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Side-Channel Inference Attacks on Mobile
Keypads using Smartwatches

Anindya Maiti, Murtuza Jadliwala, Jibo He, and Igor Bilogrevic

I. INTRODUCTION

The popularity of smartwatches is soaring with more than
45 million devices expected to be shipped by 2017 [1]. These
devices, typically equipped with state-of-the-art sensors and
communication capabilities, will enable a plethora of novel
applications, including activity tracking, wellness monitoring
and ubiquitous computing. However, the presence of a diverse
set of on-board sensors also provides an additional attack
surface to malicious applications on these devices. Security
and privacy threats on handheld smartphones that take advan-
tage of such sensors as side-channels have received significant
attention in the literature. Notable examples include keystroke
(or key press) inference [2]–[4], activity identification [5] and
location inference [6] attacks. As most modern mobile operat-
ing systems introduced stringent access controls on front end
sensors, such as microphones, cameras and GPS, adversaries
shifted attention to sensors which cannot be actively disen-
gaged by users (e.g., accelerometer and gyroscope). Typically,
handheld device usage is highly intermittent and such devices
spend a majority of time in a constrained (e.g., in users’ dress
pocket) or activity-less (e.g., on a table) setting where most
on-board sensors are partially or completely non-functional,
thereby limiting the effectiveness of handhelds in inference
attacks. Contrary to this, wearable device usage is much more
persistent as they are constantly carried by the users on their
body. This makes wearable devices a more desirable platform
for a variety of side-channel attacks. If access to wearable
sensor data is not appropriately regulated, it can be used as a
side-channel to infer sensitive user information.

In this paper, we evaluate the feasibility of side-channel
security vulnerabilities in smart wearables by investigating
motion-based keystroke inference attacks using smartwatches.
More specifically, we evaluate the feasibility and effectiveness
of keystroke inference attacks on smartphone numeric touch-
pads by using smartwatch motion sensors as a side-channel.
Numeric touchpads are typically targeted by adversaries for
obtaining sensitive information such as security pins and credit
card numbers. We propose multiple attacks suitable for three
popular typing scenarios. In typing scenarios where key press
events can be identified based on surge in motion sensor
activity, we use supervised learning to infer the key presses.
This attack comprises of first training appropriate classification

A. Maiti, M. Jadliwala and J. He are with the Wichita State University,
Wichita, KS 67260 USA
E-mail: a.maiti@ieee.org, murtuza.jadliwala@wichita.edu,
jibo.he@wichita.edu

Igor Bilogrevic is with Google, 8002 Zurich, Switzerland
E-mail: ibilogrevic@google.com

models to learn the uniqueness in wrist motion caused during
individual keystrokes depending on known relative location of
the key on the screen, and then using the trained classifiers
to infer unlabeled (or test) keystrokes. During preliminary
experiments, we observed that keystroke induced motion data
captured by smartwatch and smartphone sensors differ signif-
icantly. Consequently, we thoroughly assess how significantly
smartwatch motion sensors elevate the threat of keystroke
inference, compared to similar attacks using only smartphone
motion data [2]–[4]. We also evaluate the case where the
adversary may have gained access to motion sensors on both
the smartwatch and smartphone, to see how our attack will
perform when motion data from both devices are combined.
For the typing scenario where key press events cannot be
identified based on the uniqueness of motion sensor activity
surge (corresponding to a key press), we present a novel
scheme to infer a sequence of key presses based on the
transitional movement between individual key presses. We
evaluate the proposed attacks in both controlled and realistic
typing scenarios. We also briefly discuss possible protection
measures against such inference attacks that employ motion
sensors as side-channels.

The remainder of this article is structured as follows: First
we discuss similar side-channel attacks in the literature in
Section II. Then we give an overview of the threat and
adversary model in Section III. In Section IV we describe the
classification-based keystroke inference framework, followed
by its evaluation in Section V. In Section VI we describe
the relative transitions-based keystroke inference framework,
followed by its evaluation in Section VII. Finally, we discuss
implications, limitations and future research directions.

II. RELATED WORK

Inference of private information from various forms of side
channels has been an active area of research in the community.
Electromagnetic signals emanating from devices have been
used to infer private data stored on Smart Cards [7], data
transmitted on RS-232 cables [8] and content being played
on CRT and LED monitors [9], [10]. Recently, Hayashi et al.
[11] showed that it is also possible to remotely reconstruct and
eavesdrop on flat panel displays on tablets via measurement
of electromagnetic emanations. Similarly, optical emanations
from monitors [12] or from eyes [13] have also be used to
infer information such as content being displayed or watched.
Acoustic or sound signals emanating from devices such as
printers have also been used to infer the content being printed
on certain models of dot-matrix printers [14].
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Availability of several high-precision sensors on modern
mobile cyber-physical systems such as smartphones have given
rise to additional side-channels [15], thus increasing the risk of
private information leakage through such side-channels. Past
research efforts have shown how malicious applications can
misuse their access rights to these sensors in order to execute
various imperceptible side-channel attacks by stealthily captur-
ing information from the physical environment. For example,
smartphone cameras can be accessed in an unauthorized
fashion to infer sensitive information from user keystrokes
[16], [17]. Unauthorized microphone recordings of ambient
sound [18] provide a rich source of information that can be
used to infer sensitive information about a person’s daily life.
Activities and locations can be inferred based on characteristic
ambient sound patterns, e.g. walking on the streets, or eating
in a restaurant [19]. Unauthorized access to GPS sensors can
pose obvious risks related to loss of location privacy, such as
revealing home/work locations, stalking and location-targeted
advertisements [20]. Advanced learning-based techniques were
also proposed for predicting users’ future movements from
previous tracking records of their location activities [21]–
[24]. Security and privacy risks associated with front-end
sensors, such as, microphones, cameras and GPS, have been
comprehensively studied because of the hazards apparent to
users.

However, security risks due to sensors obscured from
users (e.g., accelerometer, gyroscope, and magnetometer) have
largely been overlooked until recently. After modern mobile
operating systems introduced user-managed access control
on front-end sensors, adversaries shifted attention to sensors
which cannot be disengaged by users. It has been shown that
malicious applications can track users’ movements [25], [26]
and activities [27]–[29] by using only smartphone accelerom-
eter readings. It has also been shown that, with the help of
standard signal processing and machine learning techniques,
it is possible to recognize speakers and parse speech by using
gyroscopes on modern mobile devices to measure acoustic
signals [30].

Keystroke inference attacks using side-channel information
have received significant attention due to their potentially dan-
gerous consequences. Electromagnetic emanations from exter-
nal keyboards (both wired and wireless) have been used in the
past to infer user keystrokes [31]. However, the requirement of
extensive setup and expensive monitoring hardware prevents
less sophisticated adversaries from carrying out such attacks.
Keystroke inference attacks using audio or acoustic signals
[32]–[36], on the other hand, have also received significant
attention in the literature. Such attacks have proven to be very
successful and can be carried out using modest off-the-shelf
hardware (e.g., any microphone equipped device). Due to the
ubiquitous nature of modern smartphones that are equipped
with high-precision microphones, such attacks are much more
practical than previously argued.

