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Abstract

Current practice of mobility scooter user authentication us-
ing physical keys and traditional password-based one-time
security mechanisms cannot meet the needs of many mobility
scooter riders, especially senior citizens having issues in re-
calling memory. New seamless authentication approaches are
needed to provide ongoing protection for mobility scooters
against takeovers and unauthorized access. Existing continu-
ous authentication techniques do not work well in a mobil-
ity scooter setting due to issues such as user comfort, de-
ployment cost and enrollment time, among others. In that
direction, our contributions in this research effort are two-
fold: (i) we propose a novel system that incorporates ad-
vances in few-shot learning, hierarchical processing, and con-
textual embedding to establish continuous authentication for
mobility scooter riders using only posture data. This security
system, trained on data collected from real mobility scooter
rides, demonstrates quick enrollment and easy deployability,
while successfully serving as an unobtrusive first layer of se-
curity. (ii) we provide to the research community the largest
publicly available repository of mobility scooter riders’ body
key-points data to enable further research in this direction.

Introduction

Although mobility scooters provide powerful ways to help
people with mobility challenges, especially senior citizens
with meeting their transportation needs, there is very little
research focusing on improving mobility scooter security in
smart and connected communities compared to other pow-
ered micromobility vehicles (Vinayaga-Sureshkanth et al.
2020). Current practice of user authentication using phys-
ical keys and traditional password-based one-time security
mechanisms fall short in accommodating many mobility
scooter users, such as those having issues in recalling mem-
ory due to age-related diseases and dysfunctions. There is
a clear need for new user-friendly and seamless authentica-
tion approaches that provide ongoing protection for mobility
scooters against takeovers and unauthorized access.
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Figure 1: Framework to Generate Upper-body Movement
Embeddings of Mobility Scooter Riding

Recent advances in deep learning models and techniques
have enabled accurate continuous user authentication using
behavioral biometrics such as gait, keystroke, pulse or touch.
However, much research in tangential fields uses special sen-
sors or has a long enrollment time, and thus cannot address
the challenges in the mobility scooter setting with users’
need for riding comfort and ease of deployment.

In this work, for easier and unobtrusive deployment, we
leverage riders’ posture data (excluding the face) captured
from user-facing cameras to extract features for continu-
ous user-authentication of mobility scooter riders. We pro-
pose a novel deep architecture for learning user-specific em-
bedding vectors from few training samples by employing
the sequence of users’ (or riders’) upper-body keypoint co-
ordinates detected during enrollment. Prior works such as
(Coskun et al. 2018) also utilize deep models in gait anal-
ysis for person identification. However, user postures on
mobility scooters show unique characteristics in the move-
ments of upper body parts, different from those in full-body
movements. We leverage Graph Neural Networks (Li, Zhao,
and Ma 2020) and a body-part-based hierarchical encoding
structure, which have strengths in extracting features repre-
senting unique spatial correlations of upper body keypoints
when riding mobility scooters.



Deep Representation of Mobility Scooter
Riding Postures
Model Architecture

The continuous video stream of the mobility scooter rider
is processed into 128-frame segments, each segment pro-
ducing one authentication decision. As shown in Figure
1, we process each frame to gather the coordinates of 9
torso keypoints (left/right shoulders, left/right elbows, left-
/right wrists, left/right hips and neck). With a sequence of
9 keypoints detected from 128 frames, we perform spatio-
temporal graph convolutions on the graph derived from nat-
urally connecting the joints at each frame and connecting
joints with themselves in the prior and posterior frame. Such
networks intuitively allow each joint to “understand” its spa-
tial and temporal relationship with surrounding joints.

The model then contains 4 residual convolutional en-
coders, one for each body part (i.e., Upper Torso, Lower
Torso, Left Arm, and Right Arm). Each convolution is fol-
lowed by the ReLLU activation function and batch normaliza-
tion, and the encoder contains 5 residual convolutions and 2
max pooling layers. The residual connections prevent over-
processing and addresses the vanishing gradient problem.
Having such encoders enables a pyramid of feature extrac-
tion. Each encoder produces a 64-dimensional segment em-
bedding via global average pooling of the final 64 channels.
Given these four embeddings, a two-layer fully connected
network with a ReLU activation then produces a single 64-
dimensional embedding for the 128-frame video sample.

Model Training

Triplet Metric Loss is used to minimize Euclidean dis-
tance between embeddings from the same user, described
as: L(z®, 2, 2" ) = max(||f(z?) — f(2P)]2 — [|f(2) -
f(z™)]]2 + «,0) , where 2 represents an anchor embed-
ding, 2P is an embedding from the same user as =, and ="
is an embedding from a different user. o represents the mar-
gin between positive and negative pairs, and f is the model
function. To minimize the loss, the model aims to achieve
1£@) = f(@)l[2 + a < |[f() — f(2")||2. thus embed-
dings from the same rider will be close, whereas those from
different riders will be further away, with an enforced mar-
gin between samples from different classes of a.

Rather than using all pairs of positive and negative sam-
ples, we accelerate model training by performing Triplet
Mining. For each anchor in a batch, we choose from the
batch the closest positive embedding and the closest negative
embedding that is not closer than the positive embedding to
produce challenging triplets for the model to train on.

Authentication Decision

To enroll in the authentication system, the user rides the mo-
bility scooter for 3 minutes, and random video segment sam-
ples of user riding are processed to produce embeddings,
which are stored collectively. A rider is authenticated based
on the Euclidean distance of the embedding of their current
riding and the user’s enrollment embeddings.

Data Collection and Data Set

We gathered mobility scooter riding data from 42 individu-
als on campus as described in Table I. They completed the

riding tasks in an average of 15 minutes, which included for-
ward riding, backwards riding, 90° and 45° left and right
turns, 360° rotations, both on-pavement and on-grass riding,
and sudden acceleration and deceleration. The sequence of
numbers in Figure 2 depicts the riding route.

Table 1: Participants #

Age Female | Male

18-25 4 30

26-60 2 2

>60 3 1

Total 9 33 Figure 2: Riding Route

After filtering out video segments where participants are
not following the tasks, we have approximately 10 hours and
9 minutes of recorded video footage, and a total of 1.1 mil-
lion frames. The dataset is available at github.com/Mobility-
Scooter-Project/Public-Data.

Evaluation

We test two pose estimation models MediaPipe and
MoveNet (both from Google) to generate the keypoint co-
ordinates in our system and other components and experi-
ment settings are kept the same. Table 2 illustrates the Area
Under the Curve (AUC) metric for the ROC curve of the
authentication system. The two system variations both yield
high accuracy using few enrollment samples. We also note
the system based on MediaPipe has greater variability and is
less accurate than when using MoveNet.

Table 2: ROC AUC of the Authentication System

Enrollment Samples

Pose Est. | — 5 7 10 | 20 | 40
MoveNet 0.976 | 0.986 | 0.990 | 0.987 | 0.990
MediaPipe | 0.98.1 | 0.896 | 0.962 | 0.960 | 0.964

Conclusion

This work provides a continuous authentication system
for mobility scooter riders. Our model leverages spatio-
temporal graph convolutions before a hierarchical encoding
structure to produce embeddings and is trained with Triplet
Metric Loss. Experimental results based on real mobility
scooter riders’ data show that our system is easy to deploy
and accurate.
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