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Abstract—Micromobility solutions such as e-scooters are gain-
ing popularity in urban communities. However, inadequate in-
frastructure (e.g., dedicated riding lanes), uncertain regulations,
and lax enforcement have resulted in riders encroaching public
spaces meant for pedestrians, causing significant safety concerns
for both. It is now more critical than ever to understand factors
that significantly impact pedestrian safety due to this upcoming
micromobility paradigm, however there have been no realistic
data-driven efforts in the community to address it. In this work,
we fill this research gap by employing wrist-wearables (smart
watches) to crowd-sense encounter data between e-scooters and
pedestrians, and use that to investigate the pedestrian safety
implications of unregulated micromobility.

Index Terms—Micromobility, Wearables, Pedestrian Safety.

I. INTRODUCTION

Micromobility, a transportation paradigm aimed at quickly
moving people over relatively short distances, is gaining
tremendous popularity in urban areas due to the introduction
of battery-powered vehicles such as electric scooters (or e-
scooters) [1]. Given their small physical footprint and ease
of accessibility (through rental providers), they afford a con-
venient means to navigate urban areas with congested roads
and sidewalks, making them a popular last-mile transportation
solution [2].

As the popularity of micromobility vehicles and services has
grown, new safety-related issues have emerged. Due to a lack
of strong regulations (and enforcement) on how and where
these vehicles should operate, riders often end up encroaching
road infrastructure meant for pedestrians, causing significant
safety concerns for both [3]. For instance, many recently
reported micromobility vehicle related incidents involve some
form of collision with pedestrians [4].

Despite this, micromobility research efforts so far have
primarily focused only on the problem of rider safety, leav-
ing out (either partially or wholly) the aspect of pedestrian
safety [5], [4]. There have been no realistic, data-driven field
studies conducted from a pedestrian perspective, which could
empirically investigate and characterize new safety issues that
arise due to micromobility services such as e-scooters. Such
studies are needed to address the pedestrian safety challenge,
however asking pedestrians to accurately collect and document
information related to observed e-scooter movements and
encounters, and their impact on their safety, is not only too
cumbersome and error-prone, but also exposed to bias.

This research was supported by US NSF award # 1829066.

This impediment to conducting a pedestrian-centered safety
study can be overcome by taking advantage of a technical
aspect of e-scooter vehicles belonging to most rental service
providers. We observe that e-scooters operated by popular
service providers (such as Bird [6], Lime [7] and Blue Duck
[8]) are equipped with Bluetooth Low Energy (BLE) radios
that constantly beacon messages to enable near-field operations
with customers’ mobile applications. Our main idea is to
passively capture these beacons (emitted by e-scooters) using
BLE receivers such as smartwatches carried by pedestrians.
E-scooter BLE data crowd-sensed in this fashion can then be
analyzed to extract fine-grained contextual (spatio-temporal)
information about the mobility and proximity state(s) of the
e-scooter riders and the (participating) pedestrians, which
we hope will throw further light on the factors impacting
pedestrian safety in such environments.

We leverage the above insight to conduct a large-scale field
study to investigate how micromobility vehicles such as e-
scooters impact pedestrian safety by recruiting participants
from UTSA campuses. Urban university campuses have a high
density of pedestrians (who are also often distracted [9]) and
e-scooter riders, making them ideal environments for such
studies. Our field study focuses on detecting and analyzing
real-time e-scooter–pedestrian encounters over a three-month
period by crowd-sensing BLE beacon packets emitted by e-
scooters. This crowd-sensing of BLE packets is accomplished
surreptitiously through customized BLE receivers such as
smartwatches worn by participants during the study. Our
analysis uncovers interesting encounter statistics and mobility
trends, which could be used to identify potentially unsafe
spatio-temporal zones and contexts for pedestrians. This infor-
mation could be extremely useful in planning deployment and
management of micromobility services such that it respects
pedestrian safety.

II. RELATED WORK

Prior research efforts by service providers and city adminis-
trators that have attempted to identify and address pedestrian
and rider safety issues related to micromobility have not
employed a holistic view of the underlying mobility patterns
and context. For instance, reports from micromobility service
providers [10], who can easily gather contextual data related
to their vehicles (such as riding patterns and parking habits),
did not have any quantitative information on fellow pedestrians
and their movement patterns. Moreover, service providers have
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a business-related incentive to not highlight the significant
negative impacts of their vehicles on pedestrian safety. Studies
by some city governments and community administrators [5],
[11] only employed subjective feedback and qualitative data
(often, more from pedestrians than riders).

