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ABSTRACT
Several recent research efforts have shown that privacy of handwrit-
ten information is vulnerable to inference threats that employ zero-
permission motion sensors commonly found on wrist-wearables
(e.g., smart watches and fitness bands) as information side-channels.
While the adversary model in these earlier efforts have been reason-
able and the proposed inference (or threat) frameworks themselves
are practical and have technical merit, the related empirical eval-
uations suffer from several significant shortcomings, such as, use
of specialized sensor hardware and highly constrained or restric-
tive experimental procedures, to name a few. As a result, it is hard
to estimate the practical feasibility of these threats from existing
research results in the literature, and thus, the extent to which
end-users must be concerned about the possibility of such attacks
in real-life. To answer the above question, this paper replicates
some of the well-known wrist motion-based handwriting inference
frameworks in the literature in order to (re)evaluate their success
or accuracy in natural, unrestricted handwriting scenarios and set-
tings by employing commercially available wrist-wearables. The
results of these extensive replication and (re)evaluation studies
highlight several characteristics in motion data corresponding to
natural handwriting scenarios, which were either not observed or
ignored by earlier efforts, and contribute to poor inference accu-
racy of the corresponding frameworks. In summary, accurate and
practical handwriting inference using motion data (side-channeled)
from consumer-grade wrist-wearables is difficult primarily due
to unique and/or inconsistent handwriting behavior observed in
natural writing.
Artifacts: https://sprite.utsa.edu/art/dewristified
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1 INTRODUCTION
Inference of sensitive user data by employing on-board sensors as
information side-channels has been a significant privacy concern

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WiSec ’19, May 15–17, 2019, Miami, FL, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6726-4/19/05. . . $15.00
https://doi.org/10.1145/3317549.3319722

ever since the inception of commercial, consumer-grade wearable
devices such as smart watches and fitness bands. Several proposals
in the research literature have already demonstrated how data
from zero-permission wrist-wearable sensors can be abused to
infer keystrokes, user-activities, and behavior [11, 13–16, 19, 23,
25, 26, 28, 29]. In the same vein, multiple research efforts have also
demonstrated the feasibility of inferring handwritten text using
motion sensors (such as accelerometers and gyroscopes) present
onboard these wrist-wearables. Some of the initial efforts in this
direction showed the feasibility of inferring larger handwriting
gestures, such as, writing on a whiteboard [6] or using hand/finger
movements to write in the air [4, 5, 31]. More recent efforts have
focused on inferring smaller andmore natural handwriting gestures,
such as, writing on a paper with pen/pencil [30]. Some of these
works were presented with an adversary in mind, whereas others
were presented merely as a mobile/wearable application or service.
In this work, we focus on the problem of inferring handwritten text
primarily from an adversarial point of view.

While these earlier research efforts concluded that their infer-
ence/classification frameworks were able to infer handwritten Eng-
lish letters and words from wrist-wearable motion data in an ac-
curate and feasible manner, we observed that several of the as-
sumptions made by them (implicitly or explicitly) were either not
realistic or impossible to include in an adversarial setting. For ex-
ample, Amma et al. [5] used specialized motion sensors and custom
wrist-wearable hardware in their inference framework, which could
sample at more than 800Hz. However in practice, most common
commercially-available smartwatch and fitness-band motion sen-
sors have maximum (peak) sustainable sampling rates of around
200Hz. The availability of such specialized sensors and hardware,
and the extremely fine-grained motion data generated by it, may
result in an accurate inference of handwriting, but would be dif-
ficult to assume in an adversarial setting where the target user
is probably just wearing a consumer-grade wrist-wearable with
sensors that have limited capabilities. Other limitations of some
of the previous works include testing primarily in a personalized
setting (training and testing data collected from the same partici-
pant), vague definition of segmentation techniques used to separate
individual sentences and words, and disregard for varying writing
styles of the same target user. The absence of these factors in their
evaluation also gave us the impression that their data may have
been collected in a tightly controlled fashion, which is not reflective
of participants’ natural handwriting and/or writing in a natural
setting.

Motivated by these shortcomings of existing research efforts, in
this paper we attempt to validate if the current empirical results on
handwritten text inference using wrist-wearable motion sensors
are generalizable and applicable under more practical adversarial
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settings and handwriting scenarios. Broadly, our goal in this work
is to evaluate if existing handwriting inference frameworks are
a genuine and realistic threat to a wrist-wearable device user’s
privacy and security. In order to accomplish this goal in a structured
fashion, we first closely replicate the four most notable inference
frameworks in this direction, specifically, the ones defined by Xu
et al. [31], Arduser et al. [6], Amma et al. [5], and Xia et al. [30].
Next, by means of contemporary, consumer-grade wrist-wearables,
we collect natural handwriting related motion data from a large
number of human subject participants in an unconstrained and
non-restrictive setting for a variety of different writing scenarios.
In order to showcase why it is much more difficult to infer natural
handwriting, we then perform a detailed comparative analysis of
our results with those obtained by previous efforts, across different
writing scenarios. Our final contribution is an in-depth discussion
on the factors that affect the success of handwriting inference
attacks in real-life, supported by data and results obtained from our
experimentation.

2 ADVERSARY MODEL AND BACKGROUND
Before outlining details of our replication and validation experi-
ments, let us first provide an unambiguous description of the ad-
versarial setting and capabilities assumed in this work, followed by
a brief technical background of handwritten text inference. We also
provide a detailed review of the four notable wrist motion-based
handwriting inference schemes in the literature and summarize the
key research gaps that we attempt to fill in this work.

