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ABSTRACT
Virtual Reality (VR) is an exciting new consumer technology which

offers an immersive audio-visual experience to users through which

they can navigate and interact with a digitally represented 3D space

(i.e., a virtual world) using a headset device. By (visually) transport-

ing users from the real or physical world to exciting and realistic

virtual spaces, VR systems can enable true-to-life and more inter-

active versions of traditional applications such as gaming, remote

conferencing, social networking and virtual tourism. However, as

with any new consumer technology, VR applications also present

significant user-privacy challenges. This paper studies a new type

of privacy attack targeting VR users by connecting their activities

visible in the virtual world (enabled by some VR application/service)

to their physical state sensed in the real world. Specifically, this

paper analyzes the feasibility of carrying out a de-anonymization
or identification attack on VR users by correlating visually observed

movements of users’ avatars in the virtual world with some auxil-

iary data (e.g., motion sensor data from mobile/wearable devices

held by users) representing their context/state in the physical world.

To enable this attack, this paper proposes a novel framework which

first employs a learning-based activity classification approach to

translate the disparate visual movement data and motion sensor

data into an activity-vector to ease comparison, followed by a fil-

tering and identity ranking phase outputting an ordered list of

potential identities corresponding to the target visual movement

data. Extensive empirical evaluation of the proposed framework,

under a comprehensive set of experimental settings, demonstrates

the feasibility of such a de-anonymization attack.

1 INTRODUCTION
Virtual Reality (VR) is changing the paradigms of human-computer

interaction, and has become a ubiquitous consumer technology

[4, 6, 8, 9, 15, 16, 20]. Most prevalent VR systems today (e.g., Meta

Quest, HP Reverb and Sony PlayStation VR), offer an immersive

audio-visual experience where users can navigate around a digitally

represented 3D space (i.e., a virtual world) using a VR headset. In

most VR systems, users would navigate and interact with this virtual

world using on-body (often, handheld) controllers that can track

users’ body movements in the real world and execute analogous

movements in the virtual world. Reactions from users’ navigation

actions and interactions with the virtual world are relayed back

to the user by means of video, audio, and haptic (e.g., vibrations)

signals perceptible to the user through his/her VR device/headset.

VR systems enable several novel applications that were previ-

ously not possible using traditional desktop and mobile devices,

such as immersive gaming [13], remote conferencing [6, 9], virtual

tourism [1, 19], social networking [7, 18], visualizing 3D models

[4, 15], and large open-world spaces [8, 16]. Unfortunately, at the

same time new privacy and security challenges have also emerged

in the VR space. For example, password inference from finger move-

ments (using motion sensors) when typing a password in the virtual

world can become a security problem if the same password is reused

by the user in real world [26]. Some VR headsets also include eye-

tracking, which can become an additional channel for inference

of private data. For instance, it has been shown in recent research

efforts that eye tracking or gaze data could be potentially misused

to infer a user’s personal information and traits such as gender, age,

ethnicity, body weight, personality traits, drug consumption habits,

emotional state, skills and abilities, fears, interests, and sexual pref-

erences [37]. Personal gait and movement data collected from a

VR headset can also be used in conjunction with Deepfake videos

to create highly authentic looking fake videos [62], which can be

further used to damage personal reputation [10, 55], conduct social

engineering attacks [14, 65], and spread misinformation (fake news)

[29, 36].

VR systems and applications can transport users from the real

world to a virtual world, wherein the two worlds are seemingly

disconnected from each other. In this work, we study the poten-
tial of a new type of privacy attack targeting VR users by connect-
ing their activities visible in the virtual world (enabled by some VR
application/service) to their physical state sensed in the real world.
More specifically, we analyze the potential of carrying out a de-
anonymization or identification attack on VR users by correlating vi-
sually observed movements of users’ anonymous humanoid avatars

in the virtual world with auxiliary data representing their con-

text/state in the physical world. For such auxiliary information, we

specifically focus on data available from motion sensors on-board

mobile and wearable devices (e.g., smartphones and smartwatches)

that users may be carrying on them while navigating or interacting

with virtual worlds in VR applications. Our attack is motivated

by the fact that motion sensors on-board modern mobile devices,

such as, accelerometers and gyroscopes, are considered to be zero-
permission, i.e., any on-device application can record/sample

1
data

from these sensors without requiring explicit user-permissions.

