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ABSTRACT
The popularity of smart wrist wearable technology (e.g., smart-
watches) has rejuvenated the exploration of dynamic biometric-
based authentication techniques that employ sensor data from these
devices. Despite the progress demonstrated by the scientific com-
munity, research in this area has not successfully transitioned to
practice, and we are yet to see a mainstream user-authentication
product based on a dynamic biometric such as handwriting/hand
gestures captured using commercial wrist wearables. This work un-
dertakes an investigative analysis to further explore why that is the
case. We accomplish this by studying the feasibility and practical
deployability of handwriting-based authentication techniques in
the literature that utilize motion sensors on-board wrist wearables.
We conduct this analysis by replicating four state-of-the-art and
representative handwriting-based authentication schemes that em-
ploy wrist motion data, in order to test their viability in realistic
hand-writing/gesture scenarios. By using data collected from ac-
tual human subjects in an unconstrained fashion, we comparatively
evaluate the performance of these schemes with well-defined usabil-
ity and security metrics. Our experimental results show that some
of the tested schemes perform considerably well in practice, and
are promising. However, they do suffer from several practical user-
dependent and technique-specific challenges that act as roadblocks
towards their wide-scale adoption in mainstream applications.

CCS CONCEPTS
• Security andprivacy→Biometrics; •Human-centered com-
puting → Empirical studies in ubiquitous and mobile com-
puting; Activity centered design.
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1 INTRODUCTION
The popularity of wrist wearables such as smartwatches has soared
over the past few years. In addition to being a fashionable accessory,
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a large set of integrated on-board sensors enables wrist wearables
to offer a wide-variety of applications besides timekeeping. This
includes simple applications such as step counting and sleep time
monitoring, to much more complex tasks such as continuous activ-
ity recognition [35] and personalized health monitoring [15].

More recently, the research community has been strongly pur-
suing the idea of employing wrist wearables, and the diverse set of
on-board sensors, for (continuous) user identification and authenti-
cation tasks [5, 6, 8, 13–15, 20–22, 25, 29, 32, 36, 39]. In addition to a
rich set of available sensor modalities, its position on a user’s wrist
makes these smart wrist wearables alluring for user authentication
type of tasks, especially those based on dynamic biometrics. This is
because wrists are actively used in carrying out a variety of day-
to-day tasks and the associated wrist movements are unique from
person to person due to distinct physiological and kinesiological
differences. As a result, an analysis of wrist movements using data
from wrist wearable motion sensors (e.g., accelerometer and gyro-
scope) can provide insight into the various user behavior or activity
based authentication modalities. Some recent research efforts in
this direction include gait-based authentication [6, 32], authentica-
tion based on touch input characteristics [8, 29, 36], gesture-based
authentication [21, 22, 39], and handwriting-based authentication
[5, 13–15, 20, 25].

This work specifically focuses on handwriting motion-based
authentication mechanisms that are enabled using modern wrist
wearable devices equipped with high precision motion sensors.
The presence of unique characteristics in a person’s handwriting
along with the presence of unique wrist movements have made
handwriting-based authentication using wrist-wearables, a useful
application of wrist-wearable technology to investigate. Besides
serving as a convenient primary or secondary (continuous) authen-
tication mechanism for personal use (or for authenticating other de-
vices), such a handwriting motion-based authentication technique
could also serve other useful purposes. State-of-the-art research
efforts in the literature [5, 13, 14, 20, 25] that employ handwriting-
related wrist motion for authentication have not only investigated
different practical handwriting scenarios, such as in-air handwriting
and writing on a paper using a pen/pencil, but have also demon-
strated compelling performance and accuracy results for successful
user authentication using this modality. Furthermore, most of these
efforts utilized consumer-grade wrist wearables, making them prac-
ticable and easily adoptable for real-world applications. Despite
these favorable outcomes, research in this area has not successfully
transitioned to practice. We are yet to see a successful mainstream
mobile/wrist wearable application for handwriting-based user au-
thentication, either as a primary or a secondary/continuous authen-
tication factor. This begs the following questions: what is preventing
these state-of-the-art handwriting-based authentication frameworks
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from being adopted in mainstream mobile applications and services?
Is that because they do not perform well outside of the controlled oper-
ating conditions and experimental settings used in their evaluations?
And even if they do perform generally well, is their performance at
a level required for being successful as a robust user authentication
scheme in the wild, similar to other popular (static) biometric-based
approaches (e.g., fingerprint)? Answering these questions is critical
for understanding the reasons behind the lack of success and/or
adoption of handwriting-related motion as a modality for user au-
thentication in mainstream mobile and wearable applications, and
for understanding how/if these challenges can be overcome.

Accordingly, we conduct an investigative analysis in this pa-
per to answer the above feasibility related concerns, and discuss
the practicality of handwriting-based authentication using wrist
wearable motion sensor data. We select four state-of-the-art repre-
sentative handwriting-based user authentication frameworks from
the literature, and comprehensively analyze all of them using un-
controlled and unconstrained handwriting data collected from a
diverse set of human subject participants in a variety of realistic
writing settings. We select these frameworks due to their varying,
yet representative approaches both in the design of the respective
frameworks as well as the handwriting modalities. Specifically, one
of the frameworks utilize carefully engineered features in both time
and frequency domains along with traditional machine learning
techniques such as SVM [13], while another framework only uses
a basic set of temporal domain features along with a Naive Bayes
classifier [5]. The third framework does not extract any features,
and instead leverages on deep neural networks (DNN) [14]. Lastly,
the fourth framework uses frequency domain features with a Lo-
gistic Regression model [20]. An additional insight here is that it is
not appropriate to directly compare the evaluation results reported
by these research efforts, primarily because the data for those ex-
periments were collected from different groups of users (human
subjects), under different conditions and setups. For an equitable
comparison, we need to evaluate these schemes with data from the
same group of subjects under the same experimental conditions,
which we accomplish in this work. More specifically, comprehen-
sively investigate the performance of the above mentioned four
authentication frameworks against a variety of experimental condi-
tions and parameters, including, authentication window size, train-
ing data size, writing settings (e.g., pencil, finger and air writing),
robustness under environmental noise, and their ability to perform
in true free-form writing.

2 RELATEDWORK
User authentication has been an extensively researched topic in the
literature, with a diverse body of contributions. However, here we
only outline research efforts related to unique user movement-based
authentication – a form of dynamic biometric – captured by means
of motion sensors on a variety of mobile/wearable devices, as it is
more relevant to the proposed work. A more comprehensive survey
on user authentication, which includes other static and dynamic
modalities and biometrics, can be found in [33, 34].

Authentication techniques that employ motion sensor data from
mobile/wearable devices to construct unique user movement re-
lated biometrics have been extensively studied in the research lit-
erature [5, 6, 8, 13–15, 20–22, 25, 29, 32, 36, 39]. These efforts have

either employed commercial off-the-shelf (COTS) mobile/wearable
devices, including smartphones, smartwatches and smart rings,
or other types of specialized devices (e.g., smart pens and hand
gloves) equipped with motion sensors such as accelerometers and
gyroscopes. Some of the early schemes used unique gestures made
by users while holding a smartphone or while wearing a smart
wrist wearable for user identification and authentication, where
the gesture-related hand/wrist motion was captured by the mobile
device’s accelerometer and gyroscope sensors [21, 22, 39]. Other
forms of contextual body movements such as users’ natural gait
(walking) based motion [9, 27], motion/orientation corresponding
to how users hold their phone (in their hand/s) [11, 36], motion cor-
responding to how users answer a phone call [30] and fine-grained
hand movements such as taps or typing [3, 7] on the phone cap-
tured using COTS mobile device motion sensors, have also been
used to design dynamic biometrics for user authentication.