2.1 Adversary Model
The use of hands (and gestures) to compose lingual texts contin-
ues to be one of the most prevalent methods of communication
and many of these handwritten or hand-gestured text may contain
sensitive information, such as personal identifiers and financial cre-
dentials. Our adversary in this work is as a malicious actor or entity
whose goal is to infer such private handwritten text by employing
some form of an information side-channel. While there exists sev-
eral types of information side-channels, our focus in this paper is
on zero-permission motion sensors (such as accelerometers and
gyroscopes) found on most modern wrist-wearable devices such as
fitness-trackers and smartwatches. Our adversary can gain access
to this motion sensor information by tricking the victim user into
installing on its wearable device a Trojan or malicious application
that is masquerading as some useful application (for example, a
game or a fitness application). Once this Trojan application is in-
stalled on the victim’s wearable, it can sample and exfiltrate the
motion sensor data back to the adversary using the device’s net-
work connection. The fact that popular wearable operating systems
like Android Wear and watchOS allow third-party applications
unrestricted access to back-end sensors such as gyroscope and ac-
celerometer (thus, the term zero-permission), enables the malicious
Trojan application to sense and exfiltrate this data without raising
any flags or violating any system security policies. By masquerad-
ing as an application that would normally require access to these
(motion) sensors for its operation, the malicious Trojan application
can achieve further stealth.

Once the adversary is able to remotely archive this exfiltrated
sensor data, say, on its computation server, he can analyze it in an
offline fashion to infer the actual written information from the data
with as high accuracy as attainable. Such an adversary model is
practical and has also been commonly employed in the literature
for studying similar privacy threats due to zero permission mobile
and wearable device sensors [13–15, 17, 23, 27, 28].

In this paper, we limit ourselves to the problem of inferring hand-
written text in the English language only. This enables us to have
a comprehensive and equitable comparison with other research
efforts that have also inferred only English language written text.
Additionally, we also assume that our adversary only employs the
victim’s hand movement data while writing, as perceptible on the
victim’s wrist-wearable motion sensors, for the inference attack.
The adversary does not employ additional information, such as con-
textual dictionaries on the topic of writing and victim’s language
abilities, in order to improve the accuracy of the inference attacks.
This is done to keep the adversary model practical and to achieve
an equitable comparison with the inference frameworks being eval-
uated in this work. That being said, the adversary is free to use a
generic language dictionary and well-known spelling correction
techniques for improving handwriting inference.

2.2 Inferring Handwritten Text fromWrist
Movements

Any framework for inferring handwritten text from wrist move-
ments (or wrist motion sensor data) would ideally comprise of
the following two key phases: (i) identifying the writing and non-
writing parts in the sensor data stream in order to segment strokes,
alphabets, words, and sentences, and (ii) using the segmented sensor
data to perform character, word, or sentence recognition/classification.
However, before we outline a concrete technical framework for
handwriting inference from motion sensor data, let us first charac-
terize the different writing styles and writing elements that may
vary from person to person, and sometimes also for the same per-
son. Writing in English language can be broadly categorized into
the following two styles: lower versus upper case writing, and
cursive versus non-cursive writing [7]. Irrespective of the style,
writing in English (or any other) language comprises of drawing
a series of alphabets, where each alphabet is nothing but a series
of one or more strokes made with a writing apparatus such as a
pen. A stroke can be defined as a continuous line drawn in one
go, starting with a “pen-down” action and ending with a “pen-up”
action. The same concept applies to all forms of writing, except
that the pen can be replaced with another writing apparatus. Each
handwritten alphabet can be uniquely described by the number,
direction and order of strokes. It is possible to write the same
alphabet in different cases with different number, direction and
order of strokes. Even in the same case, the same alphabet can be
written using a different number, direction and order of strokes. As
a matter of fact, a written alphabet comprising of n strokes can have
n! different stroke order and directions depending on the writer.
Thus, it is easy to imagine that handwriting related wrist or hand
movements could differ significantly even for the same alphabet.
For example, written in the same case, but with different number,
direction, and/or order of strokes. These differences in movement
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are reflected on the motion sensors located on writer’s wrist, result-
ing in different sensor data streams for the same alphabet. This is a
significant challenge that must be overcome by any motion-based
handwriting inference framework. It is worth pointing out that
wrist movement-based handwriting inference is significantly dif-
ferent, and more challenging, than traditional image or pixel-based
handwriting recognition [20, 21], primarily because image or pixel
data does not include/consider information about the number, order
and direction of strokes.