Initial studies took a broad approach to apply planning
lessons from similar modes and identifying research needs
[12], [13]. An observational study in west Los Angeles identi-
fied safety risks related to e-scooter driver behaviors, such as
the ability to move between sidewalks and motor vehicle lanes,
which may surprise motorists [14]. In Singapore, researchers
measured rider predictability improvements after installation
of directional arrows on paths, suggesting opportunities to
improve safety through engineering for emerging modes [15].
An early field study in China observed e-scooter riders to more
often ride against the flow of traffic and in motorized lanes
[16].

Recent research efforts have attempted to connect safety
research to mobility needs by leveraging e-scooter usage
pattern data. For instance, McKenzie analyzed usage patterns
of e-scooter and e-bikes in Washington, DC, using the city’s
publicly accessible API to micromobility data portals [2].
James et al. analyzed e-scooter safety perceptions and side-
walk blocking frequencies from survey data, and observed
parking practices in different built environments [17]. Further,
Gossling highlighted that the use of virtual reality would
enable controlled experimentation of different e-scooter safety
contexts without the risk of field interventions [18]. Initial
empirical results in this direction support additional policy-
focused work to integrate micromobility as part of a sustain-
able transportation system [19].

Although micromobility research in the literature has in-
creasingly leveraged new data collection methods to address
a wide range of issues, none so far have undertaken a real
pedestrian-focused study to investigate interaction with mobile
e-scooters. To address this gap, in this work we systematically
analyze e-scooter and pedestrian encounters (a precondition to
accidents involving e-scooters and pedestrians), and discern if
or how pedestrians and such micromobility services can safely
co-exist in urban environments.

III. RESEARCH OBJECTIVES

Our research plan comprises of three research objectives
(RO1–RO3), where we analyze how certain space and time
factors affect the safety state of pedestrians in the presence
of e-scooters (and e-scooter riders) by means of empirically
collected pedestrian-rider encounter data.

RO1 Correlating space factors with empirical encounter
and physiological data to identify potentially unsafe
(to pedestrians) encounters and contexts.

In RO1, we analyze the spatial distribution of encoun-
ters, changes in encounter properties between high and low
encounter concentration or density areas, and the effects of
pedestrians’ and riders’ spatial diffusion on encounter rates

and other encounter-related properties to understand their
impact on pedestrian safety. We also relate this analysis to
infrastructure-related shortcomings, such as missing bike lanes
and sidewalk obstructions, to determine potentially unsafe
encounters, if any.

RO2 Correlating time factors with empirical encounter
and physiological data to identify potentially unsafe
(to pedestrians) encounters and contexts.

In RO2, we analyze the temporal distribution of encounters,
changes in encounter properties between time periods compris-
ing of a large number of encounters versus the smaller number
of encounters, and the effects of pedestrians’ and riders’ tem-
poral diffusion on encounter rates and other encounter-related
properties to understand their impact on pedestrian safety. We
further relate this analysis to factors, such as unbalanced class
schedules and common event times, to determine potentially
unsafe encounters, if any.

RO3 Correlating a combination of space & time factors
with empirical encounter and physiological data to
identify potentially unsafe (to pedestrians) encoun-
ters and contexts.

In RO3, we extend our previous analyses to study which
combinations of space (e.g., poor shared space utilization) and
time factors (e.g., event times) are the most significant enablers
of unsafe encounters between pedestrians and riders.

IV. RESEARCH METHODOLOGY

A. Encounter Definition and Types

In our study, an encounter is as an event that occurs when an
e-scooter and a pedestrian come in close (physical) proximity
of each other regardless of their state of motion. Based on
the data source used, specifically BLE and user feedback data
collected during the study (refer to Section IV-D, and our
extended technical report [20] for further details), encoun-
ters can be segregated into predicted encounters (EP ) and
observed encounters (EO). Predicted encounters are derived
from the sensed BLE data after the study (Figure 3), whereas
the observed encounters are voluntarily tagged by participants
in real-time. While EP is more deterministic, EO has infor-
mation about the direction, state of motion, and location of
e-scooters detected in close proximity to the pedestrians, and
can provide additional safety related insights (refer to Sec-
tion IV-E). We analyze both moving (similar to Figure 4) and
stationary scenarios for e-scooters and participants associated
with EP to accommodate the fact that an encounter (far away
or stationary to the participant) may possibly affect nearby
non-participant pedestrian(s).