An advantage of employing suchmodalities (e.g., tapping, typing,
etc.) as a biometric is that it can be used to continuously authenti-
cate users in a real-time fashion. Hand movements observed during
handwriting is another suitable modality for such continuous user
authentication, and it has also received significant attention. We
first outline authentication schemes in the literature that have em-
ployed specialized, non-standard motion-capture devices to capture
handwriting related wrist/hand motions. For instance, Bashir et al.
[2] proposed an authentication scheme by using a smart pen device
to capture the accelerometer time-series data corresponding to two
different types of handwriting scenarios: (i) writing in the air, and
(ii) writing on a paper. In another research, Lu et al. [25] used a cus-
tom glove with built-in motion sensors located on the fingertip to
capture in-air handwriting movements. In addition to the fact that it
required a custom data collection hardware to operate, this scheme
only considered writing scenarios in which users wrote a unique
passcode/PIN for every authentication attempt. This severely limits
its practicality, especially for continuous authentication.

In the direction of handwriting motion based authentication
schemes that employ commercially availablewrist wearables, Buriro
et al. [4] proposed a framework similar to [25], but by using a
consumer-grade smartwatch instead of a custom glove, and the
users sign their name in the air to authenticate themselves. Huang
et al. [16] proposed an authentication scheme using a smartwatch
gyroscope in which they evaluated three gestures written/drawn
in the air, namely, a star, a number eight and a triangle. A signifi-
cant drawback of their approach is that it has been shown to work
only for a fixed set of hand signs, and it is not evident whether
their framework can be extended or generalized to normal human
handwriting or signatures. As before, this limits its applicability in
continuous authentication scenarios.

The following four schemes [5, 13, 14, 20] in the literature at-
tempt to overcome the two major shortcomings of earlier handwrit-
ing motion based authentication schemes: (i) reliance on specialized
motion sensing hardware, and (ii) employing fixed writing patterns
or symbols for authentication. Given the diverse set of handwriting
scenarios and settings considered by these schemes, and the use of
COTS data collection hardware (e.g., smartwatches) instead of spe-
cialized hardware, makes them the most promising candidates for
adoption by users in a practical and continuous handwriting-based
user authentication application. This is also the main reason why
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we shortlist them as prime candidates for a mainstream continuous
authentication application in this category, and perform a rigorous
comparative performance analysis of them in realistic usage set-
tings. More detailed descriptions for each of them are outlined later
in Section 4.

3 RESEARCH GOALS
We organize our research goal - studying the practical feasibility
of state-of-the-art handwriting-based user authentication schemes
that employ motion sensor data from wrist wearables - as a set of
four targeted research questions (RQ1 through RQ4). These ques-
tions focus on studying the performance of these schemes under
varying writing styles and modalities, ambient conditions and writ-
ten content, and collectively provide a comprehensive performance
analysis. We fix the experimental setup and evaluation parameters
(Section 5), including the employed performance metrics, such that
it enables us to obtain insightful answers to these questions.
• RQ1 – How does handwriting-based user authentication using wrist
motion data perform in real, unconstrained writing scenarios?

Ideally, an effective user authentication scheme should not place
any unreasonable constraints on how users should write for the
scheme to work effectively. Any undue constraints or changes to
the users’ usual writing habits or styles will result in low usability
and adoption of the scheme. This research question aims to investi-
gate the constraints or restrictions a user authentication scheme
(under investigation) places on users’ writing style and how does it
perform when those constraints are dropped and users are allowed
to interact with the scheme using their own everyday writing style.
We accomplish this by collecting handwriting-related data in a
fully unconstrained setting, where participants are allowed to write
in their usual habit or style. We analyze the performance of the
schemes under investigation using this unconstrained writing data,
and also comparatively evaluate them based on the amount (length)
of writing data required for enrollment and authentication.
• RQ2 – How does handwriting-based user authentication using wrist
motion data perform for different writing modalities?

Depending on a user’s context (time, location, etc.) and the writing
instrument they are interacting with, the activity of writing can
assume different modalities, for example, writing on a paper with
a pen, writing on a smart tablet screen using a finger, and gesture
writing in the air. Ideally, an effective authentication scheme should
work across multiple writing modalities, otherwise, its applicability
is restricted to a limited set of user-contexts. This also limits the
applicability of the scheme for continuous authentication. Thus,
this research question aims to investigate how the schemes (under
investigation) perform for a variety of commonly observed writing
modalities. We accomplish this by collecting data for a variety of
writing modalities in a fully unconstrained setting, such as, tradi-
tional pen/pencil writing on a paper, finger writing on a touchpad
screen and gesture writing, and analyzing the performance of the
schemes across these modalities.
• RQ3 – How does handwriting-based user authentication using wrist
motion data perform under different types of ambient noise?

Accelerometers and gyroscopes on modern mobile devices are
highly sensitive hardware/software systems. An advantage of high
sensitivity is that these sensors can sample small (imperceptible)

changes in motion, however, a related disadvantage is that the sam-
pled data from these sensors is easily impacted by ambient noise.
An important characteristic of an effective and practical user au-
thentication scheme is robustness against noisy inputs. A robust
(against noise) authentication system typically produces very low
false negatives (i.e., has high recall), resulting in higher usability and
adoption among users. This research question aims to investigate
how the user authentication schemes (under investigation) perform
when the sampled test motion data (or authentication requests) is
noisy. We accomplish this by introducing noise in our collected
handwriting related motion data, and analyzing the performance
of each of the four authentication schemes on this noisy data. For
this analysis, we consider different types and sources of noise com-
monly encountered during writing, such as writing on a table with
a vibrating smartphone and writing while inside a moving vehicle.
• RQ4 – How does handwriting-based user authentication using wrist
motion data perform under user-dependent, free-form writing?

In RQ1, we analyzed the performance of handwriting motion based
user authentication by removing constraints on how users should
write. In the same vein, in this research question, we investigate
if constraints or restrictions on what the users write impact the
performance of the schemes under investigation. We accomplish
this by evaluating these schemes on free-form handwriting data col-
lected from participants in a fully unconstrained setting, i.e., motion
data corresponding to handwriting consisting of both upper-case
and lower-case letters (and not limited only to specific words with
specific lengths or specific letter cases). The main motivation of not
restricting users to write a specific text for authentication is that it
limits the applicability of the scheme in continuous authentication
scenarios, since continuous authentication is about being able to
passively authenticate based on whatever is being written by the
user and not asking them to actively authenticate by writing spe-
cific keywords. Further, the handwritten letter/word/text cannot
not be equated to a set password as nothing conceals handwrit-
ten text from onlookers, unlike passwords typed on a PC that are
by default concealed on the screen. Ideally, a handwriting-based
authentication scheme should be agnostic of the letter/word/text
written at any given instance of the authentication attempt.

4 EXPERIMENTAL SETUP
In this section, we first outline a system model (Figure 1) that
generically describes the authentication framework of all the four
handwriting-based authentication schemes that we plan to compar-
atively evaluate in this work. Following that, we provide specific
modeling and implementation details for each of the four schemes.
Then, we provide details of our data collection procedure and the
metrics and benchmarks used in our analysis.

4.1 System Model
In any handwriting-based authentication scheme that employs
motion data from wrist wearables, users would first go through an
enrollment phase in which they supply training data to the system
by performing handwriting tasks while wearing a wrist wearable
device on their writing hand. The motion sensor data collected
from the wrist wearable during the enrollment procedure is then
used to build a unique profile for the user, which is later tested
against when an authentication attempt is made. This “unique
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Figure 1: A generic system model for handwriting motion
based authentication schemes.

profile” for each user typically takes the form of a classification
function that is trained using the target user’s data. The raw motion
data collected during the enrollment phase is typically first pre-
processed to remove/reduce noise and then utilized for the feature
extraction task. The extracted feature set for the authentic user(s)
is then used to train a classification model, sometimes along with
labeled non-authentic user data to prevent over-fitting. As such, the
classification model is a binary classifier where it will attempt to
classify an authentication attempt as either authentic (valid users
who enrolled with the system) or non-authentic (anyone else). In
order to authenticate with the system, an enrolled user is required
to perform a handwriting task which will then be compared with
the user’s profile, and an authentication decision is made by the
system based on the output of the trained classification model.