However, as touchscreen key press events emanate very
weak acoustic signals, inference attacks using them is very
difficult. Additionally, requirement of undisturbed eavesdrop-
ping is another major obstacle in using electromagnetic and
acoustic emanations for such attacks. As a workaround to

the above limitations, smartphone motion sensors have been
used to recover keystroke events on the device. For in-
stance, TouchLogger [2] and TapPrints [37] utilize change
in orientation angles of the smartphone, as captured by its
accelerometer, to extract appropriate features for keystroke
inference. Similarly, ACCessory [3] also attempts to infer
keystrokes using the smartphone accelerometer data by em-
ploying multiple supervised learning techniques. Alternatively,
TapLogger [4] automates the training and logging phases and
attempts to work stealthily on the smartphone. Smartphone
motion sensors have also been used to detect keystroke events
on other external devices/keyboards in proximity [38]. Despite
these research efforts, side-channel privacy threats (especially,
keystroke inference attacks) posed by wearable devices such as
smartwatches have received far less attention. Recently, Wang
et al. [39], Liu et al. [40], Wang et al. [41] and Maiti et
al. [42] have explored new attacks to infer user keystrokes
or key presses on external physical keyboards/keypads by
using smartwatch motion sensors. In contrast to these research
efforts, our work focuses on keystroke inference on hand-held
mobile keypads by employing smartwatch motion sensors.

In our preliminary work in this direction [43], we designed
and evaluated a basic supervised learning-based classification
framework to infer keystrokes on a mobile/smartphone keypad.
The evaluation was limited to the typing scenarios where key
press events were identifiable based on surge in wrist motion
activity. In this paper, we present new and improved attack
frameworks, which include attack on an additional typing
scenario. We made significant changes to the classification-
based attack framework, such as enriching the feature vectors
and using a robust ensemble classification scheme. Our new
relative transition-based attack framework is designed to infer
sequences of key presses, where individual key press events
cannot be detected by using the unique surge in the wrist mo-
tion activity (captured on the smartwatch motion sensor). We
conduct extensive empirical evaluation for both frameworks
with the help of multi-sensor typing data contributed by human
subject participants using two different smartwatch hardware.
We also evaluate the efficacy of our attack framework in a
non-controlled natural typing setting, Further, we also analyze
our attack framework for gain in inference accuracy (if any)
when typing-related motion data from both the smartwatch
and smartphone is combined.

III. ATTACK DESCRIPTION

In this research effort, we focus on three of the most
popular typing (or tapping) scenarios in mobile hand-helds or
smartphones [44]. We consider a user typing on a smartphone’s
numeric touchscreen keypad while wearing a smartwatch on
one of his/her hand. In the first case, smartwatch and smart-
phone are on the same hand and the user types with the hand
not holding the smartphone (see Figure 1(a)), also referred by
us as SH-NHHT scenario. In the second case, smartwatch and
smartphone are again on the same hand and the user types with
a finger (generally, thumb) of the smartphone holding hand
(see Figure 1(b)), also referred by us as SH-HHT scenario. In
the above two scenarios, the action of tapping a key on the



3

(a) (b)

(c) (d)
Fig. 1: Smartwatch and smartphone on (a) Same Hand and
Non-Holding Hand Typing (SH-NHHT), (b) Same Hand and
Holding Hand Typing (SH-HHT), (c) Different Hand and
Non-Holding Hand Typing (DH-NHHT), (d) numeric keypad
used in our experiments.

smartphone keypad results in a unique motion of the wrist (on
the smartphone holding hand) for each keystroke, which can
be captured by the motion sensors (e.g., accelerometer and
gyroscope) of the smartwatch and used to identify the tapped
keystroke. In the third case, smartwatch and smartphone are on
different hands and the user types with the hand not holding
the smartphone (see Figure 1(c)), also referred by us as DH-
NHHT scenario. Unlike the previous two scenarios, each key
tap does not produce a unique motion signature on the wrist
of the typing hand (where the smartwatch is situated), and
thus it cannot be used to infer the exact keystroke in a fashion
similar to the previous two cases. However, assuming that the
relative position of keys on the keypad as per the standard
layout shown in Figure 1(d) is known and remains static, we
can use the relative transitional movement between taps to
infer a (sub)sequence of the tapped keys.

In addition to the above three, other typing scenarios are also
possible, for example, typing with both hands and holding (the
phone) and typing with non watch wearing hand. However, in
order to limit the scope of our study and to clearly demonstrate
the keystroke inference threat posed by smartwatches, we only
consider the above three typing scenarios (i.e., SH-NHHT, SH-
HHT and DH-NHHT) in this work, which also happen to be
very widely adopted by smartphone users. We further justify
our focus on these three typing scenarios by more precisely
determining the percentage of users that employ these typing
methods, and as a result, are impacted by the proposed
inference attacks. Based on the data available from a study
concerning users’ smartphone holding and usage behaviors
[44], 32.83% of all users hold and use the phone as shown
in Figure 1(b), 28.44% of users hold and use the phone as
shown in Figure 1(a), while only 2.11% of users hold and
use the phone as shown in Figure 1(c). In this work, we also

investigate two variations of scenarios in Figures 1(a) and 1(b),
where the phone is held in the other hand as shown in Figures
13(a) and 13(b) respectively. Based on [44], 16.17% of all
users hold and use the phone as shown in Figure 13(b), while
only 7.56% of users hold and use the phone as shown in Figure
13(a). It should be noted that [44] does not provide any data
on which hand (left or right) the smartwatch is traditionally
worn, so the above only represents percentages of users based
on the hand in which the phone is held and the hand used
to type or tap. Now even if the phone holding scenario of
Figure 1(c) is ignored (due to its low usage percentage), our
framework can potentially impact at least 44.61% of users who
wear the smartwatch on the left hand, i.e., those who type as
shown in Figures 1(a) and 13(b). Similarly, at least 40.39% of
users wearing the smartwatch on the right hand are impacted
by our keystroke inference framework, i.e., those who type as
shown in Figures 1(b) and 13(a)). Moreover, we also show in
Section V-I that the performance of our framework does not
vary significantly between a particular typing scenario and its
variation (say, between Figure 1(b) and 13(b)). This shows that
a significant percentage of users have the potential of being
impacted by the proposed keystroke inference framework.

Threat Model: We assume an adversary whose goal is to
infer a target’s keystrokes on a generic smartphone numeric
keypad (as shown in Figure 1(d)), based on the wrist move-
ments perceptible by the target’s smartwatch motion sensors.
The adversary may gain access to the target’s smartwatch
by installing a malicious application on it which records the
activity of the on-board accelerometer and gyroscope sensors.
This step can be achieved by exploiting known software vul-
nerabilities or by tricking the victim into installing malicious
code, e.g., using a trojan software. Based on the fact that most
common smartwatch operating systems (e.g., Google’s An-
droid Wear, Apple’s watchOS, etc.) do not implement access
control and/or user notification for motion sensor usage, the
malicious application may have unrestricted and undetected
access to the on-board accelerometer and gyroscope. As a re-
sult, the compromised smartwatch can act as an eavesdropping
device which the targets’ themselves may place on their wrist,
and unsuspectingly have it on their wrist while typing on a
smartphone. The malicious application may also maintain a
covert communication channel [45] with the adversary, and
periodically upload the collected wrist motion data on some
adversarial server by means of this channel. The use of a
covert channel by the trojan is optional. However, if a covert
channel is not used, there is a possibility of this information
transfer being easily detected and the trojan being inactivated.
We assume that the adversary also has sufficient off-site
storage and computational resources to download the raw
sensor data, extract significant keystroke events, and execute
standard machine learning algorithms in order to classify the
keystrokes. For comparison with attacks based on smartphone
data, we assume similar adversarial capabilities and actions
for the smartphone.

IV. CLASSIFICATION-BASED ATTACK FRAMEWORK

The linear accelerometer motion sensor found on smart-
watches measures the three dimensional acceleration expe-
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rienced by the device, excluding the omnipresent force of
gravity. During preliminary experimentation with SH-NHHT
and SH-HHT scenarios, we observed that key press events can
be accurately detected using the surge in linear acceleration
during a key press. Based on the observation that taps on
different locations of the smartphone screen produces charac-
teristically unique motions on the wrist, our attack framework
leverages on supervised machine learning to directly classify
the detected key presses. The attack framework (Figure 2)
consists of a learning phase followed by an attack phase. Both
phases go through similar steps of data collection followed
by feature extraction, with the learning phase culminating in
training (the classifiers), while the attack phase in classification
(using the trained classifiers from the training phase). Next, we
describe in detail each component of the proposed framework.