2.3 Previous Work and Motivation
As noted earlier, we are not the first to investigate handwriting
inference threats using wrist-wearable motion sensors as an attack
vector. Multiple previous research papers have demonstrated the
feasibility of inferring different forms of handwritten information
from motion data collected by means of wrist-wearables. We are
particularly interested in the following four forms of handwrit-
ing scenarios that were evaluated earlier, primarily because they
are the most commonly observed in real-life situations: (i) pen(cil)
and paper writing [30], (ii) whiteboard writing [6], (iii) finger writ-
ing [31], and (iv) airwriting [3–5]. In this section, we describe the
main strengths and shortcomings of these earlier research efforts,
and outline our primary motivation for revisiting the problem of
handwriting inference using wrist-wearables.
Pen(cil) and paper writing: Xia et al. [30] proposed an eavesdrop-
ping attack on the classical pen and paper based writing scenario
using motion data recorded from a smartwatch worn on the writing
hand. The threat was accomplished using wrist motion data that
was sampled from the smartwatch’s accelerometer and gyroscope
at 200Hz. Most modern smartwatches and fitness tracker motion
sensors do support this sampling rate. The authors’ employed a
thresholding based word-wise segmentation on the continuous ac-
celerometer data followed by an alphabet-wise segmentation using
the gyroscope signal before classifying individual alphabets. The
authors’ did study a generalized setting for their classification algo-
rithm, where training and testing data from different participants
was used, making it realistic because it is generally difficult (or
impossible) for an adversary to collect labeled training data from
the victim or target. Given the above strengths, this work also has
several shortcomings. First, the proposed inference framework is
limited to non-cursive handwriting, and only lowercase alphabets
were evaluated with the argument that, it can be easily extended for
uppercase alphabets. Moreover, the framework is also difficult to
replicate and generalize to other writing scenarios and settings due
to the use of fixed thresholds (during segmentation) and specific
features (during alphabet inference).
Whiteboard writing: Arduser et. al [6] proposed an inference
framework that employs accelerometer and gyroscope data from a
target victim’s smartwatch to infer text written on a whiteboard.
Besides the standard learning-based alphabet classification routine,
the inference framework comprised of a pre-processing routine that
first converted the motion data from device coordinates to white-
board coordinates, which eliminated the effect of watch orientation
when writing on different (top or bottom) areas of the whiteboard.
Moreover, the motion data was sampled from standard consumer-
grade smartwatches, which shows that such threats can be executed

in the wild without using any specialized hardware. This research
effort also suffers from several significant shortcomings. First, the
proposed inference framework was used to evaluate only uppercase
alphabets. Moreover, it is unclear whether the proposed framework
can be easily replicated and generalized to other writing scenarios
and settings as critical parameters (and description) related to the
coordinate conversion routine and employed sensor sampling rates
are unavailable. Lastly, it is unclear whether the provided empirical
results are for a personalized (training and testing data from the
same participant) or a generalized (training and testing data from
different participants) classification setting.
Finger writing: Xu et al. [31] investigated the problem of alpha-
bet recognition (with each character approximately 2.5′′ × 2.5′′ in
size) when writing using the index finger on a surface by means
of a Shimmer [2] device worn on the wrist of the writing hand.
One of the most significant outcome of this research effort was
that the authors were able to obtain very high (more than 90%)
inference accuracy for their proposed inference framework. At
the same time, one of the biggest drawback of their work was the
use of sophisticated Shimmer devices in the inference framework,
which are not as ubiquitous and popular as commercially available
smartwatches and fitness-bands. In addition to this, the proposed
inference framework was used to evaluate only writing of upper-
case alphabet letters. This raises serious concerns about the broad
applicability and generalizability of the proposed framework to
other wrist wearable hardware and writing scenarios/settings. Also,
the paper neither mentions the total number of unique participants
for which the proposed inference framework was evaluated, mak-
ing it hard to understand the statistical significance of the obtained
results, nor does it provide details on whether a personalized or a
generalized setting was used for the classifier evaluation.
Airwriting: Amma et. al. [3–5] proposed an input mechanism
(named airwriting) which detects and classifies hand writing ges-
tures in the air using themotion sensor data collected from a special-
ized sensor-integrated hand glove. By comprehensively evaluating
their inference frameworks in both personalized and generalized
settings, the authors show that it is possible to obtain a reasonably
high inference accuracy in this writing scenario/setting. However,
while the use of a custom-designed hand glove capable of sam-
pling motion sensors at 819.2Hz is viable for enabling novel HCI
applications, such kind specialized hardware is not very popular
and ubiquitous. This significantly limits the applicability of the
above inference framework and the related results in an adversarial
setting. Moreover, the proposed inference framework was used
to evaluate only uppercase words from a dictionary as it did not
include appropriate segmentation algorithms for separating out
the alphabets within each word. This reliance on a dictionary for
executing the inference algorithm significantly limits the type of
information that can be inferred and is not very practical or realistic
in an adversarial setting.

As evident from the strengths and shortcomings of each of the
above research efforts, it was difficult for us to reasonably estimate
whether these threats to users’ handwritten information from cur-
rent consumer-grade wrist-wearable sensors is practically feasible
or not. And if it is, how would such an attack perform across a di-
verse group of users with different and unique handwriting styles?
And, is there a way to develop a unified inference framework that
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Figure 1: Generalized attack framework.

will not only work against diverse handwriting styles, but also
different forms and cases of handwritten text? In order to fully
understand the extent to which end-users must be concerned about
the possibility of such attacks in real-life, it is paramount for us to
answer these questions. As outlined earlier, we were unable to find
these answers in the current research literature. In this paper, we
attempt to seek these answers by closely replicating the implemen-
tation of the above four inference frameworks and re-evaluating
them in realistic adversarial settings. In the next section we give
details of the replicated experiments, and in Section 4 we present
our evaluation results obtained using these replicated experiments.

3 EXPERIMENTAL SETUP
Due to the unavailability of publicly-available code, we replicated
the inference frameworks of the four research efforts discussed
above, i.e., pencil and paper writing [30], whiteboard writing [6],
figure writing [31], and airwriting [4, 5], as closely as possible based
on the information available in the corresponding papers. Below,
we provide details of the experiments that we conducted using
these replicated implementations of the inference frameworks.