4.2 Implementations
We implemented the four representative handwriting-based au-
thentication frameworks (summarized in Table 1) using Python
3.6, while utilizing scikit-learn [28] and TensorFlow [1] with Keras
for the corresponding machine learning and deep learning-based
models employed by those frameworks. Individual implementa-
tion details of each framework’s classification model are described
next, labeled from M01 to M04. These implementations very closely
follow the original works, and reuse their code whenever available.
4.2.1 M01 [13]. In this framework, the raw sensor data is first
pre-processed by applying a low pass filter to eliminate outliers.
The continuous motion data stream is then divided into smaller
windows of data which are then used for feature extraction across
four feature categories. First, each of the sensor axes 𝑥 , 𝑦 and 𝑧,
along with their magnitudes, constitute as the first feature category.
The second feature category includes Fast Fourier Transform (FFT),
Power Spectral Density (PSD), and squared magnitude or power of
FFT coefficients. The third feature category includes Discrete Co-
sine Transform (DCT), Discrete Sine Transform (DST), Real-Valued
Fast Fourier Transform (RFFT), eigenvectors and gradients calcu-
lated for each of the 𝑥 , 𝑦 and 𝑧 axes. The fourth and final feature
category is pitch and roll [38]. Different statistics such as mean,
standard deviation, variance, computed on values in these four fea-
ture categories are then combined to create an intermediate feature
vector, which is further normalized and selectively shortened before
being employed in the classification model training/testing tasks,
as explained next. The intermediate feature set comprising of 182
features obtained in this fashion is then normalized and ReliefF
[19] feature selection scheme is applied to select top-30 features
from each of the accelerometer and gyroscope data, resulting in
60 features in the final feature vector. A Support Vector Machine
(SVM) binary classifier is then trained for each user using this final

feature vector with GridSearch based hyper-parameter tuning. The
model is trained using a part of the authentic user’s data and data
from half the number of other users in the dataset. In the model
testing phase, the remaining part of the authentic user’s data and
the data from the other unseen users are used.
4.2.2 M02 [5]. Instead of a sliding window approach, the M02
approach uses the entire recorded activity signal for feature extrac-
tion. In contrast to M02 [5], which employed short and specific
transcription tasks during data collection, our common data collec-
tion process (outlined in 4.3) involved long handwriting tasks in
which users wrote continuously for few minutes. Thus, we utilize a
sliding window approach to divide the raw signal (obtained during
our data collection) into multiple smaller windows which are then
independently used for feature extraction. For each window, the
mean, standard deviation and average absolute difference for all 3
axes are calculated and used as features. The peak positive value
and the peak negative value are also extracted from each axis and
used as features. The average resultant acceleration, which is the
mean of square root of sum of the squared values of 𝑥 , 𝑦 and 𝑧 axes,
is also computed and used as a feature. A combination of these
features results in a vector of 16 features for each sensor type and a
final feature set of 32 features. A Naive Bayes model is then trained
and tested in a per-participant fashion, similar to M01.
4.2.3 M03 [14]. The M03 approach employs a Deep Neural Net-
work (DNN) which is created using two consecutive 1D convolu-
tional block layers, followed by a bi-directional LSTM layer for
each sensor axis, which are then concatenated and fed into a fully
connected layer. Each of the convolutional blocks consists of two
1D convolutional layers with 32 and 64 filters, respectively, with
a kernel size of 3 and a “relu” activation followed by a batch nor-
malization layer, a max pooling layer of size 2 and a dropout layer
with a 0.5 dropout rate. The output of each convolutional block
(per axis) is then sent through a bidirectional LSTM layer with 10
neurons. Each of the output from each axis/convolutional block is
then concatenated, sent through another layer of dropout with a
rate of 0.5 before finally being input to a dense or fully connected
layer with 2 neurons. The dense layer consists of 2 neurons which
represents the number of classes in the classification problem along
with a softmax activation. The model is fitted using Categorical
Cross Entropy loss with Adam [18] optimizer. As DNNs require
large amounts of data to train an effective model, M03 [14] uses a
data augmentation step in which synthetic data is created using the
existing data, in order to increase the training data size. In our ex-
periments, we implement the same data augmentation step where
random windows of data are selected to generate new synthetic
data, which is repeated till the dataset becomes 4 times the size of
the original set [37].
4.2.4 M04 [20]. As the original work in M04 is designed for sig-
nature verification, entire motion data corresponding to each sig-
nature sample is taken as an input for feature extraction. In order
to adapt it to a handwriting authentication scenario, we extract
small windows from the data similar to the previously described
frameworks. The windows are then normalized and transformed
into the frequency domain by Discrete Cosine Transform (DCT).
The first 20 DCT coefficients are then extracted and fed as input into
the feature extraction phase. In feature extraction, a set of authen-
tic user data windows are selected as templates for the authentic
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Table 1: Overview of the four representative authentication frameworks used in our study.

Description Device Sensors & Frequency Features Techniques

M01 [13]
Handwriting authentication
using paper and pencil as writing tools

Android Smartwatch Accelerometer, Gyroscope at 100Hz
Both temporal and frequency
domain features

SVM, MLP

M02 [5]
Handwriting authentication
using paper and pencil as writing tools

LG G Watch Accelerometer, Gyroscope at 20Hz Only temporal domain features NB, MLP

M03 [14]
Handwriting authentication
using paper and pencil as writing tools

LG Urbane 2 Smartwatch Accelerometer at 100Hz
No specific features extracted.

Uses raw sensor data.
DNN

M04 [20]
Signature Verification using stylus
tablet as writing tools

Microsoft Band Accelerometer, Gyroscope at 62Hz
DTW distance based features
in frequency domain

Logistic Regression

user. The remaining authentic user data was then split into training
and testing sets. The training set of an authentic user and half the
number of non-authentic users are selected for model training. For
each of the sample windows in the training set, the DTW score
between each window and the authentic user template windows
are computed. The DTW score is calculated individually for each
axis of a query sample and the templates in the template set, the
lowest score obtained between a template and a query sample is
then added to the feature vector (the feature vector consists of 6
features, one for each axis of each of the sensor). The training data
created in this fashion is then used to train a Logistic Regression
based classification model.

4.3 Data Collection
We recruited a demographically diverse set of 21 participants for
data collection in three popular writing scenarios, namely pencil-
writing, finger-writing and air-writing, utilizing seven participants
per scenario. The participants were recruited via advertising flyers
around the university and their ages range between 18 to 30 (𝜎 = 4).
The participants were either given a Sony Smartwatch 3 or a LG
Watch Urbane to wear on their writing hand (right hand) for the
entire experiment. A Samsung GT-N5110 Android tablet was used
to display the writing content. An Android Wear app which records
accelerometer and gyroscope data at 200 𝐻𝑧 from the smartwatch
was developed alongwith an app for the tablet to display the writing
content. In the pencil writing experiment, the participants were
provided with a pencil and paper and a table to write on. They were
also given a height-adjustable chair, which they could adjust based
on their individual/personalized comfort and writing positions. The
finger-writing task was carried out in a similar way, except that the
participants were given an area on the screen of the android tablet
for the writing task. In the air-writing setting, the participants were
given a chair with no obstructions for the free movement of their
writing hand. In all scenarios, the participants were asked to stick
to their natural handwriting styles and pace, and no time limit was
given to complete the tasks. The participants were asked to write
the content displayed on the tablet on the corresponding writing
surface. For example, if the tablet displays the word “test”, then
a pencil-writing participant would write the word “test” on the
paper given to them using a pencil. In each of the writing scenarios,
each participant wrote English alphabets displayed in random order.
Each alphabet was written 10 times, totaling to 260 alphabets for
lowercase and 260 for uppercase alphabets followed by 40 words.
These data collection procedures were approved by our university’s
Institutional Review Board (IRB).

We also evaluate robustness using a setup where the attacker
tries to falsely authenticate by mimicking the handwriting of an

authentic user. For this mimicking/impostor attack evaluation, 5
participants (potential victims) were recruited. Their handwritten
text of six random Harvard sentences [31] and a video of their
writing (which includes their hand/wrist movements and wrist
positioning) were recorded.

An attacker was then asked to observe the victims’ text and video
for practice, i.e. the paper with the handwritten text of the victim
or the screen recording of the text written on the tablet surface for
pencil-writing and finger-writing scenarios respectively. In addi-
tion, the attacker also carefully watched/observed the video taken
of the victim’s handwriting before performing the final impostor
attack. We only considered the finger writing and pencil writing
settings for this analysis because air writing does not produce phys-
ically recorded written text that can be reviewed by an attacker for
mimicking purposes.