Data Collection and Pre-Processing: We developed an
application for Android Wear that continuously samples linear
accelerometer measurements on the smartwatch, and runs in
the background during experiments. Details of the data collec-
tion experiments and technical specifications of the hardware
used for the experiments are outlined later in Section V-A.
The smartwatch data collection application communicates the
linear accelerometer measurements to the host smartphone
(with which the watch is paired) using Andorid Wear’s Wear-
able Data Layer API. On the smartphone, another Android
application displays a keypad to the users to type sequences
of numbers. In the background, the smartphone application
chronologically logs all accelerometer measurements received
from the smartwatch and any key press events registered on the
displayed keypad. It logs two data-streams: (i) timestamped
readings of the smartwatch’s linear accelerometer (A); and
(ii) timestamped key press labels (L). Both A and L are
stored locally on the smartphone (which is also paired with the
smartwatch) during the data collection process and retrieved
later for offline evaluation. Note that in the attack phase of
our experiments we use L only to verify the classification
accuracy.

Due to the absence of labeled data, the attack phase requires
an additional key press event detection mechanism. Figure 3
shows a portion of a raw linear accelerometer data-stream,
spanning four key press events in the SH-NHHT scenario. As
evident from the graph, each tap agitates the linear accelerom-
eter sensor readings on the three axis, with more prominence
along the Y-axis and Z-axis than X-axis. SH-HHT data also
exhibits similar traits. We apply this observation to model
an algorithm for automating the process of key press event
detection. Algorithm 1 sequentially examines the “energy” of
each sample i in A as the sum of acceleration on the three
axis (Equation 1). The energy value calculated in Algorithm
1 is then used in Algorithm 2 to determine keystroke events.

Energy[i] =
∣∣∣∣∣A[i][X]

∣∣+ ∣∣A[i][Y ]
∣∣+ ∣∣A[i][Z]

∣∣∣∣∣ (1)

Algorithm 2 establishes the threshold value as the average
peak energy values observed in the time-stamped training set.
In the attack phase, once the energy level surpasses the empiri-
cally learned threshold (from Algorithm 2), a key press event is

recognized and a “keystroke-record” is saved. Each keystroke-
record is intended to represent the wrist motion pattern of a key
press event, and consists of few linear accelerometer readings
immediately before and after the key press event is recognized.
We empirically observed that the movement due to a key press
subsides after approximately 350 msecs. Thus, a keystroke-
record of eighteen samples (at 50 Hz sampling frequency)
sufficiently captures all motion features related to a keystroke.
Taking into consideration some of the milder initial motion, we
form each keystroke-record as follows: the sample to surpass
the energy threshold is preceded by three samples and followed
by fourteen samples, chronologically from A. After a key press
event is recognized and the corresponding keystroke-record is
saved, the key press detection algorithm resumes its search
for next key press. As multiple samples during a key press
may cross the energy threshold, ignoring the fourteen samples
following the last keystroke-record ensures that the same key
press is not recorded multiple times.

Feature Extraction: Our proposed attack infers the numeric
key that was pressed based on features of the underlying
physical event of wrist motion caused during typing (or
tapping) on a smartphone. The features of a keystroke-record
must be able to capture as many attributes as possible about
the underlying three-dimensional movement caused by a key
press. A properly designed feature vector should be similar
with other feature vectors of the same key, simultaneously
being distinguishable between feature vectors of other keys.
We observed that, based on the location of a key on the screen,
the degree of movement caused by a tap varies on each of
the X , Y , and Z axis of the linear accelerometer (Figure 4).
Interestingly, this movement remains fairly consistent for the
same key.

In our preliminarily work [43], we used only 54 basic
time domain features of the accelerometer data to identify
the uniqueness of each key (and the corresponding key press
event), and found those features to be reasonably useful
for keystroke inference. In this work, we expand that to a
more comprehensive set of features, employing both time
and frequency domain features, with a total of 155 different
features in our feature vector for each key. We continue to use
time domain features of individual axis such as minimum and
maximum magnitudes, squared sum of magnitude data below
33 percent and above 67 percent of maximum magnitude

Algorithm 1 Key Press Detection Algorithm

function KEYPRESS_DETECTION(ATarget)
KeyPresses = {∅}
Threshold = Set_Threshold()
for i = 1 to N (N samples in A) do

if Energy[i] ≥ Threshold then
ThisKeyPress = A[i− 3] to A[i+ 15]
Insert ThisKeyPress into KeyPresses
i = i+ 15

end if
end for

end function
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Fig. 2: Overview of the classification-based attack framework for SH-NHHT and SH-HHT typing scenarios.

Fig. 3: Time series of key press events in SH-NHHT, and
their corresponding effect on linear accelerometer samples.

Algorithm 2 Determining Energy Threshold

function SET_THRESHOLD(ATraining , LTraining)
Threshold = 0
KeyPressT ime = 0
for j = 1 to M (M key presses in L) do

KeyPressT ime = L[j][time]
ThisKeyEnergy =
{Energy[KeyPressT ime− 1] +
Energy[KeyPressT ime] +
Energy[KeyPressT ime+ 1] +
Energy[KeyPressT ime+ 2]}/4
Threshold = Threshold + ThisKeyEnergy

end for
Threshold = Threshold/M

return M
end function

(to measure the duration of major and minor movements),
position of maximum and minimum magnitude samples, mean,
median, variance, standard deviation, skewness (measure of
any asymmetry) and kurtosis (to measure any peakedness),
raw accelerometer readings, and their first order numerical
derivatives (to measure the rate of change of energy). We also
use inter-axis time domain features to capture the correlation
between movement on the three axis, such as minimum
and maximum magnitudes across all three axis, Frobenius
norm, Infinity norm, 1-norm, Euclidean norm, and axis with
highest and lowest magnitude for each time sample. Along
with the time domain features, we also capture frequency
domain features by computing the Fast Fourier Transform
(FFT) of individual axis readings of the keystroke-record.
The frequency domain features are necessary to identify the
different rebounding (or oscillatory) motion of the wrist. Note
that in the learning phase, the feature vectors are also labeled,
using the timestamped key press labels (L) recorded by the
data collection application.

Training and Classification: We model the keystroke infer-
ence problem as a multi-class classification problem. Labeled
feature vectors are used to train classifiers in the learning
phase, whereas unlabeled feature vectors are mapped to the
“closest” matching class by the already trained classifiers
during the attack or test phase. To train our classifiers, we
initially tested five different classification algorithms that are
appropriate given the properties of our features: (i) simple
linear regression (SLR), (ii) random forest (RF), (iii) k-nearest
neighbors (k-NN), (iv) support vector machine (SVM), and
bagged decision trees (BDT). However, each of these classifi-
cation techniques has its own advantages and shortcomings,
leading us to adopt an ensemble classification approach.
Ensemble approaches have proven to be more accurate and
robust than any single classification algorithm [46], [47]. We
consider an extremely broad set of classification algorithms in
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our ensemble method, as a result of which, the errors made
by constituting classifiers are highly uncorrelated. We include
parametric algorithms (SLR, SVM), as well as non-parametric
algorithms (k-NN, RF, BDT). Our ensemble method involves
both linear (SLR, SVM) and non-linear (k-NN, RF, BDT) tech-
niques. Moreover, RF and BDT are strong ensemble classifiers
in themselves which makes our classification framework even
more robust. Such a diverse set of classification algorithms
increases the likelihood of improvements in classification
accuracy over a single algorithm.