3.1 Participants and Data Collection
To account for participant diversity in our experiments (with these
frameworks), we recruited 28 participants aged between 18 and 30
(σ = 4) years, seven participants for each form of writing. 13 out
of the 28 participants were male, and remaining 15 participants
were female. All 28 participants were recruited using fliers posted
around our University campus, and as a result they were from
diverse demographic backgrounds. In order to test generalized
inference models as an adversary would, and in-line with some of
the previous works, only right-handed participants were used for
the study (i.e., writing with the right hand). For the same reason,
we also enforced non-cursive writing. In order to minimize bias
in the collected motion sensor data, no other restrictions were
imposed on the participants. Participants were not given any time
limit to complete their writing tasks, and were encouraged to write
using their normal or accustomed handwriting style. The entire
experiment was also approved by our University’s institutional
review board (IRB).

3.2 Writing Scenarios
Participants in our experiments were asked to wear a smartwatch
(Sony Smartwatch 3 or LG Watch Urbane, depending on the ex-
perimental scenario as detailed later) on their writing hand and
perform the assigned writing tasks (as described below). Both ac-
celerometer and gyroscope data were recorded at 200Hz from the
smartwatch while the participants were undertaking their writing
tasks. Depending on the writing scenario and setting, participants
were provided with appropriate writing apparatus and environ-
ment. For example, in the pencil writing scenario participants were
provided with a pencil, a chair to sit on, and positioned near a table
with a sheet of paper on top of it (used as the writing surface). In
the whiteboard writing scenario, participants were provided with a
marker pen to write on a nearby whiteboard mounted on the wall.
In the finger writing scenario, participants were provided with a
chair to sit on, and positioned near a table with a touchscreen tablet
computer on top of it (8′′ Samsung GT-N5110 Android tablet, used
as the writing surface). To match with [31], the writing area on
the tablet screen was designed to be 2.5′′ × 2.5′′. Lastly, for the
air-writing scenario, participants were provided with a chair to
sit on, and ample free space around them to allow free movement
of their arm. In all scenarios, the alphabets/words/sentence to be
written were displayed on a nearby tablet screen, except in case of
finger writing where the same tablet computer was used for both
displaying the writing task and as the writing surface. The tablet
was also used to record the ground truth alphabets/words, and
additional ground truth spatial data in the finger writing scenario
for in-depth empirical analysis of writing characteristics. Figure 2
show the setup of all the four writing scenarios described above.

3.3 Writing Tasks
In all of the four writing scenarios outlined above and depicted in
Figure 2, participants performed the same set of writing tasks, where
some of the subtasks were randomized in order to minimize bias in
the writing activity. The design of our writing tasks was carefully
undertaken so as to enable us to perform an equitable comparison
of our results with the ones obtained earlier, while at the same time
helping us gain more insight on the impact of different writing
characteristics, settings, scenarios, etc. on the resulting inference
accuracy. The writing subtasks were as follows:
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(a) Pencil and Paper Writing (b) Whiteboard Writing (c) Finger Writing (d) Airwriting

Figure 2: Writing scenarios considered in our experiments.

• Alphabets. Participants wrote individual alphabets one at a time,
covering all 26 alphabets in random order, in both upper and
lower cases. Each alphabet was written 10 times, for a total of
260 alphabets written by each participant.
• Words. Participants wrote 4-8 alphabet words, one at a time,
selected random from a vocabulary [9]. Each participant wrote
20 words, in both upper and lower cases.
• Sentence. Participants wrote a sentence covering all alphabets
of the English language, "the five boxing wizards jump quickly",
in both upper and lower cases.

In addition to the in-lab writing tasks, we also collected data
from 2 participants to evaluate writing activity recognition among
other daily activities. The participants wore a smartwatch for a day,
and were asked to perform writing scenarios belonging to each of
the above scenarios at random times during the day.

3.4 Inference Frameworks
We implemented the targeted inference frameworks [5, 6, 30, 31]
primarily using Python 3.7, making use of the machine learning li-
brary scikit-learn wherever applicable. The specific implementation
details for each of the writing scenarios are presented below.

Pencil writing:The raw sensor data was pre-processed by using
Pauta Criterion [32] to eliminate outliers in the data, followed by a
low pass filter with a range 1Hz to 25Hz. As, our data collection
already contains ground truth, no boundary detection was needed
when training individual letter recognizer models. Then, for each
letter sample in the preprocessed gyroscope data, entropy was
calculated for each axis after a Fast Fourier Transform (FFT). For
each axis, amplitudes for each frequency from 1 to 25Hz were
computed. The remaining processing included finding peaks and
valleys in the data and then computing features related to first peak
and valley, last peak and the maximum peak. The resulting feature
vector from this computation included a total of 115 features, which
were then used to train a Random Forest classifier. Hyper-parameter
tuning was done by using random search followed by a grid search
to generate the best set of hyper-parameters. In the word detection
phase, the top-5 letter predictions for each letter of a wordwere used
to generate a list of letter sequences, which were then processed by
a spell correcter module based on a comprehensive (100,000 words)
dictionary, in order to obtain a list of corrected words. From the list
of corrected words, the most frequently occurring word is selected
as the final predicted word.