4.4 Benchmarks and Evaluation Metrics
We comparatively evaluate the authentication frameworks using
the widely accepted metric of Equal Error Rate (EER), which is the
point at which the False Rejection Rate (FRR) equals the False Ac-
ceptance Rate (FAR) [12]. FAR is the probability an authentication
system incorrectly authenticates an unauthorized user or impostor
as an authorized user. On the other hand, FRR is the probability
that an authentication system incorrectly rejects an authorized user
as unauthorized (failed authentication). These metrics depend on
the decision threshold of the classification system. A strict decision
threshold would imply lower number of false positives, i.e. the prob-
ability of an unauthorized user or impostor getting authenticated is
lower, but actual users may get rejected for slight anomalies in their
writing with higher probability. On the other hand, with a relaxed
threshold, there is a higher probability of an unauthorized user or
impostor getting authenticated and the probability of authorized
users getting rejected for slight anomalies in their writing would
be lower [24]. This trade-off between FAR and FRR is application
specific. A high security application in which an entry of an unau-
thorized user is disastrous must require a very low FAR regardless
of the possible inconvenience that authorized users may experience
[17]. For reporting comparative analysis on the framework perfor-
mance, we use EER as the primary metric, and employ the FAR and
FRR metrics wherever relevant. In general, a lower EER value is a
good indicator of a balanced and robust authentication framework.

5 PERFORMANCE EVALUATION
All the four authentication frameworks are evaluated per partici-
pant, by labeling the target participant’s data as authentic and all
other participants as non-authentic or impostor when training and
testing the models. The overall evaluation results are then averaged
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across all the target participants. We present EER values for com-
parison between the handwriting-based authentication schemes,
utilizing realistic data collection procedure outlined in Section 4.3.
We conduct our comparative performance evaluation with respect
to varying experimental parameters, as categorized next.

5.1 The Effect of Authentication Window Size
The window size parameter is intuitively the continuous window of
time a user needs to write in order for the authentication framework
to effectively perform its functionality. Or in other words, it is the
number of continuous motion sensor data samples of handwriting
activity used by the authentication framework for the classification
task. The window size is a vital experimental parameter because a
smaller window may not contain sufficient information for success-
ful authentication, while a larger window size will require a longer
time to process and for the authentication task to complete. If an au-
thentication system requires users to write for long periods of time
for every authentication attempt, it can result in usability issues as
well. In our experiments, we test window sizes ranging from 15 to
60 seconds for both the enrollment and the authentication phases,
and we present the results next.

In the M01 window size analysis shown in Figure 2a, we see
that while all the window sizes (15, 30, 45 and 60 seconds) pro-
duce a mean EER of less than 0.10, a window size of 60 seconds
performs slightly better (lower EER) for both pencil and finger-
writing scenarios. In the air-writing scenario, the highest EER is
recorded for the 15 second window at 0.16 (𝜎 = 0.17) and the low-
est/best EER is recorded again for the 60 second window which
is 0.10 (𝜎 = 0.12). Due to the additional freedom when writing in
the air, we observe that users tend to write larger characters which
in turn results in lower number of characters per window. Thus,
for the air-writing scenario, a higher window would capture more
characters and more discriminative features across users. Although
the difference between the obtained EER values across different
window sizes is insignificant in pencil and finger-writing scenarios,
in the air-writing scenario 60 second windows have a clear advan-
tage over the other window sizes with the next lower window size
of 45 seconds recording an EER of 0.14. The trends are similar to
the results obtained by the authors of M01 at a mean EER of 0.11,
especially in the pencil and finger-writing scenarios.

In M02 window analysis (Figure 2a) for the pencil-writing sce-
nario, we observe that the best mean EER is 0.12 (𝜎 = 0.08) with a
window size of 45 seconds. Although the performance difference
between window sizes 30 and 45 was low, at 60 second windows
the performance deteriorates to an EER of 0.16. In finger-writing
scenario, we observe that the best mean EER is 0.11 (𝜎 = 0.05) at
15 second windows, and it can also be seen that the performance
worsens with the size of the window. A possible explanation for the
degrading performance at larger window sizes could be that larger
window sizes lead to lower number of training examples, which
results in an underfitted classification model. In the air-writing sce-
nario of M02, we observe that the best mean EER is 0.04 (𝜎 = 0.03)
at 60 second windows and 45 second windows is second best at
0.05 (𝜎 = 0.06).

As shown in Figure 2a, in all 3 writing scenarios M03 produced
the lowest EER values when a 15 second window size is used com-
pared to other window sizes. Specifically, the resulting EER values

are 0.39 (𝜎 = 0.05) for pencil-writing, 0.36 (𝜎 = 0.07) for finger-
writing and 0.4 (𝜎 = 0.04) for air-writing scenarios. In contrast, the
experimental results of M03 as reported in the original publication
shows that it was able to achieve slightly better results with a mean
EER of around 0.3 compared to the results we have achieved. One
possible reason why the DNN model of M03 performs better at 15
second windows could be because at a lower window size there
would be more training examples which is advantageous when
training a DNN model. In the original proposal, a voting based
multiple window fusion technique is used after the DNN classifier
step to lower the EER to 0.07, but we did not observe significant
performance improvement even after such a multi-window voting
mechanism. In M04, the mean EERs across all window sizes for
pencil-writing scenario is around 0.4. In the finger-writing scenario
for M04, the lowest mean EER for a window size of 30 seconds is
around 0.42 (𝜎 = 0.12). Similar to M01 and M02 air-writing scenar-
ios, M04 air-writing scenario has the best EER at a window size of
60 seconds which is 0.39 (𝜎 = 0.13).

In summary, M01 performs the best (EER of less than 0.1) across
all schemes in 15 seconds window sizes, while M02 shows the
best performance (with an EER of 0.12) for air-writing at the same
window size. Thus, from a practical perspective, our results show
that M01 is more desirable due to its comparatively better perfor-
mance at lower window sizes, especially for the popular pencil and
finger-writing scenarios.

5.2 The Effect of Training Set Sizes
We next analyze the effect of training set sizes on the performance
of the authentication frameworks M01-M04. To do so, we test each
framework with training set sizes between 20% to 80% of the total
available user (participant) data. However, the total amount of time
and training examples for each user varies due to varying writing
speeds. One user may have more characters or words written dur-
ing a particular window of time compared to another. This also
highlights that these authentication frameworks may require vary-
ing amounts of data during the user enrollment phase, depending
on the targeted accuracy or error-rate thresholds. Requiring larger
amounts of training data to achieve a better performing framework
is not very convenient from the end-user perspective, thus making
the mainstream adoption of such schemes difficult. As can be seen
from our experimental results in Figure 2b, M01 does not have
any significant performance improvement above the training set
size threshold of 40% for any of the writing scenarios. Similarly,
M02 (Figure 2b) also does not have any significant performance
improvement above the training set size threshold of 40% for the
pencil-writing and finger-writing scenarios. However, in the air-
writing scenario, a considerable performance improvement (for
M02) is observed when the training set size is set above 40% of the
total user data. Specifically, the EER at 40% training set size is 0.19
(𝜎 = 0.07), and when the training set size is set to 60% it dropped
down significantly to 0.06 (𝜎 = 0.04), which further drops to 0.03
(𝜎 = 0.03) when using 80% of the data for training. This again in-
dicates that due to the extra freedom and the higher time (larger
characters) that occurs during air-writing, the framework hugely
benefits from a having higher amount of training data allowing it
to generalize well on the test data.
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Figure 2: Performance based on varying window sizes and train set sizes.

In the evaluation of M03 and M04 (Figure 2b), we observe that
both these frameworks still produce mean EERs of over 0.35 across
all writing scenarios even with higher training set sizes (The train-
ing set size of 20% is not evaluated for M04 as it had insufficient
examples for constructing both the required template and train-
ing sets). Although M03 with its DNN model could benefit from a
larger set of training data, the performance increases observed were
minimal, again indicating the need for high training data volumes.
The overall poor performance of M04 on the other hand could be
indicative of the fact that the specific features that were used by
the scheme did not generalize well for the continuous handwriting
based authentication task.