During the training phase, multi-class classifiers of each
constituting classification algorithm are trained separately us-
ing the labeled training data. After all the classifiers have been
trained using the labeled data, feature vectors of unlabeled
keystroke-records are classified using these trained classifiers
(in the attack phase) using an ensemble strategy. Finally, a
majority wins ensemble strategy is used to determine the final
classification result (Figure 5).

V. EVALUATION OF CLASSIFICATION-BASED ATTACKS

In this section, we present the findings from our evaluation
of the classification-based attack framework.

A. Experimental Setup

Our initial data collection experiments involve 12 par-
ticipants, aged between 19-32 years. The identity of these
participants are anonymized as P1, P2, . . . , P12. We employ a
Samsung Gear Live smartwatch equipped with an InvenSense
MP92M 9-axis Gyro + Accelerometer + Compass sensor.
Smartwatch was worn on left hand for SH-NHHT (Figure 1(a))
and on right hand for SH-HHT (Figure 1(b)). Participants use
the virtual numeric keypad of a Motorola XT1028 smartphone
(Figure 1(d)) for typing. Linear accelerometer of the smart-
watch was sampled at 50 Hz. We used the Weka 3.7.12 [48]
libraries for both training and testing the classifiers. MATLAB
R2014a was used to compute most of the time and frequency
domain features.

We also evaluate the performance of our keystroke inference
framework in several additional settings: (i) a more natural

Fig. 4: The intuition behind our classification-based attack
is that taps on different locations of the smartphone screen
produces characteristically unique motions on the wrist.
Accordingly, taps on each number on the keypad should
be identifiable based on the uniqueness in the resultant
wrist motion.

Fig. 5: Ensemble classification scheme used in the attack
phase is robust and generally more accurate than a single
classification algorithm.

or uncontrolled typing scenario (Section V-F), (ii) using a
different smartwatch hardware (Section V-G), (iii) employing
an additional type of motion sensor, i.e., gyroscope (Section
V-D), and (iv) typing on a QWERTY or alphabetic keypad
(Section V-H). For these last four experimental settings, we
collected additional data from different sets of participants,
and in certain cases using a different smartwatch and/or smart-
phone hardware. The participant and data collection procedure
details for these additional experimental settings appear in
their respective sections.

B. Constructing and Testing the Classifiers

We construct our classifiers based on different training
datasets of labeled keystroke-records generated by the par-
ticipants. An audio stream of uniformly distributed random
numbers between 0 to 9 guided the participants in typing. To
prevent fatigue, participants were given optional breaks, during
which they were allowed to set down the phone on the table
and some participants even went out of the room. However,
they returned to approximately the same holding position
after the break. We comparatively evaluate the classification
accuracy (the percentage of correct prediction divided by the
total number of predictions) of our classifiers for the following
three training/testing scenarios:

• One vs. One: In this case, we measure the percentage
of successful inferences on an individual participant,
with classifiers trained from the training set of the same
participant. Target set size is 100 (10 per key) and training
set size is 200 (20 per key). One vs. One is not only a
best case scenario, but also represents how the attack will
perform if the adversary is able to collect target-specific
training data.

• One vs. Rest: In this case, we measure the percentage of
successful inferences on an individual participant, with
classifiers trained from the training set of the rest of the
participants (not including the target participant). Target
set size is 100 (10 per key) and training set size is 2200
(220 per key). One vs. Rest is a typical scenario where
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TABLE I: Mean computation time observed in each train-
ing/testing scenario. All measurements are in seconds.

SLR RF K-NN SVM BDT Total

One vs. One 191 234 98 95 65 683
One vs. Rest 166 365 398 184 167 1280
All vs. All 504 617 441 271 218 2051

the adversary has a target, but is unable to obtain labeled
training data from the target.

• All vs. All: In this case, we measure the percentage of
successful inferences on all participants, with classifiers
trained from training set of all participants. Target set size
is 1200 (120 per key) and training set size is 2400 (240
per key). All vs. All is helpful in understanding how our
attack framework will perform if the adversary constructs
a heterogeneous training data set to infer keystrokes from
multiple non-specific targets.

Classification results for One vs. One are shown in Figure 6.
One vs. One classification accuracy ranged fairly high between
94% and 77% for SH-NHHT, and between 93% and 75% for
SH-HHT, with an average of 84.58% and 83.5%, respectively.
However, classification accuracy drops noticeably in One vs.
Rest. As shown in Figure 6, One vs. Rest classification
accuracy ranged between 82% and 63% for SH-NHHT, and
between 78% and 65% for SH-HHT, with an average of
70.08% and 71.16%, respectively. The achieved All vs. All
classification accuracy was 88.16% and 85.83% for SH-NHHT
and SH-HHT, respectively. Overall, these results validate our
claim that smartwatch motion sensors are a feasible side-
channel for inferring keystrokes on mobile touchpads.

We also recorded the mean computation time in each
training/testing scenario (Table I). All training and testing
operations were executed on a laptop featuring a 2.7 GHz
dual-core Intel i5 processor and 8 GB of working memory.
Due to the use of ensemble classification technique, the total
computation time is the sum of time taken by the five consti-
tuting classification algorithms. The average total computation
time in One vs. One scenario was less then 12 minutes, about
21 minutes in One vs. Rest, and about 34 minutes in All vs.
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Fig. 6: Classification accuracy for One vs. One and One
vs. Rest using two different smartwatches (Samsung Gear
Live and LG Watch Urbane W150).

Fig. 7: Classification accuracy dropped when sampling rate
was reduced, results averaged over all 12 participants.

All scenario. Moreover, the total computation time can be
further reduced if the different classification algorithms are
executed in parallel (with suitable hardware support). These
results show that the above keystroke inference attacks can
be carried out by an attacker using reasonable computation
resources in a fairly short amount of time.

C. Reduced Sampling Frequency:

We also briefly investigate how our attack will perform at
reduced sampling rate (25 Hz and 10 Hz), a more realistic
scenario for low-cost wearables, equipped with less precise
sensors. We repeat the experiments outlined in Sections V-A
and V-B with smartwatch data sampled at a reduced frequency,
and Figure 7 shows the drop in accuracy of our attacks for
both the SH-NHHT and SH-HHT scenarios. For example, One
vs. One classification accuracy in SH-NHHT dropped from
84.58% to 72% when sampling frequency was reduced to 25
Hz and to 23% when sampling frequency was reduced to
10 Hz. Similarly, the other scenarios also observed drop in
classification accuracy with reduction in sampling frequency,
but percentage of successful classification can be considered
fairly substantial even at a sampling frequency of 25 Hz.

D. Comparison with Smartphone-Based Attacks

Previous research efforts on keystroke inference attacks by
using smartphone sensor data [4], [37] (or data collected from
the target’s smartphone sensors) also used similar learning-
based multi-class classification frameworks. This motivated
us to apply our attack framework on smartphone data and
compare the results with those carried out using smartwatch
data. This enables us to understand how much more or less
vulnerable a motion sensor-based side-channel originating on
a smartwatch makes us, as compared to known motion-based
side-channels on the target users’ smartphone. We conduct
similar experiments (as in Sections V-A and V-B) by using
smartphone linear accelerometer data sampled at 50 Hz, rather
than using the smartwatch data. Figures 8 and 9 shows the
accuracy of our attack for SH-NHHT and SH-HHT scenar-
ios. On comparing with previous results from Section V-B,



8

it can be observed that the keystroke inference attacks in
SH-NHHT resulted in slightly better average classification
accuracy when smartwatch motion data was used. Whereas
in SH-HHT, classification accuracy results are mixed, and
nearly equal, for both the smartwatch and smartphone data.
In summary, these results demonstrate that the threat of
motion-based keystroke inference may be increased in certain
typing scenarios due to smartwatches. An interesting pattern
of classification accuracy can be observed (see Fig. 10) for
inference using only smartphone data in SH-HHT. We observe
that the classification accuracy for certain keys (based on their
location) are distinctly higher than others. Interestingly, this
occurrence is not recognizable for the smartwatch dataset. This
may be due to the fact that keys farther away from the thumb
impels the user to bend the phone towards the thumb. As a
result, significantly greater movement of the phone occurs,
compared to keys that are near the thumb.