B. Perceiving E-scooter Proximity

Received signal strength (RSS) from BLE data packets
broadcast by e-scooters is a reliable means to determine
source proximity due to its attenuation over distance. From
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our preliminary analysis to establish baseline RSS values for
popular e-scooter providers such as Bird [6] and Lime [7],
we observed that RSS of BLE packets captured from Bird
brand e-scooters at a distance of one foot is approximately -
60.5 dB, whereas RSS of packets from Lime brand e-scooters
in the same setting is -46.25 dB. However, as a pedestrian
moves away from an e-scooter, reception intervals of BLE
packets transmitted from an e-scooter become inconsistent at
the receiver (smartwatch), as shown in Figure 1, we observed
irregular BLE reception intervals starting at a distance of 20-
25 ft for e-scooters belonging to all targeted providers. Using
these observations, we identify whether the e-scooter was
proximate (within a foot or not) to the participant during the
encounters (EP ) detected from the technique in Section IV-C.

Strong/Consistent BLE SignalWeak/Inconsistent BLE 
Signal

No BLE Signal

Time →

Time →

Time →Inconsistent BLE 
Packet Reception 

Intervals

Consistent BLE 
Packet Reception 

Intervals

No BLE Packet 
Reception

E-Scooter Broadcasting 
BLE Packets

Participant with BLE 
Sensing Application

Participants with BLE Sensing Application

Fig. 1: BLE signal coverage around an e-scooter and how
pedestrians at different distances from the e-scooter observe
different reception intervals between BLE advertisements.

C. Encounter Detection

To detect encounters, we first identify e-scooter related
packets in the sensed BLE packet/data stream. From a pre-
liminary analysis on BLE packets advertised by different e-
scooters from different providers at the study locations, we
observed that the received BLE packets had easily distinguish-
able identifiers such as device names and HW MAC addresses
(as shown in Figure 2). We use this property to filter out
packets of a nearby e-scooter from the stream of BLE packets.
This is accomplished directly on the smartwatch using our
custom sensing application. Once BLE packets corresponding
to an e-scooter are detected, we establish ground truth of this
potential e-scooter encounter event by requesting participant
feedback in real-time by soliciting participant response to the
following three “Yes/No” questions:

• Is there a fast moving e-scooter in your vicinity?
• Was the scooter moving in your direction?
• Was the scooter in front of you?

Positive participant responses corresponding to potential en-
counters are used to tag them as observed encounters (EO).
To avoid participation fatigue, a minimum delay of 15 minutes
is maintained between feedback notifications (to participants).
As a result, not all potential encounters detected in our BLE
data stream may have participant feedback (ground truth)
associated with them.

Fig. 2: A BLE advertising packet from a Lime e-scooter.

To identify other encounters not tagged by participants
in real-time, we use a sliding window encounter detection
approach on the stream of BLE packets captured by each
participant, as shown in Figure 3. We chose a window size
of 1 second with an 80% overlap (i.e., each window has
an overlap of 80% with its previous window), and mark the
windows that contain 4 or more BLE packets as potential
encounter windows. Both the window length and threshold
of 4 were empirically determined, based on the minimum
time interval between the first and the last BLE advertisement
packets and the maximum time interval between consecutive
BLE advertisement packets across observed encounters, re-
spectively. The potential encounter windows are then further
refined as follows: If the time interval between two (or more)
consecutive potential encounter windows (i.e., time interval
between the last BLE packet in one window and the first BLE
packet in the next window) is less than 300 seconds, the two
windows together are considered as a single encounter, else
they are considered as two separate encounters. Finally, to
ensure that a single e-scooter or participant does not heavily
bias our encounter data and the related analysis, we discard
specific e-scooter encounters detected more than 4 times in
one day by a single participant. This typically represents a
situation where the participant is co-located near a parked e-
scooter.

t < 300 seconds
BLE Packet 
Receptions

Encounter

1 Second Sliding Window

Not an 
Encounter

N >= 4

Encounter EncounterNot an 
Encounter

N >= 4

t > 300 seconds

N >= 4N >= 4

Fig. 3: Sliding window-based encounter detection.