1
Android 12+ requires the HIGH_SAMPLING_RATE_SENSORS permission to sample mo-

tion sensors beyond 200 𝐻𝑧. However, our correlation framework can operate with a

sampling frequency much lower than 200 𝐻𝑧.
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This, consequently, enables easy misuse of such motion data by any

on-device app, something which has been extensively documented

in the security research literature [24, 27, 32, 33, 40, 42, 45, 49, 52,

57, 58]. Moreover, we hypothesize that fine-grained user movement

captured by on-body motion sensors (such as those on a user’s

wrist in the form of a smartwatch and in a user’s pocket in the form

of a smartphone) are strongly correlated with the visual motions

observed in the user’s humanoid avatar in the virtual environment

of a VR app, and thus can potential be used to de-anonymize users

in virtual spaces.

We consider an attack scenario where the adversary is trying to

de-anonymize a target user in the virtual world by visually tracking

the motion of the user’s avatar and then correlating it with labeled

motion data streams belonging to a (large) set of users, which also

includes motion data from the target user. We refer to this set of

labeled motion data streams (belonging to a large set of users) as

the target user’s anonymity set. Such an attack scenario could arise

in many popular VR services such as Metaverse [8], VRChat [20]

and MeetinVR [6] which enable a group of users to organize events,

get-togethers and games in some virtual environment. A mobile

(smartphone) app of an adversarial service provider can be used

to stealthily record motion data of every user in the group for a

particular event, while video data corresponding to a target user

(in the group) can be captured by the adversary directly from the

virtual environment/world, say, by participating or entering the

same virtual environment/world as the target user. We propose a

novel correlation framework to carry out the de-anonymization in

such VR services, and comprehensively evaluate parameters such

as effect of different actions/movements and the effect of using

having their mobile device in different bodily locations (such as

different pockets).

Our work advances research investigation of how data from the

physical world can be used to compromise the privacy of users in

the virtual worlds. We believe that this is the first research effort

which investigates this issue. Identity protection is key to VR in-

novation as otherwise users will be hesitant to participate in the

ecosystem [22] in order to protect their privacy, reputation and

security. To protect users from the potential de-anonymization at-

tack, we also propose novel countermeasures that users can adopt

while participating in VR applications. In summary, we make the

following main contributions in this paper:

(1) Contribution 1: A framework that transmutes both motion sen-

sor data and avatar’s visual movement data in to a comparable

activity-vector.
(2) Contribution 2: A correlation model that filters mismatching

activity-vectors, and ranks matching activity vectors from best

to worst.

(3) Contribution 3: Test data collection for real-world human par-

ticipants, and a comprehensive empirical evaluation of the

correlation framework under various settings.

(4) Contribution 4: Improvements and optimizations of the corre-

lation framework for a large-scale attack.

2 RELATEDWORK
Research efforts in the literature related to our work can be cate-

gorized into those that focus on inferring private information by

means of mobile device motion sensors which we discuss first, fol-

lowed by those that propose new sensitive information inference

vectors for VR systems and applications.

Information leakage throughmobile device motion sensors:
Mobile and wearable device motion sensors such as accelerome-

ters and gyroscopes have been heavily scrutinized in the research

literature for their potential to be employed as a side-channel for

leaking users’ private information. For instance, motion sensor

data on smartphones and smartwatches have been utilized to infer

keystrokes and passwords [24, 40–42, 52, 54], identify lock screen

patterns [68], deduce travel routes and location [33, 49, 51], infer

speeches [32, 34, 45], infer handwritten text [63], reconstruct 3D

models from printer vibrations [58], and estimate demographic in-

formation [27, 57]. Application of on-body motion sensors onboard

consumer mobile devices such as smartphones and smartwatches

for user authentication [39, 64, 67] is another closely related re-

search space that has received significant attention in the literature.

However, such biometric authentication systems require training

data from individual users, which is not available in our adversarial

setting.

Information leakage in VR systems and applications: Albeit
relatively new as a consumer technology, VR has garnered a host

of privacy and security concerns. As mentioned earlier, attacks

such as password inference from finger movements (using motion

sensors) when typing a password in the virtual world can become

a security problem if the same password is reused by the user in

real world [26]. Some VR headsets include eye-tracking, which

can reveal valuable personal information [37]. VR, when used in

conjunction with Deepfakes [62], can also become a serious threat

as an adversary can potentially utilize personal gait and movement

data collected from a VR headset to create a very authentic-looking

fake video. These type of attacks can be used to damage personal

reputation [10, 55], conduct social engineering attacks [14, 65], and

spread misinformation (fake news) [29, 36].