In order to conduct an exhaustive comparison between the
inference threat posed by different motion sensors present
on a smartwatch and smartphone, we carry out additional
experiments using the gyroscope data which is another widely
studied side-channel for keystroke inference [2], [37], [49].
Due to the absence of a gyroscope sensor on the Motorola
XT1028, we used another smartphone for this experiment,
namely a Motorola XT1096 (paired with the Samsung Gear
Live). The same experiment as above was repeated by 12
new participants, each typing 100 randomly dictated numbers.
For this experiment, we recorded keystroke related motion
data, comprising of both linear accelerometer and gyroscope
measurements, from both the smartphone and the smartwatch.
We derived 59 time and frequency domain features from the
three-dimensional gyroscope data of both devices, such as
minimum and maximum values, the mean value, variance,
skewness, kurtosis, vertex angles, number of spikes, peak inter-
vals, attenuation rate, etc. These features were selected from
the literature on activity detection [50], [51] and keystroke
inference [49]. Figure 11 shows the One vs. Rest classification
accuracy results when solely the gyroscope features are used
compared to when they are used in combination with features
derived from the linear accelerometer measurements. The
mean classification accuracy is marginally lower when using
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Fig. 8: Classification accuracy for One vs. One using
smartphone data.
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Fig. 9: Classification accuracy for One vs. Rest using
smartphone data.

Fig. 10: All vs. All classification accuracy for individual
keys in SH-HHT using smartphone data, results averaged
over all 12 participants.

only the smartwatch gyroscope, compared to the smartphone
gyroscope (SH-NHHT: 59.91% vs. 61.25%, SH-HHT: 59.66%
vs. 64.75%). However, we can observe that after combining
multiple motion sensors (linear accelerometer and gyroscope)
on a device, the keystroke inference threat on the smartwatch
is greater than the one on the smartphone (mean classification
accuracy, SH-NHHT: 69.91% vs. 61.41% and SH-HHT: 71%
vs. 66.08%).

E. Combining Smartwatch and Smartphone Data

After comparing the accuracy of keystroke inference attacks
using individually both the smartwatch and smartphone motion
data, we were intrigued to study the impact of combining
or fusing motion sensor data from both devices in order to
further reduce the number of classification errors. As most
modern smartwatch operating systems and applications require
the watch to be paired with a smartphone, such an attack is
quite realistic. The feature vectors of same keystroke-records
from both the devices were merged to obtain new feature
vectors containing 310 features. We rebuild the classifiers
with the larger feature vectors, and re-ran the previous ex-
periments (as outlined in Sections V-A and V-B). Results
of these experiments (outlined in Table II) show that indeed
accuracy improved when the features from both smartwatch
and smartphone were combined. For example, the One vs. One
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Fig. 11: One vs. Rest classification accuracy using only gyro-
scope features, and in combination with linear accelerom-
eter features. Results compared between smartwatch and
smartphone.

TABLE II: Classification accuracy after combining features
from both smartwatch and smartphone, results averaged
over all 12 participants.

SH-NHHT Combined
(Smartwatch Only,
Smartphone Only)

SH-HHT Combined
(Smartwatch Only,
Smartphone Only)

One vs. One 88.91% (84.5%, 78.7%) 90.66% (83.5%, 84.0%)

One vs. Rest 71.59% (70.0%, 63.3%) 74.29% (71.1%, 70.9%)

All vs. All 88.65% (88.1%, 85.5%) 89.78% (85.8%, 86.8%)

classification accuracy in SH-NHHT was 90.66%, compared to
83.5% and 84.0% when individual smartwatch or smartphone
data were used, respectively. Similar improvements can be
observed in other scenarios as well. However, the improve-
ment was relatively marginal, which can be attributed to the
convergence in the learning process. Therefore, combining or
fusing data from both smartwatch and smartphone may be
more beneficial when the adversary has fewer training data.

F. A More Realistic Setting: Natural or Non-Controlled
Typing

In all of the experiments so far, the participants were being
directed (to tap) by an audio stream. Because participants
have to hear the audio and then act on it, a minor delay or
disturbance may be introduced in each key press. Moreover,
such a kind of typing or tapping does not invoke (and capture)
users’ natural typing behavior and speed. To evaluate a more
natural typing behavior, we conduct another experiment where
a new set of 10 participants were instructed to type their phone
number followed by their residential zip code (a total of 15
numbers). These two pieces of information can be readily
recollected by participants, thus eliminating any delay and/or
disturbance while typing. This also enables us to capture
more realistic typing or tapping data from users. However,
for prediction we continue to use the classifiers trained earlier
in the guided experiments (Section V-B). The new data was
processed by the same attack framework to extract keystroke-
records and build feature vectors. We obtained a mean classi-

Fig. 12: An example where rebounding motion of a key
press overlapped with the next key press.

fication accuracy of 52% and 61% for SH-NHHT and SH-
HHT, respectively. It was observed that the primary cause
of drop in classification accuracy resulted from faster typing,
where the rebounding motion of few key presses overlapped
with their next key press (see Figure 12). Such instances were
observed more often when two consecutive key presses were
for number adjacent to each other on the keypad. Although
the classification accuracy of naturally typed numbers is not
as high as in the guided experiments, it is high enough to be
a significant threat.

G. Cross Device Performance

In order to further evaluate how the proposed attack frame-
work performs across different commercial wrist wearable or
smartwatch hardware, we test our trained classifiers (from
Section V-B) on keystroke motion data obtained from a smart-
watch of a different make and model. This simulates a situation
where an adversary trains classification models using one type
of smartwatch hardware and then employs those models to
infer the keystrokes of a target user who is using a completely
different (possibly, unknown) smartwatch. Such a situation is
much more realistic. For this set of experiments, we used a
LG Urbane W150 smartwatch that has a InvenSense M651
accelerometer and gyroscope sensor and collected keystroke
motion data from 12 completely new participants. Motion data
corresponding to 100 keystrokes were collected from each of
the new participants, and tested using the classifiers trained
earlier in Section V-B. The new data was collected at the
same sampling frequency of 50 Hz. Results (Figure 6) show
that while mean classification accuracy dropped slightly on
the Urbane W150 (SH-NHHT: 70.08% vs. 67.41%, SH-HHT:
71.16% vs. 70.83%), the variance is significantly lower in case
of the Gear Live (SH-NHHT: 26.62 vs. 56.26, SH-HHT: 17.24
vs. 77.0). Although such a trend is intuitive, it nevertheless
shows that keystroke inference using the propose framework is
still feasible with reasonable accuracy even in such a realistic
setting.
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H. Extending to QWERTY Keypads
Up until this point, our primary focus has been keystroke

inference attacks on numeric mobile keypads. We now briefly
investigate how our proposed attack framework performs
against alphanumeric mobile keypads with the standard QW-
ERTY layout. Intuitively, as the keys on a standard smartphone
QWERTY keypad are relatively smaller and placed closer
to each other (compared to keys on the numeric keypad),
keystroke prediction may suffer from high confusion with
neighboring keys [37]. We collected 1248 alphabet keystrokes
from a completely new set of 12 participants using the LG
Urbane W150 smartwatch, with equal distribution of alphabets
(48 each). We then re-ran the training and attack modules in
the One vs. Rest setting, with 75% data used for training and
25% data used for testing. Table III summarizes the classi-
fication accuracy of the 26 alphabets, along with two most
confused keys predicted for each alphabet. As anticipated, the
classification accuracy is significantly lower on the QWERTY
keypad (compared to the numeric keypad), with an average
accuracy of 30.44%. While the low classification accuracy
of individual keys is prohibitive in carrying out effective
inference attacks, it is important to note that the most confused
keys are usually neighboring to the actual key. It is possible
that we may be able to further improve the accuracy of these
inference attacks by analyzing keyboard characteristics and/or
performing a dictionary-based search [38], [42].