Whiteboardwriting: The pre-processing done by Arduser et al.
[6] involves converting the data from device coordinates to white-
board coordinates. As sufficient information about this coordinate
conversion was unavailable, we were unable to accurately replicate
it. To compensate for this limitation and still have an equitable anal-
ysis, our whiteboard writing participants were asked to maintain
a constant height when writing. The individual letters were then
directly used in a Dynamic Time Warping (DTW) algorithm for
character recognition. DTW has been traditionally used for time
series alignment and calculation of a similarity distance between
two time series [24]. A part of the collected wrist motion data (of
users’ handwriting) was used as templates for each letter in the
alphabet, and these templates were then aligned with the query test
sequences to compute the similarity distance score, where lower
score would imply a better match. The results presented by Ar-
duser et al. considered the presence of a written character in the
top-3 predictions of the corresponding character as a successful
inference. To compare against these results, we used the top-3 pre-
dictions for each character from DTW, i.e. the three lowest DTW
scores. In the word detection phase, the audio collected alongside
the motion data was used to segment letters within a word. A vec-
tor was constructed by summing the absolute amplitudes between
5 to 10KHz in the time series. Then, consecutive values greater
than a threshold in this vector are combined, where the first value
above the threshold is marked as the starting point and the possible
end points are marked within a 2.5 second window from this start
point. The corresponding accelerometer data between start and end
point sequences is then used in the letter recognition, and used as
constituents for word prediction.

Finger writing: Although no pre-processing step for raw data
is mentioned in [31], certain individual features (from the data)
were required to be computed after passing the data through a
low-pass and band-pass filter. A set of features relating to motion
energy, shape, posture were computed for both accelerometer and
gyroscope data over all the axes. A detailed description of these
features can be found in [18]. This resulted in a feature vector
comprising of 46 features for each character window. These feature
vectors were then used to train Naive Bayes, Logistic Regression and
Decision Tree based classifier models for the character recognition
tasks.

Airwriting: In this writing scenario, the raw sensor data was
first normalized and then used to extract the average amplitude
for each axis (from both the accelerometer and gyroscope data
stream) resulting in a feature vector comprising of six features.
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These features were then used to build and train a separate Hidden
Markov Model (HMM) classifier [22] for each letter in the alphabet,
resulting in a total of 26 models. These HMMs were implemented
with left to right topology and 30 states. A Gaussian Mixture Model
with six components was used to obtain observation probabilities
for each state of the HMM.

4 INFERENCE ACCURACY RESULTS
In this section, we present evaluation results from our evaluation
experiments with the replicated inference frameworks discussed
above. First, we present inference accuracy results that were ob-
tained in a generalized setting, followed by results obtained in a
personalized setting. A summary of the inference accuracies ob-
tained in our experiments compared with those obtained in the
original papers of the four handwriting inference schemes can be
found in Table 1.

4.1 Generalized Inference Accuracy
The generalized models were tested by using a Leave-One-Out-
Cross-Validation (LOOCV) mechanism, where data from a single
participant is used as the test set while the remaining participants’
data is used as the training set for the corresponding classification
model.

Pen(cil) writing: The extracted feature sets for each individ-
ual alphabets, as described in the previous section, were used in
training a Random Forest classifier. Classification using the trained
Random Forest classifier in the generalized setting yielded an av-
erage accuracy for lowercase alphabets of about 6% (σ = 1%) with
alphabet "l" having the highest accuracy at 19% and all other al-
phabets had accuracies below 15%. The uppercase alphabets also
resulted in similarly poor average accuracy of only 5% (σ = 2.0%)
with alphabets "E" and "L" having the highest accuracy at 17% and
16%, respectively, and all other alphabets had accuracies below 10%.
In comparison, authors of the original work [30] were able to ob-
tain a mean accuracy of 50% (σ = 17%) for the lowercase writing
scenario. Our poor alphabet-level accuracies were reflected in word
prediction as well (< 1%). In comparison, authors in [30] obtained
a word accuracy of about 33%.

Finger writing: The finger writing inference is done using three
classifiers: Decision Tree, Naive Bayes and Logistic Regression. The
classification accuracies of all the three classifiers turned out to
be poor, with only 5% average accuracy (σ = 1%) for lowercase
alphabets. Similar accuracies were also observed for the uppercase
alphabets with 7% average accuracy (σ = 3%) for all the three clas-
sifiers. Word prediction was mostly unsuccessful (< 1% accuracy)
due to the low alphabet-level inference accuracy.

Whiteboard writing: When each participant’s dataset was
tested against the templates taken from all other participants, an
average accuracy of 20% (σ = 4%) for lowercase alphabets was ob-
served. Alphabets "l" and "z" showed the highest accuracies at 55%
and 47%, respectively, while all other alphabet accuracies were be-
low 30%. We were able to obtain an average accuracy of around 27%
(σ = 8%) for uppercase alphabets, where alphabets A, H, L,M, N,W,
Z showed over 40% accuracy. We obtained an average accuracy of
39% (σ = 6%) for lowercase alphabets when top-3 predictions were
considered, with alphabet "o" having an accuracy of 87%, followed

by "l" having 75% accuracy. For uppercase alphabets, an accuracy
of 44% (σ = 8%) was obtained with "L" having the highest accuracy
at 72% followed by M, N, H, W, V having accuracies above 60%.
It is unclear whether the results presented by Arduser et. al [6]
were obtained in a generalized setting or a personalized one, but
they were able to report a very high average inference accuracy of
around 94%.

Airwriting: In the generalized setting, our average accuracy
for the uppercase alphabets was only 9% (σ = 1%). The mean
lowercase alphabet accuracy was a mere 5% (σ = 3%). The trained
HMM-based character models were then concatenated and tested
to infer words. The poor individual character inference accuracies
were again reflected in word-level inferences, with less than 1%
word inference accuracy.