Authentication in VR is a closely related research topic [59],

wherein authorized sensors on the VR headset or paired on-body

controllers are used to authenticate individual users. However, in

our attack we focus on out-of-band motion sensor data, which are

not paired with the VR system. De-anonymization solely using

movements observed in the virtual world is difficult, especially

when the anonymity set size is large. In this work, we carry out

de-anonymization of users of a VR platform by correlating visually

observed movements of the user’s avatar in the virtual world with

out-of-band motion data available from users.

Use of anonymous avatars and identity transformation inside a

virtual reality experience [30, 31, 43] is a significant factor contribut-

ing to the technology’s popularity. Therefore, identity protection is

key to VR innovation as otherwise users will be hesitant to partici-

pate in the ecosystem [22] in order to protect their privacy, reputa-

tion and security. Previous works on de-anonymization of VR users

utilized in-band data (such as sensors on the VR systems and/or

movement characteristics of virtual avatars) to infer users’ identity

[46, 47], anthropometrics [50], environment [50], device informa-

tion [50, 61], and demographics [50]. To the best of our knowledge,

our proposed de-anonymization attack using out-of-band motion

data has thus far not been analyzed or publicly presented. We also
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evaluate the scope of the proposed de-anonymization attack within

a small set of users and at a larger scale. To protect users from the

proposed attack, we also suggest countermeasures that users can

adopt while immersing in a VR experience.

3 THREAT MODEL
We consider an adversary whose goal is to de-anonymize users of

a VR ecosystem by correlating visual movements of anonymous

virtual world avatars with out-of-band identifiable mobile/wearable

motion sensor data from target users. The size of the labeled motion

dataset of users in the possession of the adversary, representing the

anonymity set of the target VR user or avatar, may vary between a

large-scale where the cardinality (of the dataset) may be very high,

to a significantly smaller small-scale (e.g., employees of a company

or participants of an event). Similarly, the recordings of VR users

or avatars will result in a visual movement dataset, which can also

range between a global scale where its cardinality may be very high,

to a significantly smaller small-scale such as avatars present within

a (targeted) virtual room or playing a (targeted) virtual game. As

depicted in Figure 1, the goal of the adversary is to de-anonymize a

target user (i.e., its avatar) in the VR space by matching an element

in the labeled motion dataset to the element (corresponding to the

target user or avatar) in the visual movement dataset by utilizing

some efficient correlation mechanism, similar to the one we propose

in Section 4. This adversarial goal can be easily extended to include

de-anonymization of multiple VR users or avatars.

In order to compile the visual movement dataset (denoted by𝑉 =

{𝑣1, 𝑣2, . . . , 𝑣𝑝 }, with cardinality 𝑝), the adversary has to join the

virtual world, observe and record each avatar for a baseline duration

of time within which a series of movements are likely observed. In

case of the VR service provider being the adversary, this process can

scale easily. In order to compile the labeled motion dataset (denoted

by𝑀 = {𝑚1,𝑚2, . . . ,𝑚𝑞}, with cardinality 𝑞), the adversary installs

a malicious data collection app on the mobile/wearable devices

of a targeted set of users, which records zero-permission motion

(accelerometer and gyroscope) sensor data and reports it back to

the adversary. As explained earlier, this targeted set of users can be

at a small or large scale. Typically, this can be achieved by means

of a trojan app that offers some utility to the users on the front-end

(e.g., a game or a social networking service), while surreptitiously

recording the motion data on the back-end. We also assume that

both datasets (𝑉 and 𝑀) contains timestamps which are fairly in

sync with the standard global time.

For popular apps/services that also offer a VR platform, for ex-

ample, Meta, such an attack can potentially be scaled globally for

both the motion and visual datasets. Nonetheless, such an attack

is easier to be carried out at a small-scale, implying that the mali-

cious mobile/wearable app has to be popular within a small group

of users and/or the VR ecosystem has to be popular within the

group. When both 𝑝 and 𝑞 are large, the correlation process to

de-anonymize all users grows to be computationally challenging

for the adversary. In Section 7 we propose optimization techniques

that can significantly reduce the computational complexity, and

thus the average runtime, of the proposed correlation framework.