TABLE III: Classification accuracy of the 26 alphabets (in
percent), along with two most confused keys predicted for
each alphabet. Results averaged over all 12 participants.

Accuarcy 1st Confusion 2nd Confusion

a: 41.66 s: 25.00 z: 16.66
b: 25.00 v: 33.33 g: 16.66
c: 33.33 f: 25.00 v: 25.00
d: 16.66 s: 33.33 c: 25.00
e: 33.33 w: 33.33 d: 16.66
f: 16.66 d: 33.33 v: 16.66
g: 25.00 h: 58.33 b: 8.33
h: 33.33 g: 25.00 n: 25.00
i: 33.33 o: 25.00 u: 25.00
j: 16.66 h: 16.66 k: 16.66
k: 16.66 j: 41.66 m: 16.66
l: 25.00 k: 25.00 o: 16.66

m: 33.33 k: 25.00 n: 8.33
n: 25.00 h: 16.66 m: 16.66
o: 33.33 i: 16.66 l: 8.33
p: 50.00 o: 25.00 i: 8.33
q: 41.66 a: 16.66 w: 16.66
r: 25.00 e: 33.33 f: 16.66
s: 16.66 x: 25.00 z: 25.00
t: 33.33 f: 16.66 h: 16.66
u: 41.66 h: 33.33 k: 16.66
v: 25.00 c: 33.33 b: 25.00
w: 41.66 q: 25.00 e: 8.33
x: 41.66 z: 33.33 c: 8.33
y: 33.33 t: 41.66 u: 16.66
z: 33.33 a: 33.33 x: 8.33

Average Accuracy:
30.44

I. Variations of the SH-NHHT and SH-HHT Attack Scenarios
In addition to the SH-NHHT and SH-HHT scenarios pre-

sented in Figures 1(a) and 1(b), there is an additional variation

(a) (b)
Fig. 13: Variations of typing scenarios in Figures 1(a) and
1(b).

for each of these scenarios, as shown in Figures 13(a) and
13(b). For SH-NHHT, the scenario 1(a) assumes that the
smartphone and smatwatch is on the left hand (and users type
with the right hand). A variation of this SH-NHHT scenario is
having the smartphone and smatwatch on the right hand and
typing with the left hand (13(a)). A similar variation (13(b))
can also be envisioned for the SH-HHT scenario 1(b). We
would like to analyze whether the performance of our pro-
posed keystroke inference framework differs significantly for
these variations. The same experiment as in Section V-B was
repeated by 12 new participants, each typing 100 randomly
dictated numbers per variation. A two-tailed t-test on the One
vs. Rest classification accuracies for the SH-NHHT variations
in Figures 1(a) and 13(a) returned the value of t = −0.46,
p = 0.65. For the SH-HHT variations 1(b) and 13(b), it
returned t = 0.61, p = 0.54. Both results are not significant at
p<0.05, implying that our attack framework is not dependent
on these variations. Therefore, an adversary can still use the
same framework to carry out the inference attacks for these
variations by simply retraining the classifiers.

VI. RELATIVE TRANSITIONS-BASED ATTACK
FRAMEWORK

As discussed earlier, unlike the SH-NHHT and SH-HHT
scenarios, key press events in the DH-HHT scenario (Figure
1(c)) cannot be uniquely and accurately detected on the smart-
watch. To overcome this problem in the DH-HHT scenario,
we leverage on the observation that transitional movement
between each pair of keys produces characteristically unique
motions on the wrist, which can be accurately captured by
the smartwatch. Accordingly, for the DH-HHT scenario, the
keystroke inference framework (Figure 14) leverages on super-
vised machine learning to first classify transitional movements
between consecutive key presses. Then, assuming a reasonable
distribution of numbers typed, when multiple transitional
directions in between a target sequence of key presses are
traced on the key pad, we obtain a unique or highly reduced
possibilities for the target sequence.

Data Collection and Pre-Processing: The same data col-
lection application that was used for the SH-NHHT and SH-
HHT scenarios is also used for the DH-NHHT scenario.
Although the data collection process is exactly the same, the
pre-processing operations are entirely different for DH-NHHT.
Instead of detecting key press events, our goal here is to
detect the type of wrist movement transition between every
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Fig. 14: Overview of the relative transition-based attack framework for DH-NHHT typing scenario.

two consecutive key presses. As a result, we use the labeled
stream of data to create labeled “transition-records” (Figure
15) and use them as the training set. To create the training
set, all linear accelerometer samples between two consecutive
key press events are used as the transition-record.

Transition Classification: We classify transitions based on
cardinal directions. The logic behind such a classification is
that transitions in the same direction results in similar wrist
movement. For example, wrist movement between numbers
4 and 1 would be similar to wrist movement between 6 and
3 (North), wrist movement between numbers 4 and 7 would
be similar to wrist movement between 6 and 9 (South), and
so on. One classifier is trained for each possible transitional
direction, as listed in Table IV: North (N), South (S), East (E),
West (W), Northeast (NE), Northwest (NW), Southeast (SE),
Southwest (SW) and Repeat (O). To achieve higher inference
ability through tracing (explained later), the transition classifi-
cations must also be evenly populated. The number of possible
transitions in each of the above nine categories follows a fairly
even distribution, varying between 9 and 14.

As an adversary will not have access to labels L, in the
attack phase we use a variable-length moving window to check
and determine the occurrences of transitions. The moving
window is used to traverse (in steps of one sample) the linear
accelerometer data A in chronological order, and classify each
window of linear accelerometer samples into one of the nine
directions. The length of the window was varied from 10
samples (200 msec at 50 Hz) to 100 samples (2 sec at 50
Hz), to capture the variable length intervals possible between
key presses. When ten or more consecutive windows were
classified to be in the same direction, the classification result
was recorded and the centroid was used as the key press time
to form transition-records.

Feature Extraction: Contrary to the previous direct

Fig. 15: Time series of key press events in DH-NHHT,
and their corresponding linear accelerometer readings. In
DH-NHHT scenario, the wrist (along with the smartwatch)
continues to move in between key press events. As a result,
key press events cannot be identified or characterized
based on spikes in energy level.

classification-based attacks, where each key press event was
denoted in a fixed time period, transition periods between two
key presses can vary widely depending on typing habit, keypad
size, key pairs, etc. As a result, many of the time domain
features used in SH-NHHT and SH-HHT scenarios cannot be
applied for DH-NHHT. Thus, we rely mainly on frequency
domain features, such as FFT of individual axis readings
of the transition-record, their mean, correlation, spectral roll-
off, spectral centroid, spectral flux and power spectral density
estimates, to learn and classify transitions.

Tracing and Recovery: To infer a target sequence of key
presses, the proposed framework tries to “trace” the transi-
tions between key presses on the numeric keypad. Tracing
eliminates all non-fitting key-pairs (the pair of keys that may
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have been pressed before and after a transition) for each
transition of the target sequence, where the fitness of a key-
pair is determined by the preceding and following transitions.
In case tracing results in a uniquely identified key-pair for a
transition, the keys pressed before and after that transition can
be directly inferred. In other cases where tracing results in
multiple possible key-pairs for a transition, the keys pressed
before and after that transition can either be inferred by
multiple trials or from the other adjoining key-pairs (only if
the adjoining key-pairs are uniquely identified).