4.2 Personalized Inference Accuracy
In the personalized setting, the classification models were evaluated
by splitting the (motion) dataset of a participant into a training set
and a testing set, and cross-validated wherever applicable.

Pen(cil) writing: The dataset of each participant was split into
training and testing data using a 60:40 ratio. The alphabet infer-
ences were poor even in the personalized setting, with only an 10%
average accuracy for uppercase and 11% accuracy for lowercase
alphabets. The authors in [30] do not provide any results for a per-
sonalized scenario mainly because their scheme was proposed as
an attack. The poor alphabet inference accuracy was insufficient for
a word inference, even with the help of a dictionary to recognize
words.

Whiteboard writing: The whiteboard writing scenario was
analyzed in a personalized setting by using 50% of the alphabet
samples per participant as a training set (or set of templates for the
DTW algorithm), while testing was performed using the remaining
alphabet samples. This resulted in a 51% mean alphabet accuracy
(σ = 0.13) for the lowercase alphabets, with alphabets c, p, v, and
z having accuracies over 60%. We were able to obtain a 56% mean
accuracy for uppercase alphabets (σ = 12%), with alphabets B, I, M,
N, S, Z having accuracies over 70%. Figure 3 shows that alphabets
"n" was often misclassified with "h" (and vice-versa). Similarly,
letters "i" and "j" were also often misclassified with each other due
to the high similarity between their strokes. Figure 4 shows that in
the uppercase alphabets, "P" and "D" were often misclassified with
each other along with "U" and "V". We also tested the prediction
accuracy by considering the top-3 guesses. This resulted in 73%
accuracy (σ = 10%) for uppercase alphabets. The alphabets C, M, S,
Z had over 80% accuracy. For lowercase alphabets, 69% accuracy
(σ = 10%) was obtained, and only the alphabets c, f, k, p, z had
accuracies over 75%. In comparison, [6] presented results only for
uppercase alphabets and had a 99% accuracy within 3 guesses.

Finger writing: For this scenario, all the three classifiers were
evaluated with a 60:40 train:test ratio. We were able to observe an
average accuracy of around 8% for all the three classifiers (σ = 2%)
for inferring lowercase alphabets. Inference of uppercase alphabets
produced a slightly higher average accuracy of around 17% (σ =
10%). In comparison, Xu et. al [31] had over 85% accuracy for all
the three classifiers for uppercase alphabets. Word prediction was
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Personalized Generalized
Lowercase Uppercase Lowercase Uppercase

Original Work Our Replication Original Work Our Replication Original Work Our Replication Original Work Our Replication
Pencil writing (Xia et al. [30]) – 11% – 10% 50% 6% – 5%
Finger writing (Xu et al. [31]) – 8% 91% 17% – 5% – 7%
Whiteboard writing (Arduser et al. [6]) – 51% 94% 56% – 20% – 27%
Airwriting (Amma et al. [4, 5]) – 14% 95% 14% – 5% 82% 9%

Table 1: Comparison of alphabet inference accuracies. Empty fields imply that the original work did not test those setting.

Figure 3: Confusionmatrix for lowercase alphabets inwhite-
board writing.

Figure 4: Confusion matrix for uppercase alphabets in
whiteboard writing.

mostly unsuccessful (< 1% accuracy) in our test due to the low
alphabet-level inference accuracies.

Airwriting: For this scenario, the data set for each participant
was split using a 65:35 training:testing ratio. We observed an upper-
case alphabet inference accuracy of around 14% (σ = 3%). Inference

of lowercase alphabets also resulted in an average accuracy of
around 14% (σ = 5%). The individual character HMM models were
then concatenated to build word models for every word in a vo-
cabulary of approximately 1000 words [9]. The word-level data
collected per participant was then tested against these word models
to predict words. The low individual character accuracies were
reflected in the word-level inferences and we obtained an average
word-level inference accuracy of less than < 1%.

4.3 Writing Activity Detection
Among the four handwriting schemes considered in this work, only
[5] (airwriting) and [31] (finger writing) evaluated the problem of
detecting writing related gestures/activities among other activities.
In real-life deployment, this step is equally essential for both HCI ap-
plications and for an adversary trying to infer private handwritten
data. Xu et al.[31] considered gestures relating to the index finger,
the hand and the arm, and classified them using the same set of fea-
tures used for alphabet inference. They obtained true positive rates
of over 90%. Amma et al. [5] used a binary SVM classifier to identify
the airwriting motion in a continuous motion stream and achieved
a recall of 99% and a precision of 26%. As both of these prior works
used specialized devices, while we only considered wrist motion
data available from the smart watches (used in our experiments), it
was challenging to perform an equitable comparative evaluation.
We replicated the handwriting activity detection model used by Xu
et al. [31], but tweaked it so that it can be used to identify any of the
four writing scenarios (i.e., pencil writing, whiteboard writing, fin-
ger writing and airwriting). In a personalized setting with a user’s
labeled data included in the training, our activity detection model
achieved around 56% recall (and 57% precision) for air and finger
writing scenarios while pencil writing achieved 39% recall (47%
precision). Whiteboard writing resulted in the lowest recall value at
only 23% (34% precision). When considering each writing scenario
against all the other writing and non-writing activities, whiteboard
and finger writing resulted in over 90% recall with under 40% preci-
sion, and airwriting and pencil writing resulted in recall of 78%. A
generalized testing of our activity detection model achieved around
35-40% recall for airwriting, whiteboard writing and pencil writing,
whereas finger writing resulted in the lowest recall at just 8%. The
whiteboard writing achieved highest precision at 65%, while the
other three writing scenarios had a lower precision in the range of
20-40%.
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Figure 5: Number of strokes for the same letter for different
participants (lowercase).