Below we present two different scenarios representing our threat

model.

Correlate Avatars’ Visual 
Movements 

to Users’ Motion Sensor Data

User A

Wears 
VR Headset

Anonymous
Virtual Avatar

Virtual World Adversary 

Adversary Observes
a Set of Virtual

Avatars and Composes
a Visual

Movement Dataset
(V)

Phone In
Pocket

Adversary’s 
Malicious App 

Motion Sensor Data 
(Accelerometer + Gyroscope)

Motion Sensors 
Dataset (M)

User A
Identified

?

User J

User K

vi mj

Figure 1: Threat model.

Scenario 1. A large organization (such as Meta) that operates both

a popular VR platform (such asMetaverse) and a popular mobile app

(such as Facebook, WhatsApp, and Instagram) can collect both the

visual movement dataset and motion sensor dataset for respective

platforms. Users who do not want to be identified across both of

these platforms are susceptible to the proposed de-anonymization

attack, even when using anonymous identity and avatar on the VR

platform. This scenario represents a large-scale attack where the

anonymity set is large.

Scenario 2. A criminal group uses VRChat [20] to anonymously

meetup. An undercover police officer present in the meetups is able

to record the visual movements of individual (anonymous) avatars

of the criminal group. With the help of a popular smartphone app

company (such as Google), the police is also able to collect identified

motion sensor data from a list of known criminals and suspects.

Thereafter, the proposed correlation framework can be used by the

police to de-anonymize members of the group on VRChat. This

scenario represents a small-scale attack where the anonymity set is

small.

4 CORRELATION FRAMEWORK
Our correlation framework (Figure 2) is composed of two key com-

ponents. The first component converts both the (out-of-band) mo-

tion sensor data and the visual movement data in to a comparable

format, which we refer to as activity-vector series. The activity-

vector series enables us to directly compare and match elements

from the two datasets (𝑉 and𝑀) using a matching heuristic. The

second component in our framework ranks the closest matches

across the elements of either dataset, in a fashion such that the

high ranked matches are likely associated with the target user

(identifiable from𝑀).

4.1 Activity-Vector Series
Our motivation behind defining a activity-vector series stems from

the fact that the two datasets (motion sensor data from the mo-

bile/wearable device and visual movement dataset from the VR app)

3



, , Mohd Sabra, Nisha Vinayaga Sureshkanth, Ari Sharma, Anindya Maiti, and Murtuza Jadliwala

are not directly comparable to each other. The motion sensor data

comprises of samples measuring linear acceleration and orienta-

tion changes of a user’s body, whereas the visual movement data

consists of a video wherein an anonymous avatar’s movements are

recorded as changes in pixels across its frames. Consequently, we

define an activity-vector series as a sequence of activities observed
(classified by some machine learning or ML model as discussed

later), combined with a pairwise sequence of “magnitudes” for each

observed activity from each of the data sources (visual movements

and motion sensor). Our magnitude quantification of an observed

activity is approximate, but serves as a critical attribute in our

correlation framework as detailed in Section 4.5.

More precisely, our activity-vector series is composed of the

following commonly observed activities: idle, body rotation, head
rotation, hand movements, walking, bending, jumping, and “other”.
These were the common movements observed in over 2000 hours

of activity data collected inside VRChat [20] by us (more details on

data collection can be found in Section 5). These activity classifi-

cations combined with magnitude calculations form a vector-like

representation where each observed activity has a corresponding

magnitude information (similar to a vector which consists of direc-

tion and magnitude). An activity-vector series from either sources

can be depicted as follows:

walking walking idle bending walking walking jumping idle walking jumping

𝑎4 𝑎3 𝑎1 𝑎7 𝑎6 𝑎10 𝑎8 𝑎2 𝑎5 𝑎9

Activity

Magnitude

Left-front Hip Pocket (Motion Sensor)

where 𝑎𝑖 ∈ R+ is the positive real magnitude of an activity time

window, such that 𝑎1 > 𝑎2 > . . . > 𝑎10. In order to generate

this activity-vector series, we next detail the steps taken to pre-

process and utilize supervised machine learning models to classify

the activities observed in individual sequences.