In summary, framework M01 and M02 perform considerably bet-
ter at even lower train set sizes indicating that these frameworks do
not require large amounts of training data for successfully operating
as an authentication scheme.

5.3 Different Writing Settings
Next, we present a detailed evaluation for each authentication
framework in each of the three writing scenarios (Table 2).

5.3.1 Pencil-writing. In the pencil-writing scenario, our experi-
ments with M01, which uses a SVM binary classifier, demonstrated
a mean EER of 0.05 across all participants (𝜎 = 0.03). The lowest
EER we observe for a single participant is 0.01 and the worst EER
for a participant is 0.14. Furthermore, 6 out of 7 participants show
a mean EER of less than 0.1. M02, with a Naive Bayes classifier,
has a mean EER of 0.15 (𝜎 = 0.10) across all participants for the
pencil-writing scenario. We also observe that for 5 out of the 7
participants, the EER is below 0.20. The best M02 EER for a par-
ticipant is 0.02, while the worst is 0.32. For M03, the mean EER
across all participants is 0.39 (𝜎 = 0.05). The lowest recorded EER
for a participant is 0.34 and the highest is 0.47. The best mean EER
of framework M04 is 0.40 (𝜎 = 0.09) for a 30 second window. The
lowest EER recorded for a participant in M04 is only 0.34 and the
highest is as high as 0.52 in M04. Moreover, only one participant

has an EER below 0.40 in M04. In summary, for the pencil-writing
scenario, we observe that M01 produced the lowest EER compared
to all other frameworks.

5.3.2 Finger-writing. In the finger-writing scenario, M01 has the
best EER (compared to all other schemes) of 0.08 (𝜎 = 0.09), with
6 out of the 7 participants having less than 0.12. The framework
M02 shows the second best performance with a mean EER of 0.11
(𝜎 = 0.06) and a best EER of 0.03. M03 has a slightly higher mean
EER of 0.36 for finger-writing, in which two of the participants
have a mean EER of 0.26 while all other participants’ EERs are
over 0.40. Lastly, M04 has the worst performance for finger-writing
with a mean EER of 0.42 (𝜎 = 0.12) and with only one participant
showing an EER below 0.3. Similar to the pencil-writing scenario,
M01 produces the best performance (lowest EER) for finger-writing
scenario.

5.3.3 Air-writing. In the air-writing scenario, M01 has a mean EER
of 0.10 (𝜎 = 0.12) with only one out of the 7 participants recording
an EER higher than 0.10. The M02 framework demonstrates the
best performance overall out of all the frameworks for air-writing
with a mean EER of 0.08 (𝜎 = 0.05), with all except one participant
showing an EER of over 0.06. The M03 framework has a mean EER
of 0.4 (𝜎 = 0.08) with only one participant showing an EER of
below 0.3, while M04 shows similar performance with a mean EER
of 0.39 (𝜎 = 0.06). In summary, while M01 demonstrates the best
performance (lowest EER) for pencil and finger-writing scenarios,
M02 has the lowest EER for the case of air-writing.

5.4 The Effect of Sampling Frequency
Even though modern wrist wearables feature highly precise motion
sensors, sampling these sensors at a high rate is an energy intensive
operation, which significantly impacts the device’s battery life, and
thus, treated as a critical design factor. Lu et al. [23] demonstrate
that higher sampling frequencies of motion sensor data results in
considerably higher battery power consumption. Specifically, they
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Table 2: Performance summary (measured in EER).

M01 M02 M03 M04

Pencil-Writing 0.05 0.15 0.39 0.40
Finger-Writing 0.08 0.11 0.36 0.42
Air-Writing 0.10 0.08 0.40 0.39
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Figure 3: Effect of sensor sampling rates on performance.

show that a rate of 200 𝐻𝑧 consumes 6.3% (per hour) of the battery
power of the device on average (tested on a Sony Smartwatch
3) and battery power consumption reduces when the sampling
rate is lowered with only 4.4% (per hour) at a 100 𝐻𝑧 sampling
rate and 2.0% (per hour) at a 50 𝐻𝑧 sampling rate. In other words,
handwriting authentication frameworks that require fine-grained
motion data (i.e., sampled at high frequencies) for performing well
could adversely impact the device’s battery charge (i.e., drains it
faster) and requiring frequent battery recharges. This ultimately
will adversely impact the usability and adoption of such schemes
by end-users. Thus, in this set of experiments we evaluate how the
four authentication frameworks M01-M04 perform under motion
sensor data sampled at different frequencies. Schemes that perform
reasonably well at lower frequencies would obviously be much
more energy (battery) efficient, and preferable by end-users.

Our experiments with M03 and M04 show (Figure 3) that lower
sampling rates produce comparable performance across all the
writing scenarios, i.e., their performance does not vary much with
change in sampling frequencies. But as seen in Figure 3, frame-
works M01 and M02 produce significantly worse EERs at lower
sampling rates, compared to the original sampling rate of 200 𝐻𝑧.
In summary, none of the analyzed frameworks produce reasonable
levels of EERs at lower sampling frequencies. This highlights a
significant challenge, especially, towards use of these frameworks
in continuous authentication scenarios as it would require peri-
odic sampling of motion sensors, which will in turn impact battery
longevity.
5.5 The Effect of Environmental Noise
Next, we evaluate the impact of environmental noise on the per-
formance of the four authentication frameworks M01-M04. For
this, we separately record a few types of background noises that
users could encounter during each of the writing scenario. We
then superimpose this pre-recorded motion sensor noise over the
raw handwriting related motion sensor data obtained from our

study participants, prior to using the data for training and test-
ing of the four authentication frameworks. For finger-writing and
pencil-writing scenarios, the motion noise is emulated by placing a
vibrating phone on the table (writing surface) at close proximity.
For the air-writing scenario, the accelerometer noise emulation is
obtained from a moving vehicle. After re-performing our experi-
ments with the noisy data, we observe (Figure 4) that all frameworks
demonstrate a considerable degradation of performance. We believe
that our results are still relatively optimistic as we only introduced
one type of noise for each of the writing scenarios. In practice,
there could be a combination of various additional environmental
noises polluting the device’s motion sensor data which will further
worsen the performance of these frameworks.

5.6 Convenience vs. Security
We also analyze how adaptable each of these frameworks are in
terms of their potential target application, i.e. whether they aremore
suited for a high security application or for a high user-convenience
application. High security applications such as access control to
government intelligence, military applications or other highly sen-
sitive data could tolerate high FRR, but FAR needs to be kept at
a minimum level. Similarly, usability focused applications such
as consumer-grade smartphone unlocking which prioritize user
convenience, could allow a slightly higher FAR as a trade off in
achieving a minimal FRR.

From our experiments with M01 (Figure 5a) we see that in the
case of pencil-writing the EER occurs approximately at 0.5 deci-
sion threshold. However, a slight increase in the decision threshold
would result in a sudden increase in the FRR (over 0.2), while the
FAR only reduces slightly and converges around 0.8. This suggests
that if a stricter (higher) decision threshold is chosen with high
security in mind, the rate at which unauthorized users may mis-
takenly gain access decreases only slightly. However, actual users
would suffer considerably as they are likely to fail authentication
approximately 2 or more out of 5 attempts for decision thresholds
above 0.5. Although the low EER of 0.05 suggests that M01 is gen-
erally a suitable framework for balancing convenience and security,
it lacks flexibility towards adjusting the decision threshold. The
M01 framework in finger and air-writing scenarios show similar
characteristics when it comes to the adjustability of the decision
threshold. Moreover, as the EER for these writing scenarios lie at
approximately 0.10, the room for adjustability is further reduced
when compared to the pencil-writing scenario. As seen in Figure 5b,
for all three writing scenarios in M02, the ERR occurs at a decision
threshold below 0.3. When adjusting the decision threshold in the
pencil-writing scenario (EER=0.15), an increase of the threshold
from 0.3 to 0.5 drops the FAR from 0.09 to 0.04. However, at the same
time, FRR almost doubles from 0.15 to 0.29. A similar pattern was
also observed in the finger-writing scenario. Taking a closer look at
the air-writing scenario in M02, we observe that the threshold could
be made stricter (up to a 0.5 threshold) in trying to achieve a much
more secure system by keeping the FRR under 0.2 and reducing the
FAR to less than 0.03. For the M03 framework (Figure 5c), adjust-
ing the decision threshold either for security or for convenience
would significantly increase FRR and FAR values resulting in an
EER over 0.5. Very similar patterns were also observed for the M04
framework (Figure 5d). This further demonstrates that M03 and
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Figure 4: Effect of environmental noise on performance.