D. Data Collection

The target area (field) of our study is the UTSA main and
downtown campuses and neighboring points-of-interest (or
POI), including off-campus student housing and transportation
hubs. Among the 105 participants (aged between 18-54 years)
who participated for at least 15 days (on average) for the 30-
day study from April-June 2019, 77 participants completed
all their assigned tasks, and thus only their data was used
in our analysis presented later in Section V. Each participant
completed a demographic survey, checked out a Mobvoi
TicWatch E smartwatch running a custom data collection
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application, received a brief orientation on the operation of
the installed application and their expected tasks during the
study, and received instructions for providing voluntary real-
time encounter feedback. The participants were expected to
wear the loaned smartwatch during their entire stay on the
university campuses. They also completed a pedestrian safety
survey on the completion of their participation. The loaned
smartwatch has a built-in GPS sensor, a heart rate sensor,
and a BLE v4.1 radio, and is paired with the participant’s
smartphone for Internet connectivity (to upload the sensed
BLE data to our back-end servers). Our custom data collection
application detects when the participant is a pedestrian and if
there is any e-scooter in their vicinity. When an e-scooter is
detected (by our heuristic as described earlier), the application
prompts the participant to answer up to three encounter-related
questions (Section IV-C). The minimum interval between
successive encounter-related questions was set to 15 minutes.
Participants were also able to provide voluntary real-time
encounter feedback via an online form.

E. Data Modalities

We record quantitative data such as the signal strength
information from the BLE packets received from e-scooter(s),
packet timestamp, GPS coordinates, participant heart rate,
and all responses to encounter-related questions via the data
collection application on the smartwatch. We also collect
supplementary information such as the location and peak times
of pedestrian and rider attractors and generators. These are
POI where significant number of pedestrians and riders travel
to (e.g., classrooms) or disperse from (e.g., bus stop or parking
lot), respectively.

V. EMPIRICAL FINDINGS

Next, we analyze the data collected during our field study
based on the research goals outlined in Section III, and sum-
marize key findings in this section. An in-depth perspective
can be found in our technical report [20]).

A. Summary of Encounters

Overall, we noticed several e-scooter–pedestrian encounters
EP = 1800 and EO = 6482 associated with 1058 of the
7919 uniquely observed e-scooters in our dataset over the
entire study period. However, we will only consider encounters
that occur between 06:00-23:00 (4993 feedbacks), because the
earliest class (on either campus) started at 07:00 and the last
class finished at 21:45. Therefore, the time period between
06:00-23:00 represents the most typical use of e-scooters as
a last-mile transportation solution. Approximately 20% of the
recorded observations in that period correspond to moving e-
scooters, with at least 100 potentially hazardous observations
where the e-scooter approached the participants from behind.
A breakdown of the observed (EO) encounters showing the
different e-scooter moving directions and pedestrian line-of-
sight combinations is depicted in Figure 4.

We also determined a personalized heart rate range threshold
for each participant based on their overall heart rate data, and

Same Direction

Same Direction: Front of Pedestrian 

Same Direction: Behind Pedestrian 

Opposite Direction

Opposite Direction: Front of Pedestrian 

Opposite Direction: Behind Pedestrian 

Elevated Heart-Rate

Fig. 4: Summary of observed (EO) encounters for e-scooter
moving direction and pedestrian line-of-sight combinations.

their most frequently occurring pulse rate(s) to check if an
e-scooter encounter-related heart rate was within each partici-
pant’s computed threshold (for most daily activities) or not. An
increase in heart rate can occur when a pedestrian is startled
by a fast-moving e-scooter, which in many scenarios implies
that the pedestrian was faced with inadequate response time.
Given most e-scooters emit minimal audible sound during their
regular operation and combined with their faster speed, they
could present a significant safety risk to the pedestrians if they
cannot observe them and take appropriate reactions in a timely
fashion. In roughly 60% of the moving e-scooter encounters
seen in Figure 4, pedestrian participants had an elevated heart
rate when e-scooters approached them from the front or behind
and were within one foot away. Specifically, the mean of
median heart rate for encounters where the e-scooter came
from behind and went in the same direction was marginally
higher (102.42 bpm) than for encounters where the e-scooter
came from front and went in the opposite direction (100.95
bpm). This finding aligns with our intuition that pedestrians
may have little time to respond to rapidly moving e-scooters
and can be easily startled by them.

B. Outcomes of RO1

We first analyze how encounters are spatially distributed
throughout the field of study based on atomic segments where
encounters could potentially occur. An atomic segment is an
edge in the graph of roads and walkways, where one can
enter or exit only at its endpoints, and can connect with other
atomic segments (such as at an intersection), or could end
at a POI. An encounter map in Figure 5 shows the observed
encounters concentrated across several atomic segments within
the campus areas, with EP = 611 and EO = 35 being
the highest (number of encounters) in the main campus and
EP = 256 and EO = 55 in the downtown campus, respec-
tively. Out of the 21447 atomic segments (combined for both
the main and downtown campuses), at least twenty atomic
segments in both campuses had a relatively high number
of encounters: EP > 25 and EO > 5, with more than
95% of atomic segments having five or fewer EP and EO.
This disproportionate number of encounters on both campuses
implies that pedestrians in certain parts of the campuses are
significantly more likely to encounter e-scooters than others.