After the transitions are classified, tracing of keys can be
performed using one of the following strategies: leftmargin=*

• Forward Tracing: The transitions are plotted on the key-
pad in the same order as they happened in time (Function
F_Tracing() in Algorithm 3). In forward tracing, for
a transition between candidate key pair (p, q), if there
does not exists a pair (∗, p) that satisfies the directional
classification of the preceding transition, pair (p, q) is
eliminated from possible key pairs for that transition. The
F_Tracing() function works from left to right on the test
sequence.

• Backward Tracing: The transitions are plotted on the
keypad in the reserve order of how they actually happened
in time (Function B_Tracing() in Algorithm 3). In
backward tracing, for a transition between candidate key
pair (p, q), if there does not exists a pair (q, ∗) that
satisfies the directional classification of the following
transition, pair (p, q) is eliminated from possible key pairs
for that transition. The B_Tracing() function works
from right to left on the test sequence.

• Bidirectional Tracing: Both forward and backward trac-
ings are applied to reduce the possibilities for the target
sequence (Function BD_Tracing() in Algorithm 3).

We use bidirectional tracing in our evaluations because
bidirectional tracing limits the propagation of any error that
may be introduced by a transition misclassification.

VII. EVALUATION OF RELATIVE TRANSITION
BASED ATTACK

In this section, we present the findings from our evaluation
of the relative transition based attack framework.

TABLE IV: Classification of all 100 possible numeric
transitions.

N 4-1, 5-2, 6-3, 7-4, 8-5, 9-6, 0-8, 7-1, 8-2, 9-3, 0-5, 0-2,
0-1, 0-3

S 1-4, 2-5, 3-6, 4-7, 5-8, 6-9, 8-0, 1-7, 2-8, 3-9, 5-0, 2-0,
1-0, 3-0

E 1-2, 2-3, 4-5, 5-6, 7-8, 8-9, 1-3, 4-6, 7-9

W 2-1, 3-2, 5-4, 6-5, 8-7, 9-8, 3-1, 6-4, 9-7

NE 4-2, 5-3, 7-5, 8-6, 0-9, 4-3, 7-6, 7-2, 0-4, 8-3, 7-3

NW 5-1, 6-2, 8-4, 9-5, 0-7, 6-1, 9-4, 9-2, 0-6, 8-1, 9-1

SE 1-5, 2-6, 4-8, 5-9, 7-0, 1-6, 4-9, 1-8, 4-0, 2-9, 1-9

SW 2-4, 3-5, 5-7, 6-8, 9-0, 3-4, 6-7, 3-8, 6-0, 2-7, 3-7

O 1-1, 2-2, 3-3, 4-4, 5-5, 6-6, 7-7, 8-8, 9-9, 0-0

Algorithm 3 Tracing Algorithms

Transitions[N ] (N transitions in target sequence)
Directions[] = {∅}
KeyPairs[] = {∅}
for i = 1 to N do

Directions[i] = Classify(Transitions[i])
KeyPairs[i] = AllPossiblePairs(Directions[i])

end for

function F_TRACING(KeyPairs[])
for j = 2 to N do

for each pair (p, q) in KeyPairs[j] do
if ∃! a pair (∗, p) in KeyPairs[j − 1] then

Remove (p, q) from KeyPairs[j]
end if

end for
end for

return KeyPairs[]
end function

function B_TRACING(KeyPairs[])
for k = N − 1 to 1 do

for each pair (p, q) in KeyPairs[k] do
if ∃! a pair (q, ∗) in KeyPairs[k + 1] then

Remove (p, q) from KeyPairs[k]
end if

end for
end for

return KeyPairs[]
end function

function BD_TRACING(KeyPairs[])
return B_Tracing(F_Tracing(KeyPairs[]))
end function

A. Experimental Setup

The same experimental setup and participants as in Section
V-A were used for DH-NHHT. The only difference was that
the smartwatch was worn on the right hand by the participants,
and the smartphone was held in the left hand.

B. Constructing and Testing the Framework

We construct our transition classifiers based on training
datasets of labeled transition-records generated by the same
12 participants who helped create the classifiers for the SH-
NHHT and SH-HHT scenarios. The same audio stream of
uniformly distributed random numbers between 0 to 9 guided
the participants in typing 100 numbers. Out of the 1200 total
numbers typed by all 12 participants, we use 960 numbers
(having 948 transitions) for training and rest for testing.
We test the accuracy of the transition classifiers and tracing
algorithms using two 10-digit long number sequences per
participant (24 total test sequences, 240 total numbers, and
216 total transitions). We calculate the accuracy of the different
tracing algorithms based on the number of correctly identified
key presses in the traced number sequence. In order to infer
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Fig. 16: An example of how bidirectional tracing drastically
reduces the possibilities of the key presses. First the
forward tracing eliminates incompatible transitions (in
red) in chronological order. Then the backward transition
removes additional incompatible transitions in chronologi-
cally reverse order. In this example, we are able to uniquely
identify the last 4 key-pairs using bidirectional tracing,
which allows unambiguous inference of the last 5 key
presses.

a key, at least the preceding or following transitions should
be uniquely identified. For example, in the instance shown
in Figure 16, the transition 9 to 2 and 2 to 0 both have
other contending key-pairs (the incorrect transitions which are
not removed by the tracing algorithm because they fit in the
overall sequence of transitions). In such cases, it becomes
impossible to determine the exact key (2 in this example)
pressed in one trial. However, although the transition 2 to 0
have other contending key-pairs, the pressing of key 0 can
be inferred with the help of the uniquely identified 0 to 7
transition, following the key press. In case both the preceding
or following transitions are uniquely identified, the adversary
can be more confident about the inference. One may also
notice that the first and last number in a sequence are harder
to infer, as there exists only one transition for each.

In our evaluation, the transition classifiers were able to
correctly classify 191 transitions-records (88.42% accuracy),
while the remaining 25 incorrect or unclassified transitions
introduced error in 17 of the test sequences. We also observe
that an incorrect prediction is more likely to occur immediately
after a previous incorrect prediction. One of the possible
explanations behind such an observation is that the transition
behavior varies depending on the preceding and following
transitions. In terms of inference accuracy, 85 key presses out

TABLE V: The 21 possible number sequences that satisfy
the bidirectional tracing obtained in Figure 16.

4-1-5-8-1-0-7-8-5-3 7-1-5-8-1-0-7-8-5-3 0-1-5-8-1-0-7-8-5-3
4-1-6-9-5-0-7-8-5-3 7-1-6-9-5-0-7-8-5-3 0-1-6-9-5-0-7-8-5-3
4-1-6-9-2-0-7-8-5-3 7-1-6-9-2-0-7-8-5-3 0-1-6-9-2-0-7-8-5-3
4-1-6-9-1-0-7-8-5-3 7-1-6-9-1-0-7-8-5-3 0-1-6-9-1-0-7-8-5-3
5-2-6-9-5-0-7-8-5-3 0-2-6-9-5-0-7-8-5-3 8-2-6-9-5-0-7-8-5-3
5-2-6-9-2-0-7-8-5-3 0-2-6-9-2-0-7-8-5-3 8-2-6-9-2-0-7-8-5-3
5-2-6-9-1-0-7-8-5-3 0-2-6-9-1-0-7-8-5-3 8-2-6-9-1-0-7-8-5-3

Fig. 17: More ambiguously traced sequences require addi-
tional number of trials (in the worst case).

of the 240 test numbers were unambiguously identified using
the bidirectional tracing (43.75% accuracy). We relate the
relatively low inference accuracy to three primary reasons: (a)
incorrectly classified transitions introduce error in not one but
two key presses, (b) unclassified transitions do not introduce
error but there is no remedy to fill in the missing information,
and (c) even a very small number of contending key-pairs
makes it impossible to determine the exact key pressed.