5 FACTORS AFFECTING INFERENCE
ACCURACY

As evident from Section 4, our replicated experiments did not per-
form as well as some of the previous works. In this section, we
analyze the factors that we believe were the main causes of the
poor inference accuracies, which indirectly determines the practi-
cality of such handwriting inference attacks in real-life settings.

5.1 Number of Strokes
One of the main factors that influences a person’s handwriting
(and thus, its inference by the described frameworks) is the number
of strokes the person uses to write each alphabet of a language.
During our experiments, we observed varying writing styles among
different participants which effectively resulted in varying number
of strokes (across participants) for writing the same alphabet. Figure
5 and 6 shows that the same alphabet is written using different
number of strokes by different participants. For lowercase alphabets,
we observed that a, b, d, e, f, g, h, k, p, q, w, x, y and z have varying
number of strokes. For alphabet k, we observed some participants
used just one stroke and some other participants used up to three
strokes. Uppercase writing shows more variation in number of
strokes compared to lowercase writing, where except for alphabets
C, H, O, S, U andW, all other alphabets show variations. Notably,
the alphabet E was written using number of strokes ranging from
three to four.

We also observed that even the same participant sometimes use
varying number of strokes for the same alphabet. Figure 7 shows
the mean of variances for the number of strokes calculated per
participants. It is observed that except for alphabets c, o, q and s,
all other lowercase alphabets show some variance in the number
of strokes used. In uppercase alphabets, only C, L, O, S, U, V, W
and X were consistent when it comes to the number of strokes
used. The high variance of k is possibly due to the multiple ways
that alphabet can be written, in which number of strokes ranging
from one to three can be used to write it. Similarly, for alphabet
E, possible methods of writing includes using number of strokes
ranging from two to four (considering a stroke to be the writing
segment from one pen-down to the next pen-up).
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Figure 6: Number of strokes for the same letter for different
participants (uppercase).

5.2 Order of Strokes
Additionally, we also observed that alphabet letters written using
more than one stroke introduces another element of confusion,
which is the order in which the strokes are written. A simple exam-
ple would be writing uppercase alphabet T, in which we predomi-
nantly observe two strokes. These two strokes can be either written
as a horizontal stroke followed by a vertical stroke, or vice versa.
Such variations in order of strokes is likely to cause high degree of
misclassification during inference.

5.3 Direction of Strokes
Another important factor, especially considering that we are using
motion signals to infer handwriting, is the direction of the strokes
used to write an alphabet. One common way of writing f is starting
from the curved top and writing the vertical stroke, followed by the
horizontal stroke. But, depending on a person’s writing habit, one
could also write f with a vertical stroke from the bottom and curve
it on the top. Figure 8 shows how two different participants have
written the alphabet N. One participant started from the bottom
of the first vertical stroke and continued the same stroke to end
of alphabet. The other participant started the first vertical stroke
from the top and then went up through the same stroke to complete
the alphabet. This is a clear depiction of how even the direction of
strokes differ among various writers. Further, the overall shape of
the alphabets also could differ across participants. Figure 9 shows
two different styles of writing lowercase y with a curved style
strokes and non-curved strokes. Such variations in direction of
strokes is likely to cause high degree of misclassification during
inference.

5.4 Training Data Relevance
Even the same person can write differently based on the time, loca-
tion, or some other context. The variations of number of strokes
can be assumed as a possible indicator of such context-depended
writing characteristics. For example, while in haste a writer may
choose to use lesser number of strokes than usual for writing an
alphabet letter or write certain alphabets differently than usual,
whereas in more leisurely settings, the same writer may be more
careful and consistent in his/her writing. Also, the previous alpha-
bet could affect how the next alphabet is started when writing in a
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Figure 7: Variance in number of strokes per alphabet per participant, averaged for all participants.

(a) Writing Style 1

(b) Writing Style 2

Figure 8: Different ways of writing alphabet uppercase N.

(a) Writing Style 1 (b) Writing Style 2

Figure 9: Different ways of writing alphabet lowercase y.

natural setting. This specific transition motion that occur between
alphabets, could vary mainly based on how the previous alphabet
was written, i.e. the number and/or the order of the strokes. And
these transition motions intrinsically could affect alphabet classi-
fication, because the writing motion of an alphabet preceded or
followed by the transition motion could easily be mistaken for a
totally different alphabet. To this end, the authors of airwriting [5]

specified that they used a separate HMMmodel for such transitions,
but do not provide details on how the data to train this model was
obtained. And as pointed out above, these factors vary based on
the writer and also the writing conditions (time, location, writing
surface, pen/pencil used, position, etc.). Therefore, training such
a model would be a complicated task due to the highly irregular
nature of these transitions.

5.5 Uppercase vs Lowercase
Most of handwriting inference or recognition related works in the
literature consider only one of the alphabet cases, i.e., lowercase
or uppercase, along with claims that their framework can be eas-
ily extended to perform inference in the other case. However, we
observed that frameworks which rely on feature-based parametric
classifiers do not extend well into the other case. This was observed
for finger writing and airwriting in which the original frameworks
only considered uppercase, and our results indicate slightly better
accuracy for uppercase alphabets over lowercase alphabets. Authors
of pencil writing [30] utilized highly specific features designed to
assist in the classification of alphabets normally containing exactly
two strokes, such as f, i, j, p, t, and x. As a result, it is unclear how
such features would perform for uppercase alphabets which can
have more (or less) than two strokes.