As closer encounters are more likely to result in a
pedestrian-related collision or disruption, analyzing spatial
closeness of predicted e-scooter encounters becomes crucial.

WristSense 2022: Eighth Workshop on Sensing Systems and Applications Using Wrist Worn Smart DevicesWristSense 2022: Eighth Workshop on Sensing Systems and Applications Using Wrist Worn Smart Devices

1048



Fig. 5: Predicted (EP ) and observed (EO) encounter density in and around main campus, and downtown campus.

Earlier in Section IV, we gauge e-scooter proximity using the
signal strength of BLE packets emitted by e-scooters. Using
the baseline RSS values observed in that preliminary analysis,
we found that 0.43% of encounters (EP ) were less than one
foot away from the participant.

As seen in Figure 6, we also discovered that predicted
encounters in atomic segments with high encounter counts
are on average closer (as the average BLE signal strength
is relatively stronger) than predicted encounters in atomic
segments with low encounter counts (as the average BLE
signal strength is relatively weaker). This analysis tells us
that encounters in high-encounter atomic segments are at a
relatively closer range (distance between the participants and
e-scooters) than encounters in low-encounter atomic segments,
which suggests that collisions are more likely to occur in high-

encounter atomic segments.
We also observed that a vast majority of close encounters

between e-scooter riders and pedestrians happened on narrow
pedestrian paths such as sidewalks (Table I). As there are very
few bike lanes and shared-use paths (typically, at least 10 feet
wide) in the study area, this creates conflicts and potential for
collision between pedestrians who prefer to walk to nearby
buildings and riders attempting to reach adjacent parking lots.

C. Outcomes of RO2

We next analyze how encounters are temporally distributed
throughout the week by partitioning into 15-minute and 1-
hour periods. We initially computed the number of encounters
across both campuses in each of the 476 15-minute time
periods in a week that included Sunday. We observed that

WristSense 2022: Eighth Workshop on Sensing Systems and Applications Using Wrist Worn Smart DevicesWristSense 2022: Eighth Workshop on Sensing Systems and Applications Using Wrist Worn Smart Devices

1049



Low High
Encounter Count

−100

−90

−80

−70

−60

−50

−40
Si

gn
al

 S
tre

ng
th

 (d
B)

Space

Low High
Encounter Count

Time

Low High
Encounter Count

Space-Time
Brand

Lime
Bird

Fig. 6: Comparison of maximum BLE signal strength of
predicted encounters (EP ) belonging to (a) atomic segments,
(b) 15-minute time periods, and (c) their spatio-temporal
combinations with High (85-169) and Low (1-84) encounter
counts, respectively. Star sign denotes the mean BLE signal
strength across encounters in each group.

TABLE I: Space: Encounters by functional classification.

TESa MEMb PEMc

Functional Classd EP EO EP EO EP EO

Arterial Streets 998 709 146.1 60.7 6.9 2.3

Collector Streets 269 336 68.4 55.2 3.2 2.1

Local Streets 1285 2255 176.0 171.8 8.3 6.6

Shared-use Paths 102 119 306.0 432.6 14.5 16.6

Sidewalks 994 1163 617.8 470.7 29.2 18.1

Other/Unclassified 154 411 799.1 1410.0 37.8 54.2

Total 3802 4993 352.2 433.5 100.0 100.0
a Total Encounters per Segment (TES) is the sum of all detected proximal

pedestrian-scooter encounters in a network segment.
b Mean Encounters per Mile (MEM ) is the average number of encounters

per segment divided by the length of the segment in miles.
c Percent Encounters per Mile (PEM ) refers to the percentage of TES w.r.t

sum total of all encounters over all segments.
d Arterial streets include OpenStreetMap (OSM) API tags ”primary” and

”secondary”. Collector streets include OSM tags ”tertiary”. Local streets
include OSM tags ”residential” and ”service”. Shared-use paths include OSM
tags ”path” and ”cycleway”. Sidewalks include OSM tags ”footway” and
”pedestrian”. Other/unclassified uses all other OSM tags.