M04 are rather unsuitable for both security and usability oriented
applications. In terms of adjustability of the threshold depending
on the use case (security or usability), M02 demonstrates better
versatility across all frameworks and all writing scenarios.
5.7 Comparison with Other Modalities
We next compare the handwriting-based authentication frame-
works against other modalities of biometric authentication. The
best mean EER among the four handwriting-based frameworks is
for M01 in pencil-writing scenario (0.05) followed by finger-writing
(0.08). Framework M02 came in second place with an EER of 0.15
for pencil-writing and 0.11 for finger-writing. M02 performed the
best among all frameworks in air-writing scenario with an EER of
0.08, with M01 following behind at 0.1. Evidently, these EER values
are much higher compared to the mainstream fingerprint based
authentication methods (Table 3) which can be as low as 0.000022
[10, 40]. On the other hand, the handwriting-based authentication
schemes’ EER values are equitable to that of other motion sensor
based authentication frameworks. Specifically, frameworks based
on gait [26] and gesture [39] have EERs of 0.07 and 0.04, respectively.
This is not surprising because, while modalities such as fingerprint
and iris have matured to become reliable first factor authentication
mechanisms, motion based authentication frameworks (including
handwriting-based) are primarily being explored as a means for
second factor or continuous authentication.

Table 3: EER attained by other authentication modalities.

Biometric EER Used at Mainstream Consumer Level

Fingerprint [10, 40] 0.00022 Yes
Iris [41] 0.006 Yes

Gait Based [26] 0.07 No
Gesture Based [39] 0.04 No

5.8 Mimicking Attack
To evaluate the mimicking attack, we look at the False Acceptance
Rate (FAR), because a higher FAR is indicative of a more successful
attack. FAR is calculated at the same decision threshold where the
EER occurs. We observe an overall increase in FAR in M01 for both
pencil and finger-writing scenarios from < 0.1 to over 0.2 during
the attack. For M02 we observe a slight increase in FAR in pencil-
writing from 0.09 to 0.11, followed by finger-writing from 0.8 to 0.15.
ForM03 andM04, in pencil-writing scenario, we observe an increase
in FAR from 0.33 to 0.40 and from 0.26 to 0.49, respectively. But
for finger-writing scenario, both frameworks showed a decrease
in FAR from 0.43 to 0.35 and from 0.66 to 0.37, respectively. In
summary, M01 is more vulnerable to a mimicking attack in both
finger and pencil-writing scenarios followed by M02, which shows

a relatively lower increase in FAR. While M03 and M04 have higher
FARs even in non-mimicking attack scenarios, we observe that only
the pencil-writing scenario is affected by the attack.
6 FACTORS IMPACTING PERFORMANCE
In this section, we comprehensively investigate additional factors
that could potentially impact the performance of the authentication
frameworks evaluated in this work.We focus on framework-specific
factors, namely, feature selection and its impact on the learning-
based classification models employed by all the four frameworks
followed by participant-specific factors, namely, how the diversity
in handwriting styles and techniques impact performance.
6.1 Feature Analysis
As all the authentication frameworks that we study in this paper
employ some type of a supervised learning-based classification
function, our first objective is to further investigate which features
(computed from the training data) have the most impact on the
framework performance, and if the performance varies significantly
with a change in the feature set. We first evaluate the M01 frame-
work, which employs both temporal and frequency domain features
and ideally uses the top-30 features out of a total of 182 features
calculated for each of the accelerometer and gyroscope raw data
stream. In other words, it uses a total of 60 features (30 computed
from the accelerometer data and 30 from the gyroscope data). We
re-tested the M01 framework by reducing (choosing top-15 instead
of top-30 features for each sensor stream) and increasing (choosing
top-60 instead of top-30 features for each sensor stream) the size
of the employed feature sets and observing its effect on the overall
performance of the scheme under different writing scenarios.

Our experimental results for this analysis, outlined in Figure 6,
show that for the pencil and air writing scenarios, the mean EERs
obtained for the reduced feature set case (top-15 features for each
sensor stream) is quite comparable to the regular case (top-30 fea-
tures for each sensor stream), indicating that the framework per-
forms fairly well even when using a lower number of features.
Finger writing scenario was an exception here, where the perfor-
mance for the reduced feature set case was slightly worse (mean
EER around 0.11) compared to the regular case (mean EER just un-
der 0.08). However, we observed that, as the size of the feature set
increases, the performance of M01 framework worsens for all three
writing scenarios. This indicates that the number of features origi-
nally selected by the M01 framework for the final feature set (i.e.,
top-30 from each sensor stream) provides the optimal performance.

Among these top-30 features per sensor stream, we observed that
close to 50% of the features were related to general statistics, such as
mean, standard deviation and variance of both time and frequency
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Figure 5: False acceptance rates vs. false rejection rates at different thresholds.

domain features. However, for all the three writing scenarios for
M01, we observed (across all participants) that only a very few
frequency domain features were selected (in the top-30) during
the feature selection step compared to the time domain features.
Also, having a larger intermediate feature set (182 features) allows
the model training pipeline to select the best features for a given
participant. We believe that this is also one of the main reasons why
M01 performed well across all writing scenarios and all participants,
compared to other schemes.

In contrast to M01, the M02 framework does not include a feature
selection step in the processing pipeline, and computes and uses
only time domain features for model training and verification. Thus,
for M02, we further investigate for each writing scenario the best
set of features and study their impact on its performance. To this
end, we select, top 8, 16 and 24 features out of the total 32 feature
set. Our analysis shows that a top-8 feature selection step provides
minor performance improvements (lower EER) across all writing
scenarios.We further observed that for the pencil writing scenario, 6
out of the top-8 features are accelerometer features. This does reflect
on the actual writing scenario since during pencil writing there
would only be very minute angular accelerations. In finger writing,
we see an equal number of features from both accelerometer and
gyroscope sensors since more wrist movements could be observed
during finger writing. Air writing shows similar behavior to finger
writing with roughly an equal number of features from both the
sensors in the top-8. Even though the M02 framework was designed
for the pencil/pen on paper handwriting scenario, we observed in
our evaluations that it performed rather well for the air writing
scenario, compared to the pencil and finger writing scenarios. We
believe that this may be because the features computed in M02
are much more responsive to significant movements of the wrist
(including the arm), which is the case during air writing. To perform
better for the pencil and finger writing scenarios, M02 may need
to include a much more carefully computed set of features that
precisely captures the subtle movements of a user’s wrist.

The DNN based classification model for the M03 framework
employed the raw accelerometer data stream, and thus no feature
extractions were required/performed. As a result, we were not able
to perform an equitable feature level analysis for M03, similar to
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Figure 6: M01 feature analysis.

what we did for M01 and M02. However, we believe that a complex
DNN-based classification function, such as the one used in M03,
would require large amounts of training data to achieve acceptable
levels of performance, comparable to other frameworks analyzed
in this paper. This requirement of a collection of a large training
dataset is not feasible during a relatively short enrollment period
in practice, and is the biggest shortcoming of M03.

To recollect, framework M04 was originally proposed for sig-
nature verification. Our goal was to investigate if such a scheme
could be adapted for a free-form handwriting based authentication.
Our experimental results and analysis, as presented in Section 5,
show that M04 features are not well-suited for authentication using
motion data corresponding to free-form writing with it producing
EERs around 0.4 across all the writing scenarios. We believe that
one of the main reasons for this is because the written text cor-
responding to a signature has very little variability, compared to
free-form writing which has a lot of variability (for example, the
same letter can be written in different ways by the same person).
Thus, features in M04 which are computed based on DTW (or simi-
larity) scores between the query or test sample and a set of template
(or training) samples works well for signature based authentication,
but do not generalize well for authentication based on free-form
writing.