4.2 Pre-Processing
We first segment both the physical motion data (obtained from

the mobile device motion sensors) and the visual movement data

(obtained from the VR apps) into small time windows (of𝑤 seconds

each) and classify each window as one of the eight aforementioned

actions. We empirically evaluate the effect of the size of𝑤 on corre-

lation accuracy in Section 6.1 and use the optimal value for rest of

the evaluation. For the visual movement data, we further separate

individual user’s avatar from the background, so as to better classify

the movements of the avatar without any background noise. Paddle-

Seg [25], an open-source toolkit that applies image segmentation

using different techniques, was used to segment out the individual

avatars. More specifically, we used a pre-trained ORCNet model

with HRNet backbone that was trained using the Cityscapes dataset

[12]. For the motion sensor data, we apply a Savitzky-Golay filter

[53] to smooth the signals for noise reduction before classification.

4.3 Training Data Generation
In order to generalize and scale our activity classification for a

large-scale attack, we generate training data as an amalgamation of

a well-known dataset in the literature and add synthetically gen-

erated variations to capture a wide range of bodily variances and

anomalies (often caused by imperfections in the VR systems) all

of which are otherwise impractical for collection from real human

Visual
Movement Dataset

(V)

Anonymous Motion 
Sensors Dataset 

(M)

T
i
m
e
 
S
y
n
c
h
r
o
n
i
z
a
t
i
o
n
s

Pre-processing

Pre-processing

Classification
+ Magnitude 
Calculations

Classification
+ Magnitude 
Calculations

Activity + 
Magnitude 

Activity + 
Magnitude 

Activity-based Identity Filtering
+

Magnitude-based Identity Ranking

6 Activity-
Vector Series

1 Activity-
Vector Series

Figure 2: Overview of our correlation framework.

subjects. Specifically, we generate the training data of our visual

movement classifier using the 3D game engine Unity [17] (Figure 3),

utilizing the Carnegie Mellon University (CMU MoCap) [2] dataset

and synthetically generated variations of motions captured in the

CMU MoCap dataset. The CMU MoCap dataset was created using a

motion capture system where the subjects wore 41 markers and per-

formed various activities. It is a well-known dataset for evaluation

of activity recognition frameworks [23, 48, 56], and can be applied

to reproduce avatar movements inside Unity using corresponding

body keypoints (Figure 13).

Our synthetically generated movement variations randomized

the speed between 0.25× and 2× of CMU MoCap speeds, and rota-

tion angle between −10° and +10° of CMU MoCap rotation angles.

In addition to the CMU MoCap model avatar, we also train using

another freely available avatar, namely the Futuristic soldier - Scifi
character2. As the video movement data is dependent on the view-

point of the adversary, we also capture varying camera positions

around the virtual avatar in Unity (Figure 3). Specifically, the cam-

era position was randomized around the avatar (across all angles for

which the avatar is visible), enabling a different visual perspective

and thus improving our classifier training. The visual movements

of the avatars were recorded using OBS Studio [11].

Additionally, in Unity we attached a custom-made virtual motion

sensor to the avatar (Figure 3), which is able to capture acceleration

and orientation changes of the avatar. This virtual motion sensor

closely captures the kinematic forces experienced by the avatar

in the same way a smartphone or smartwatch motion sensor on

a real person would experience, and it allows us to collectively

train a classifier for the motion sensor data alongside the visual

movement classifier. The key advantages of using such a virtual

sensor for training are the elimination of synchronization errors,

and not requiring real human subject participants for data collec-

tion (except for the human subject participants who helped in the

development of the CMU MoCap dataset). Note that for our experi-

mental evaluations (Section 6) with an adversarial standpoint, we

compose a realistic test dataset with the help of real human subject

participants and also address synchronization errors between the

motion sensor and visual movements data (Section 6.3).

2
https://assetstore.unity.com/packages/3d/characters/humanoids/sci-fi/

futuristic-soldier-scifi-character-202085

4

https://assetstore.unity.com/packages/3d/characters/humanoids/sci-fi/futuristic-soldier-scifi-character-202085
https://assetstore.unity.com/packages/3d/characters/humanoids/sci-fi/futuristic-soldier-scifi-character-202085
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Figure 3: The training data generation setup inside Unity, de-
picting only one camera viewpoint and virtual motion sen-
sors attached to the avatar (in red).