5.6 Wearables Not on the Writing Wrist
According to an ongoing online study [1] taken part by more than
5667 participants, only about 39.93% users prefer to wear their
watch on their dominant hand. This indicates that a majority of
users would wear their (smart)watch or fitness band on their non-
dominant hand, or in our context the non-writing hand. Need-
less to say, the outlined handwriting inference attacks using wrist-
wearable motion sensors will fail if the eavesdropping smartwatch
or fitness-band is not worn on the writing hand.

5.7 Specialized Devices
As mentioned earlier, the original airwriting [5] and finger writing
[31] works used specialized hardware, such as a glove with a much
higher sampling rate (more than 800Hz) than that supported by
consumer-grade smartwatches. Such specialized hardware is advan-
tageous to an attacker since it allows capturing more sensitive and



WiSec ’19, May 15–17, 2019, Miami, FL, USA Raveen Wijewickrama, Anindya Maiti, and Murtuza Jadliwala

comprehensive information on hand movements. While the require-
ment of specialized hardware currently limits the scope of hand-
writing inference attacks, recently researchers have shown that
consumer-grade smartwatches may have more potential than pre-
viously known. For example, Laput et. al. [12] show that consumer-
grade smartwatch OS impose an artificial limit on the sensor sam-
pling rate, which can be bypassed by modifying the OS kernel. With
a modified kernel, Laput et. al. [12] were able to record accelerome-
ter data at 4KHz in order to detect hand gestures and detect objects
grasped by the hand. Therefore, it is possible that in future, sen-
sor sampling rate becomes much higher in smartwatches, which
would allow adversaries to capture more sensitive hand motion
data capable of more accurate handwriting inference.

6 DISCUSSION
6.1 Limitations
Our main objective in this work was to investigate whether state-
of-the-art wrist motion based handwriting inference techniques
do actually work “as advertised” in realistic (uncontrolled and un-
constrained) writing settings and scenarios. Our overarching goal
was to determine if these schemes pose a significant privacy threat
and can be deployed as a feasible adversarial tool to infer sensitive
handwritten text. Although we demonstrate that existing wrist
motion-based handwriting inference techniques do not perform
well in realistic writing scenarios using modern consumer-grade
wrist wearable devices and would not be very feasible adversarial
tools, our work stops at that point. In this paper, we do not make any
attempt to propose novel inference frameworks that outperform the
existing ones considered in the earlier research efforts. However,
the lessons learned from this research effort will definitely be useful
in such endeavors in the future.

Despite our best efforts to collect participant handwriting data in
a natural and unconstrained setting, we were obviously not able to
capture all possible writing situations. Our data collection was still
in a conventional writing setting and we did not include/evaluate
non-conventional scenarios such as writing too quickly (due to one
being in a haste) or writing too slowly. Moreover, our experiments
only considered a set of standard and popularly used writing appa-
ratus and surfaces, and we did not evaluate these existing inference
mechanisms for a variety of other alternate writing tools (such as
stylus, marker, chalk, etc.) and surfaces (such as curved or angled
writing surfaces). It should also be noted that while participants
were given complete freedom (and recommended) to write in a
natural, unconstrained fashion (with the only limitation being non-
cursive), we were unable to control environmental factors such as
preferred ambient light and temperature which can also potentially
impact a person’s natural writing ability or style. Furthermore, all
the wrist motion based handwriting inference schemes analyzed in
this work consider only non-cursive writing scenarios primarily
because of the inherent complexity of inferring inter-connected
letters within a word in cursive writing. In addition to this, these
schemes only collected data from right-handed writers for consis-
tency reasons. In order to accomplish an equitable comparison of the
obtained inference results, we also carried out our data collection
experiments only for non-cursive handwriting and for right-handed

writers. A more comprehensive analysis in this direction should
also include data from left-handed and cursive writers.

6.2 Replicability
When trying to replicate the results of previous handwriting in-
ference works, a significant amount of our efforts went in to re-
implementing the inference frameworks and re-collecting data in
realistic unconstrained writing settings. Our research would have
been less demanding if authors of these earlier works would have
made their research reproducible. Unfortunately, this is not sur-
prising as replicability has been a significant issue in the security
and computer systems community [8, 10]. To make our research
effort more useful to the community, we have made all our data and
source code publicly available. A web link to these artifacts can be
found at the end of the abstract of this paper. Researchers working
in the same domain will now be able to comparatively analyze their
proposals to the existing ones in the literature.

7 CONCLUSION
In this paper, we investigated how frameworks on wrist-wearable
motion sensor based handwriting inference attacks perform in real-
istic day-to-day writing situations. We carefully analyzed the major
factors that bring complexity to wrist motion based handwriting
recognition by highlighting specific ambiguities we observed in the
order of the strokes, number of strokes, and direction of strokes
when writing a character, followed by the overall shape of a char-
acter. In addition to these writing characteristics being different
among different users, we also observed inconsistencies within
the same user’s handwriting. Our investigation depicts that due
to highly varying nature of handwriting from person to person,
wrist motion sensor based inference attacks are unlikely to pose a
substantial threat to users of current consume-grade smartwatches
and fitness bands.
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