6.2 Participant Handwriting Specific Factors
As users have different (often, unique) handwriting styles and traits,
our second objective is to further investigate which participant-
dependent handwriting factors significantly impact the perfor-
mance of the frameworks under consideration. To this end, we first
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carefully analyze the inconsistencies or irregularities that could be
observed in users’ handwriting traits and styles. We observe (during
our data collection experiments) that there are significant irregu-
larities in handwriting by the same participant. One key factor that
contributed to this irregularity is the number of strokes a user or
participant employs when writing certain characters. For example,
most users write the English uppercase letter ’B’ with 2 strokes,
but at times the same user may write it using just one stroke (for
example, when in haste or hurry) resulting in a completely different
wrist motion. To further characterize this irregularity in users’ writ-
ing styles/behaviors, we analyze the finger writing data which we
collected using a smart tablet as the writing surface. From this data,
we observe that several users employ varying number of strokes
for at least 3 out of the 26 lowercase alphabets and for at least 5 out
of the 26 uppercase alphabets. These character-level inconsisten-
cies or irregularities easily propagate to words and sentences, and
thus to any models trained on these prolonged writing constructs.
In summary, handwriting irregularities may adversely impact the
performance of authentication models trained using handwriting-
related motion data, and such models may not generalize well to
the different writing styles by the same user in different contexts.

Another factor that could adversely impact the performance of
authentication frameworks employing handwriting related wrist
motions is the positioning of the wrist while writing. During the au-
thentication enrollment phase, a user may have positioned his/her
wrist at a certain stance with respect to the writing surface, how-
ever, during the authentication (or verification) phase, that stance
may be different or may have changed. The stance or position-
ing of the wrist while writing, together with the angle of the wrist,
could significantly affect the way a user’s wrist moves while writing,
which inadvertently affects the performance of these authentication
schemes. Additionally, the tendency of the wrist wearable device
striking or coming into contact with the writing surface while writ-
ing (especially, during pencil and finger writing scenarios) could
also introduce significant noise in the captured wrist motion data
and affect the authentication performance. These factors and issues
were very commonly observed during our handwriting data col-
lection experiments which were done in a realistic and completely
unconstrained setting.

Achieving high performance (or accuracy) when building a classi-
fier for hand-writing motion based user authentication will require
taking into account all these inconsistencies during the model train-
ing phase. But the main question that arises to this end is: how easy
or practical it is to replicate all such instances of inconsistencies (which
are highly dependent on external and, at times, unpredictable factors)
during the enrollment/training phase. As an example, in a traditional
fingerprint-based (static) biometric authentication system, users
would simply be required to touch the fingerprint reader with differ-
ent pre-defined angles/portions of the finger during the enrollment
phase. But, to train a handwriting-based (dynamic) authentication
system in a similar fashion, it will be non-trivial to enumerate all
the pre-defined set of scenarios that users must write in during
the enrollment phase. Furthermore, from a user convenience point
of view, users may be reluctant to spend too much time in the en-
rollment phase. However, in a use case where handwriting-based
authentication is used as a continuous authentication method, the
classification models can be continually updated/improved over

time with more user data passively collected during authentication
events. In this way, the difficulty in training the system due to
various participant-specific and environmental factors discussed
above can be overcome to a certain degree.

7 DISCUSSION & CONCLUSION
The widespread use of smart devices in activities of everyday life,
along with various apps handling users’ private information, has
made authentication of these devices/applications essential. Thus,
the need for secure, yet convenient mechanisms for user authen-
tication have become imperative. In this work, we evaluated four
state-of-the-art handwriting-based authentication schemes with
the goal of understanding the true potential and practicality of these
schemes, followed by an extensive analysis of possible technical
challenges faced by such authentication schemes. We compara-
tively analyzed these schemes against vital parameters, such as the
writing sample window sizes, training data sizes, and performance
at different sampling rates. Findings related to our specific research
goals are summarized in Table 4. We further discussed how each of
these schemes perform in terms of convenience and security, which
is often a trade-off when it comes to authentication mechanisms.

When considering different writing settings, while air writing
has shown comparatively better performance with an EER below
0.05 specifically with scheme M02, the practicality of using air
writing for a continuous authentication scheme is questionable. It is
unlikely that air writing being used as a writing mode for extensive
writing tasks, since prolonged air writing could be tiring for the
arm, making it unsuitable as a continuous authentication scheme.
Both pencil-writing and finger-writing based authentication seem
reasonably practical in real life, but finger-writing has a slight
advantage since it does not require any other tools such a pencil
and paper.

Prior to concluding, we would like to highlight some additional
shortcomings of the handwritingmotion-based authentication frame-
works studied in this paper. All the authentication frameworks
evaluated in this paper employ a binary classification function that
needs to be trained using both authentic and non-authentic user
data. Such a trained model cannot be developed purely on the user-
end (e.g., a user’s device), but it has to be developed on some service
provider end who has access to data from multiple users. In other
words, when new users want to enroll in such an authentication
framework, they may have to share their personal motion data
(corresponding to their handwriting) with a service provider for
building a personalized authentication model for themselves. This
raises significant privacy concerns for the users. Moreover, train-
ing the model on the service provider end is not efficient as any
(or all) model updates (e.g., as required in the case of continuous
authentication) would need to be communicated to the provider
resulting in significant communication cost and latency.

Our concluding perspective on handwriting-based authentica-
tion is that while its immediate adoption is uncertain, it can show
major improvements in the future as smart wearables come equipped
with more precise and efficient sensors. When that occurs, hand-
writing-based authentication can potentially become another main-
stream mechanism for user authentication.
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Table 4: Summary of results.

RQs Insights Gained

RQ1 Frameworks such as M01 and M02, performed reasonably in terms of usability/practicality under constrained writing, but required significant proportions
of training data which may hinder their adoption as a mainstream authentication scheme.

RQ2 Certain frameworks (especially M01) demonstrated good potential for adaptation across different writing modalities.

RQ3 A degradation of performance was observed in the presence of ambient noise, which suggests that in real-life usage performance could further degrade
raising practicality issues for mainstream adoption.

RQ4 M01 and M02 evaluations suggest that free-form handwriting-based user authentication is achievable with trade-offs between convenience and security
showing potential for mainstream adoption.

ACKNOWLEDGMENT
Research reported in this publication was supported by the Na-
tional Science Foundation (NSF) under award numbers 1828071 and
1943351.

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, and et al. 2015. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems. https://
www.tensorflow.org/ Software available from tensorflow.org.

[2] M. Bashir, G. Scharfenberg, and J. Kempf. 2011. Person authentication by hand-
writing in air using a biometric smart pen device. Proceedings of the Biometrics
Special Interest Group (BIOSIG) (2011).

[3] A. Buriro, B. Crispo, F. Del Frari, and K. Wrona. 2015. Touchstroke: Smartphone
user authentication based on touch-typing biometrics. In International Conference
on Image Analysis and Processing (ICIAP). Springer, 27–34.

[4] A. Buriro, R. Van Acker, B. Crispo, and A. Mahboob. 2018. AirSign: a gesture-
based smartwatch user authentication. In International Carnahan Conference on
Security Technology (ICCST). 1–5.

[5] F. Ciuffo and G. M. Weiss. 2017. Smartwatch-based transcription biometrics.
In IEEE Annual Ubiquitous Computing, Electronics and Mobile Communication
Conference (UEMCON). 145–149.

[6] G. Cola, M. Avvenuti, A. Vecchio, G. Yang, and B. Lo. 2015. An unsupervised
approach for gait-based authentication. (2015), 1–6.

[7] K. R. Corpus, R. J. DL Gonzales, A. Scott Morada, and L. A. Vea. 2016. Mobile user
identification through authentication using keystroke dynamics and accelerome-
ter biometrics. In Proceedings of the International Conference on Mobile Software
Engineering and Systems (MOBILESoft). 11–12.

[8] A. De Luca, A. Hang, F. Brudy, C. Lindner, and H. Hussmann. 2012. Touch me
once and I know it’s you! implicit authentication based on touch screen patterns.
In ACM Conference on Human Factors in Computing Systems (CHI). 987–996.