most predicted encounters (EP > 50) occurred during two
time periods: Wednesdays 12:45-13:00 and Thursdays 22:30-
22:45, while most pedestrian-observed encounters (EO > 35)
occurred in twenty time periods on Wednesdays and Thurs-
days. Also, we noticed several spikes and surges throughout
Monday to Friday, and both EP and EO were significantly
lower on Saturdays and Sundays. Additionally, we analyzed
the encounter counts observed during 68 15-minute periods in
a day between 06:00 and 23:00. We found that pedestrians
are significantly more likely to encounter e-scooters at certain
times of the day, such as between 12:45-13:00 and between
14:45-15:00. During these time slots, our participants had the
most encounter encounters: EP = 169 and EO = 28.

From Figure 6, we observe that encounters that occurred
during periods with high encounter counts are generally closer,
for both the Bird and Lime brand e-scooters, as the observed
average BLE signal strength is relatively stronger in these en-
counters. This finding is in contrast to encounters that occurred
during periods with low encounter counts, as the observed
average BLE signal strength for encounters is relatively weaker
in this case. This suggests that collisions are more likely to
occur during time periods with high encounter counts than
during time periods with low encounter counts.

As students and some employees plan their arrival and
departure to/from campus depending on class timings, it is

intuitive that our encounter observations have some relation
to the schedule of classes. To verify, we analyze the hourly
encounters from April to early May alongside the number of
classes scheduled per week (Figure 7). We observe that the
average number of encounters across atomic segments was
higher on days with the highest number of classes (Tuesdays,
Thursdays, and Wednesdays) than the rest of the week. This
observation supports the intuition that the occurrence of en-
counters follows closely with class schedules. Also, there are
more predicted encounters (EP ) at night than during the day,
more likely due to late-night study and exam preparations by
students. While we see significant overlap in the afternoons,
there are comparatively fewer encounters (predicted and ob-
served) around the early morning periods. This overlap could
be due to factors including, but not limited to, personnel who
recharge drained e-scooters (in return for a payment from the
service provider) during late-night or early-morning hours, and
a pleasant climate which may prompt last-mile commuters to
walk rather than take scooters.

D. Outcomes of RO3

To analyze how the observed encounters (EO) are spatio-
temporally distributed, we study all combinations of the
21,447 atomic segments in both campuses and 68 15-minute
periods in one day (between 06:00-23:00), for a total of
1,458,396 spatio-temporal zones in each campus. More than
90% of the spatio-temporal zones in both the campuses did not
have any predicted (EP ) or observed encounters (EO). This
asymmetry indicates that pedestrians are significantly more
likely to encounter e-scooters in certain parts of the campuses
(and their surroundings) than the rest of the campus areas, and
only at specific times. For instance, there were lesser or no
predicted encounters (EP ) on the Main campus from 06:00-
11:00 on Tuesdays, compared to the latter half of the day.

We also observed that the residential areas outside the cam-
puses had fewer or no encounters in the early morning, more
likely due to e-scooter recharges schedules, lack of classes,
and availability of bus shuttles. Inside the campuses, we
noticed high predicted encounters (EP ), mostly between mid-
day to early-evening (12:00-16:00) on most weekdays (except
Fridays) when there were 150+ classes, as depicted in Figure 7.
This trend could be attributed to people commuting for lunch,
and students with morning and evening classes leaving and
coming to the campuses around this time, respectively.

We also discovered (Figure 6) that predicted encounters in
atomic segments with high encounters are on average closer
in range (as the observed average signal strength of the BLE
packets in the encounters is relatively stronger) than predicted
encounters in atomic segments with low encounters (as the
observed average signal strength of the BLE packets in the
encounters is relatively weaker) for Lime and Bird brand
e-scooters. This suggests that e-scooter related pedestrian
collisions are more likely to occur in spatio-temporal zones
with high encounters than in the ones with low encounters.
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VI. CONCLUSION

In this study, we crowd-sensed encounters between e-
scooters and pedestrians on two distinct urban university
campuses over a three-month period by using wrist-wearables
such as smartwatches. We analyzed and used specific spatio-
temporal metrics as benchmarks to understand the impact on
pedestrian safety from e-scooter services. Our analysis un-
covered mobility trends and potentially unsafe spatio-temporal
zones for pedestrians with respect to e-scooters. We show that
such crowd-sensing experiments using mobile and wearable
devices can aid in planning and infrastructure improvements
which could reduce pedestrian safety risks due to modern
transportation modes such as e-scooters.
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