Because most of today’s information systems acknowledge
natural human mistakes and allows multiple trials to validate
security tokens (pin, password, card number, etc.), adversaries
can easily take advantage of it to try all possible number
sequences derived from the output of bidirectional tracing.
Accordingly, we evaluate the inference accuracy using mul-
tiple trials (solving from left to right), up to the maximum
number of trials required to correctly infer the full number
sequence. For example, in the instance shown in Figure 16,
there can be 21 possible sequences derivable from the output
of bidirectional tracing (listed in Table V). Results of multiple
trials are presented in Figure 17, where we see that more
ambiguous sequences require additional number of trials (in
the worst case). We do not restrict the adversary to a cer-
tain number of attempts (which would be system dependent)
because the actual sequence may or may not be tried in the
limited number of attempts. Instead, we evaluate the worst case
scenario, where the adversary has to try all possible sequences
derived from the output of bidirectional tracing. Note that we
evaluate this using only the 7 bidirectionally traced sequences
for which all the predicted transitions are correct.
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C. Combining Smartwatch and Smartphone Data

As smartphones cannot capture transitional wrist move-
ments of the typing hand, we cannot merge feature vectors
like it was done in SH-NHHT and SH-HHT scenarios. As
an alternative, we found a novel way to combine smartphone
motion sensor data due to key taps, which was used in
the classification-based attacks (as evaluated in Section V-E),
with the smartwatch transition-records obtained in DH-NHHT
scenario. Based on the previous observation that classifying
transition-records itself is highly accurate (88.42% accuracy),
we continue using the same attack framework. However,
to overcome the limitations faced in the inference process
(after tracing is completed), classified smartphone keystroke-
records may be used to choose from the multiple candidate
sequences obtained as the output of the tracing algorithm. We
evaluate this attack using linear accelerometer readings of the
smartphone, which were additionally collected during the DH-
NHHT experiments of previous section. Keystroke-records and
feature vectors are extracted from the smartphone data as it
was done for SH-NHHT and SH-HHT. Elimination of con-
tending key-pairs and filling up of undetected transitions with
the help of classified smartphone keystroke-records (combined
with reasonably accurate classification of keystroke-records),
resulted in 82.50% unambiguous inference of key presses.
This is a substantial improvement in the inference accuracy,
compared to the 43.75% accuracy obtained earlier without the
help of classified smartphone keystroke-records.

D. A More Realistic Setting: Natural or Non-Controlled
Typing

Similar to SH-NHHT and SH-HHT experiments, the par-
ticipants were being directed by an audio stream in the above
DH-NHHT experiments, which may introduce a minor delay
or disturbance in each key press. As a result, we conducted a
similar natural or non-controlled typing experiment in the DH-
NHHT scenario, where a completely new set of 12 participants
were instructed to type their phone number followed by their
residential zip code (15 numbers, 14 transitions). In this
setting, out of a total of 168 transitions-records, 134 were clas-
sified correctly (79.76% accuracy). The remaining incorrect or
unclassified transitions introduced error in test sequences of
10 participants. Out of a total of 180 key presses, 69 were
unambiguously identified using the bidirectional tracing, thus
giving an accuracy of 38.33%.

VIII. DISCUSSION

A. Limitations

Posture and Ambient Movement: In practice, wrist move-
ment patterns may change drastically based on the target user’s
body posture and orientation. In other words, the key press
features while sitting may differ substantially from the key
press features while laying down. One main limitation of our
attack framework is that it is not robust against such different
body postures and orientation. In order to overcome this, an
attacker must train multiple classification models using data
corresponding to different user postures and orientations, and

then apply the appropriate one for the victim. This, if the
attacker knows what was the victim’s posture while typing.
Similarly, if the target user is moving (for example: walking,
running, sitting inside a car or train, etc.) while typing,
keystroke events in the accelerometer/gyroscope data may get
masked and our framework may not be able to correctly infer
them. However, we must point out that this issue is not specific
only to our attack framework, but other frameworks in the
literature suffer from a similar drawback.
Power Consumption: Another limiting factor of our attack
can be the power consumption rate on the smartwatch, due to
the continuous recording of sensor data at a high frequency.
For instance, the 300 mAh battery inside the Samsung Gear
Live dropped from 100% to 69% in an hour, while recording
linear accelerometer readings at 50 Hz. This limitation is
less evident in case of smartphones due to their significantly
higher battery capacity. To carry out a stealthy attack using the
smartwatch, an attacker may have to either reduce the sensor
sampling rate, or devise a mechanism to start the recording
only when the potential victim is typing.
Both Hand Typing: We cover three major typing styles in
this paper, while missing the case where a user holds the
smartphone and types using both hands. In this scenario, the
motion captured by the smartwatch will vary depending on
which thumb is used to type a key, and which hand the
smartwatch is worn on. The movement captured in this typing
scenario will yield very different results and requires a new
inference technique. We plan to work in this direction in the
future.
Threats to Validity: Most of our experimental results were
obtained from analysis of keystrokes typed in a relatively
controlled setting, where participants were dictated on what
to type. As a result, it is possible that those results may not
be representative of how our attack framework may perform
in more natural typing scenarios. However, we must point out
that we do investigate the efficacy of our attack framework in
several natural typing scenarios (in Sections V-F and VII-D),
and the obtained results show that our inference framework
has reasonable accuracy in these scenarios as well.

B. Defenses
Defending against side-channel attacks is a much debated

topic [52]. Although modern mobile and wearable operating
systems offer access control on some sensors, sensors such
as accelerometer and gyroscope cannot be disengaged by
the user. Moreover, most mobile applications do not require
explicit permissions (either at install or run time) in order to
access these sensors. A straightforward defense approach is
to safeguard all sensors using system or user-defined access
controls. However, such a static access control will become
increasing complex to manage and will not protect against
applications that gain legitimate access to these sensors. Re-
ducing the frequency at which applications can sample data
from these sensors is another potential defense mechanism. A
system-level monitoring mechanism that tracks the context and
frequency of sensor accesses, and appropriately flag unwanted
accesses requested by applications, could also serve as a useful
defense tool.
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C. Enhancements

Random Walk Tracing: This is a tracing algorithm we
propose for use with very long number sequences typed
in DH-NHHT scenario. In this tracing algorithm, a random
subsequence of varying length is selected and bidirectional
tracing is applied. The process is repeated several times such
that every transition is covered multiple times, and each key
press may end up having multiple candidate keys. Majority
voting may be used to determine the final predicted keys
(only if a key press has multiple candidate keys). This tracing
algorithm will greatly minimize the propagation of any error
that may be introduced by a transition misclassification.

IX. CONCLUSION

In this paper, we comprehensively investigated the feasibil-
ity of keystroke inference attacks on mobile numeric keypads
by using smartwatch motion sensor data as an information
side channel. We proposed two supervised learning-based
frameworks to infer keystrokes from smartwatch motion data
in three popular mobile holding and typing scenarios. We
empirically evaluated the performance and efficacy of our
proposed inference frameworks under various experimental
settings (i.e., controlled versus natural typing), by using differ-
ent types of smartwatch hardware, by using different types of
motion sensors (i.e., accelerometer versus gyroscope) and by
fusing motion data from multiple sources (i.e., smartphone and
smartwatch). We also evaluated the performance of our attack
framework on alphanumeric mobile keypads with a QWERTY
layout. Results from our various experimental studies have
shown that typing-induced motion data captured by smart-
watch sensors can be employed as an effective side-channel
to infer keystrokes on mobile keypads.
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