[9] M. O Derawi, P. Bours, and K. Holien. 2010. Improved cycle detection for ac-
celerometer based gait authentication. In IEEE International Conference on Intelli-
gent Information Hiding and Multimedia Signal Processing (IIH-MSP). 312–317.

[10] B Dorizzi, R Cappelli, M Ferrara, D Maio, D Maltoni, N Houmani, S Garcia-
Salicetti, and A Mayoue. 2009. Fingerprint and On-Line Signature Verification
Competitions at ICB 2009. In International Conference on Biometrics (ICB).

[11] A. L. Fantana, S. Ramachandran, C. H. Schunck, and M. Talamo. 2015. Movement
based biometric authentication with smartphones. In IEEE International Carnahan
Conference on Security Technology (ICCST). 235–239.

[12] L. J. Fennelly. 2003. Effective Physical Security. Elsevier Science.
[13] I. Griswold-Steiner, R. Matovu, and A. Serwadda. 2017. Handwriting watcher: A

mechanism for smartwatch-driven handwriting authentication. In IEEE Interna-
tional Joint Conference on Biometrics (IJCB). 216–224.

[14] I. Griswold-Steiner, R. Matovu, and A. Serwadda. 2019. Wearables-Driven
Freeform Handwriting Authentication. IEEE Transactions on Biometrics, Behavior,
and Identity Science (T-BIOM) 1, 3 (2019), 152–164.

[15] K. Guk, G. Han, J. Lim, K. Jeong, T. Kang, E. Lim, and J. Jung. 2019. Evolution of
wearable devices with real-time disease monitoring for personalized healthcare.
Nanomaterials 9, 6 (2019), 813.

[16] C. Huang, Z. Yang, H. Chen, and Q. Zhang. 2017. Signing in the Air w/o Con-
straints: Robust Gesture-based Authentication forWristWearables. In IEEE Global
Communications Conference (GLOBECOM). 1–6.

[17] D. Impedovo and G. Pirlo. 2018. Automatic signature verification in the mobile
cloud scenario: survey and way ahead. IEEE Transactions on Emerging Topics in
Computing (2018).

[18] Diederik P. Kingma and Jimmy B. 2015. Adam: A Method for Stochastic Opti-
mization. CoRR abs/1412.6980 (2015).

[19] I. Kononenko. 1994. Estimating attributes: analysis and extensions of RELIEF. In
European Conference on Machine Learning. Springer, 171–182.

[20] A. Levy, B. Nassi, Y. Elovici, and E. Shmueli. 2018. Handwritten signature verifi-
cation using wrist-worn devices. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies 2, 3 (2018), 1–26.

[21] S. Li, A. Ashok, Y. Zhang, C. Xu, J. Lindqvist, and M. Gruteser. 2016. Whose
move is it anyway? Authenticating smart wearable devices using unique head
movement patterns. In IEEE International Conference on Pervasive Computing and
Communications (PerCom). 1–9.

[22] G. Liang, X. Xu, and J. Yu. 2017. User-authentication on wearable devices based
on punch gesture biometrics. In ITM Web Conf., Vol. 11. EDP Sciences, 01003.

[23] C. X. Lu, B. Du, H. Wen, S. Wang, A. Markham, I. Martinovic, Y. Shen, and N.
Trigoni. 2018. Snoopy: Sniffing your smartwatch passwords via deep sequence
learning. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 1, 4 (2018), 1–29.

[24] D. Lu, D. Huang, Y. Deng, and A. Alshamrani. 2018. Multifactor user authentica-
tion with in-air-handwriting and hand geometry. In IEEE International Conference
on Biometrics (ICB). 255–262.

[25] D. Lu, K. Xu, and D. Huang. 2017. A data driven in-air-handwriting biometric
authentication system. In IEEE International Joint Conference on Biometrics (IJCB).

[26] J. Mantyjarvi, M. Lindholm, E. Vildjiounaite, S-M Makela, and HA Ailisto. 2005.
Identifying users of portable devices from gait pattern with accelerometers. In
IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 2.

[27] C. Nickel, T. Wirtl, and C. Busch. 2012. Authentication of smartphone users based
on the way they walk using k-nn algorithm. In IEEE International Conference on
Intelligent Information Hiding and Multimedia Signal Processing. 16–20.

[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[29] G. Peng, G.and Zhou, D. T. Nguyen, X. Qi, Q. Yang, and S.Wang. 2016. Continuous
authentication with touch behavioral biometrics and voice on wearable glasses.
IEEE transactions on human-machine systems 47, 3 (2016), 404–416.

[30] A. Primo, V. Phoha, R. Kumar, and A. Serwadda. 2014. Context-aware active
authentication using smartphone accelerometer measurements. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW). 98–105.

[31] EH Rothauser. 1969. IEEE recommended practice for speech quality measure-
ments. IEEE Trans. on Audio and Electroacoustics 17 (1969), 225–246.

[32] D. Schürmann, A. Brüsch, S. Sigg, and L. Wolf. 2017. BANDANA—Body area
network device-to-device authentication using natural gAit. In IEEE International
Conference on Pervasive Computing and Communications (PerCom). 190–196.

[33] R. Shilkrot, J. Huber, J. Steimle, S. Nanayakkara, and P. Maes. 2015. Digital
digits: A comprehensive survey of finger augmentation devices. ACM Computing
Surveys (CSUR) 48, 2 (2015), 1–29.

[34] P. Shinde, S. Shetty, and M. Mehra. 2016. Survey of Keystroke Dynamics as a
Biometric for Static Authentication. International Journal of Computer Science
and Information Security 14, 4 (2016), 203.

[35] M. Shoaib, S. Bosch, O. Durmaz Incel, H. Scholten, and P. JM Havinga. 2016.
Complex human activity recognition using smartphone and wrist-worn motion
sensors. Sensors 16, 4 (2016), 426.

[36] Y. Song, Z. Cai, and Z. Zhang. 2017. Multi-touch authentication using hand
geometry and behavioral information. In IEEE Symposium on Security and Privacy
(S&P). 357–372.

[37] T. T. Um, F. MJ. Pfister, D. Pichler, S. Endo, M. Lang, S. Hirche, U. Fietzek, and
D. Kulić. 2017. Data augmentation of wearable sensor data for parkinson’s
disease monitoring using convolutional neural networks. In ACM International
Conference on Multimodal Interaction. 216–220.

[38] J. Wang, Y. Hsu, and J. Liu. 2009. An inertial-measurement-unit-based pen with
a trajectory reconstruction algorithm and its applications. IEEE Transactions on
Industrial Electronics 57, 10 (2009), 3508–3521.

[39] J. Yang, Y. Li, and M. Xie. 2015. MotionAuth: Motion-based authentication for
wrist worn smart devices. In IEEE International Conference on Pervasive Computing
and Communication Workshops (PerCom Workshops). 550–555.

[40] W. Yang, S. Wang, J. Hu, G. Zheng, and C. Valli. 2019. Security and accuracy of
fingerprint-based biometrics: A review. Symmetry 11, 2 (2019), 141.

[41] Q. Zhang, H. Li, Z. Sun, and T. Tan. 2018. Deep feature fusion for iris and periocular
biometrics on mobile devices. IEEE Transactions on Information Forensics and
Security 13, 11 (2018), 2897–2912.

https://www.tensorflow.org/
https://www.tensorflow.org/

	CopyrightNotice-SPriTE-UTSA
	wijewickramaWiSec21
	Abstract
	1 Introduction
	2 Related Work
	3 Research Goals
	4 Experimental Setup
	4.1 System Model
	4.2 Implementations
	4.3 Data Collection
	4.4 Benchmarks and Evaluation Metrics

	5 Performance Evaluation
	5.1 The Effect of Authentication Window Size
	5.2 The Effect of Training Set Sizes
	5.3 Different Writing Settings
	5.4 The Effect of Sampling Frequency
	5.5 The Effect of Environmental Noise
	5.6 Convenience vs. Security
	5.7 Comparison with Other Modalities
	5.8 Mimicking Attack

	6 Factors Impacting Performance
	6.1 Feature Analysis
	6.2 Participant Handwriting Specific Factors

	7 Discussion & Conclusion
	References


