collected from participants. This study is
approved by our institution’s IRB.

7.2 Deterministic Attack Framework Results

We evaluate the performance of the deterministic framework by
measuring the standard deviations of the inferred transitions 6/
from the corresponding ground-truths 8% for each phase of the
unlocking operation. We specifically evaluated three different infer-
ence strategies: i) inferring transitions (*8%/) solely using positive
displacements (* '), ii) inferring transitions ("9%/) solely using neg-
ative displacements ('), and iii) averaging inferences (WT“QU)
obtained individually using positive and negative displacements.
Our objective is to determine if transition inference using any one
of the above displacement parameter is better than the other.

7.2.1 Results for Padlock. The training dataset for the Master
Lock 1500T padlock is composed of data collected from 3 partici-
pants (who are the authors, acting as the adversary). Each partici-
pant entered 40 different 3-digit combinations, covering all of the
120 possible transitions (40 in each of ®1, ®; and ®3). This data
entry was repeated 3 times by each participant, resulting in a total
of 9 complete datasets which is used for training the determinis-
tic attack model. The testing dataset was collected later from a
different set of 10 participants (non-authors)?. Each of these test
participants entered 4 different 3-digit combinations covering 12

3The training dataset for all experiments were collected independently and before
the test participants were identified/recruited, which gives us the worst-case results.
However, an adversary could be more successful by personalizing the training process
for the user being targeted.
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Table 1: Linear least-squares fittings for the padlock.

m (Slope)  n (a-intercept)

a®? (81-120) 0.0836 0.3272
as? (81-120) -0.1269 0.3714
*a2b (41-80): 0.0854 0.9360
a2 (41-80) -0.1163 0.3301
* b (1-40) 0.0737 2.0387

b€ (1-40) -0.1173 0.0061

Table 2: Linear least-squares fittings for the safe.

p (Slope) q (ar-intercept)

S (401-500): 0.0153 19.5492
“aS4 (401-500): -0.0266 -8.8471
*a b (201-300): 0.0010 7.9046
“a?? (201-300): -0.0386 -2.3798
*ab¢ (101-200): 0.0170 3.6319
€ (101-200): -0.0460 0.4906

* a4 (1-100): 0.0305 1.7663

a4 (1-100): -0.0483 -0.1058

of the 120 possible transitions (4 in each of ®1, ®; and ®3), and
repeated the data entry 3 times. The combination of data collected
from all the 10 participants resulted in 3 complete test datasets
covering all the 120 possible transitions. The data collection task is
a non-trivial and time-consuming process due to the high cognitive
workload associated with entering new and previously unknown
combinations which resulted in a significant number of input er-
rors by the participants. All input errors during data-collection
were closely monitored and eliminated from the final datasets, and
participants were asked to re-enter combinations on which errors
occurred. We took utmost care to ensure that our test dataset is
complete (covering all transitions) and reasonably heterogeneous
(from 10 different participants) to avoid any bias in the evaluation
results. The evaluation results, outlined next, are using the averaged
prediction over all the 3 test datasets.

Table 1 shows the linear least-squares fittings for a*%, a
ab ¢, learned from the 9 training sets. These learned linear least-
squares fitting parameters (m and n) are then used within the de-
terministic framework to infer the 120 unique transitions in the
test dataset. Figure 4a (Right Hand results) shows the standard
deviations in inference errors for the inferred transitions in phase
1(6%9), in phase 2 (69%) and in phase 3 (6¢). We can see that the
inference averaging method (mu—geu) resulted in lowest error
for the inference of transitions in phase 1 (specifically, 12.27 units)
and phase 2 (8.49 units), respectively. However, inference using
negative displacement ("ab¢) resulted in the lowest error in phase
3 (4.82 units). We can also see that the inference of shorter transitions
are more accurate than longer ones. This observation is intuitive and
could be attributed to the differences in the biomechanics of the
diarthrodial joints [36] of the test and training participants. These
joints play an important role during the unlocking operation and
the errors due to biomechanical differences could add up for longer
transitions, thus making their inference more error-prone.

ab and

7.2.2  Results for Safe. The training dataset for the First Alert
2087F-BD safe is composed of data collected from 3 participants
(who are the authors). Each participant entered 100 different 4-digit
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combinations, covering all of the 400 possible transitions (100 in
each of ¥1, ¥, ¥3 and ¥4), which resulted in 3 complete train-
ing datasets. Testing dataset was collected later from a set of 10
different participants (non-authors), where each participant en-
tered 2 different 4-digit combinations covering 8 of the 400 possible
transitions (2 in each of the transition sets {405, 410, 415, ...500},
{205, 210, 215, ...300}, {105, 110, 115, ...200} and {5, 10, 15, ...100}).
Each participant repeated entering each combination 3 times, which
resulted in 3 partially complete test datasets of 80 evenly distributed
transitions. Due to a slightly more complex and longer unlocking
procedure of the safe (compared to the padlock), we observed a
larger number of participant errors during combination entry. As
before, all input errors were closely monitored and removed from
the final datasets. Due to a large combination space, in addition to
the more complex unlocking procedure, we restricted ourselves to
only partial test datasets for the safe. However, we made sure that
the test dataset is uniform in terms of the distribution of the various
transitions and the participants that recorded those transitions to
avoid any bias in the evaluation results. The evaluation results,
outlined next, are using the averaged prediction over all the 3 test
datasets.

Table 2 shows the linear least-squares fittings for a%9, a??, ab¢
and a?, learned from the 3 training sets. These learned linear
least-squares fitting parameters (p and q) are then used to infer the
80 unique transitions in the test datasets. The standard deviations
in inference errors for the inferred transitions in phase 1 (9%), in
phase 2 (09%), in phase 3 (6°¢) and in phase 4 (69) are outlined in
Figure 4b (Samsung Gear Live results). We can see that the inference
averaging method resulted in the lowest error for the inference
of transitions in phase 1 (specifically, 22.99 units), while inference
using positive displacement (*@%?) resulted in the lowest error for
the inference of transitions in phase 2 (17.86 units). For transitions
in phase 3 and phase 4, inference using the corresponding negative
displacements (i.e., “a?¢ and "a¢9) resulted in lowest errors (8.66
and 7.23 units, respectively). Similar to the padlock case, we can
observe that inference of shorter transitions in safe combinations are
more accurate. Moreover, we also observe that the standard deviations
of inference errors for the safe are relatively higher compared to the
padlock. We believe that this is due to the higher concentration of
numbers on the safe’s lock dial, compared to the padlock’s dial, for
the same angular displacement.
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Figure 4: Standard deviations in inference error for (a) -
three padlock phases, and (b) - four safe phases.
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7.3 Probabilistic Attack Framework Results

We evaluate the performance of the probabilistic attack model by
evaluating the overall success probability of test combination keys
being present in the top-r of their corresponding ranked inferred
combination sets.

7.3.1 Padlock Key Predictions (64K). We first evaluate the
success probability of finding an entire padlock test combination
key within the top-r of the corresponding set of 64K candidate keys,
ranked using the pr