4.4 Activity Classification
We collectively utilize Apple’s Core ML

3
and Create ML

4
libraries

to generate two classification models (each trained separately), one

for the video movement training data and another for the motion

sensor training data. The Core ML model is already trained by Ap-

ple for generic action and activity classification, and can be further

customized using transfer learning [44] using the training data gen-

erated in Section 4.3. Prior research has already demonstrated the

feasibility of such activity recognition using Core ML [38]. More-

over, Apple’s Vision framework
5
is already pre-trained for keypoint

detection on humans (Figure 13), which can also be utilized with

Core ML on humanoid avatars. Applying these trained classification
models on test visual movement and motion sensor data split into
𝑤 second windows will result in a sequence of activities observed
on the two data sources, which is one of the two sequences in the
activity-vector series defined earlier.

4.5 Activity Magnitude
Intuitively, when the same classified activity is observed in both

data sources (in a given time window), we can improve our identity

correlation by ranking smaller magnitude differences above larger

magnitude difference. For example, if an anonymous avatar is ob-

served to be walking fast in the virtual world (high magnitude), it is

likely that their activity magnitude will also be high on the motion

sensor data. As mentioned earlier, our magnitude quantification

of an observed activity is approximate. For the motion sensor, we

calculate magnitude of each𝑤 second activity window as the aver-

age magnitude of acceleration vectors in the motion sensor data.

For the visual movement data, we utilize optical flow to compute

the average acceleration of areas on the avatar’s body where the

motion sensor may be attached. Optical flow estimates the motion

of objects between consecutive frames in a video, caused by the

relative movement between the object and camera [28, 35].

However, as some activities tend to generate disproportionate

levels of motion in various parts of the body, it may result in differ-

ent magnitudes of movements for the same activity. Furthermore,

as the adversary may not have knowledge of the motion sensor’s

3
https://developer.apple.com/documentation/CoreML

4
https://developer.apple.com/documentation/createml

5
https://developer.apple.com/documentation/vision

positioning for each user’s data, the visually observed magnitude

of movement experienced by an avatar’s different body keypoints

(Figure 13) is another attribute that should be factored in to improve

our correlation model. We consider six usual body positions where

the motion sensor is likely to be attached, such as a smartphone

in pant pocket or a smartwatch on the wrist: left-front hip pocket,

right-front hip pocket, left-back hip pocket, right-back hip pocket,

left wrist, and right wrist. As a result, the activity-vector series

calculated from the visual movement dataset will consists of six

different magnitude sequences (for the same activity sequence) as

follows:

walking walking idle bending walking walking jumping idle idle jumping

𝑎4 𝑎3 𝑎1 𝑎7 𝑎6 − 𝑎8 𝑎2 𝑎5 𝑎9

Activity

Magnitude

walking walking idle bending walking walking jumping idle idle jumping

𝑎4 𝑎3 𝑎2 𝑎7 𝑎6 𝑎10 𝑎8 𝑎1 𝑎5 𝑎9

Activity

Magnitude

walking walking idle bending walking walking jumping idle idle jumping

𝑎4 𝑎2 𝑎3 𝑎7 𝑎6 𝑎10 𝑎8 𝑎1 𝑎5 𝑎9

Activity

Magnitude

walking walking idle bending walking walking jumping idle idle jumping

𝑎4 𝑎3 𝑎1 𝑎7 𝑎6 𝑎9 𝑎8 𝑎2 𝑎5 −

Activity

Magnitude

walking walking idle bending walking walking jumping idle idle jumping

𝑎3 𝑎4 𝑎1 𝑎6 𝑎7 𝑎8 − 𝑎2 𝑎5 𝑎9

Activity

Magnitude

walking walking idle bending walking walking jumping idle idle jumping

𝑎1 𝑎3 𝑎4 𝑎6 𝑎7 𝑎9 𝑎8 𝑎2 𝑎5 𝑎10

Activity

Magnitude

Left-front Hip (Visual)

Right-front Hip (Visual)

Left-back Hip (Visual)

Right-back Hip (Visual)

Left Wrist (Visual)

Right Wrist (Visual)

where “–” implies unobservable position for optical flow calcula-

tions, all 𝑎𝑖 in red depict mismatched magnitude rank with the

left-front hip pocket motion sensor activity-vector series shown

in Section 4.1, and all green 𝑎𝑖 imply matching magnitude rank.

Moreover, there is an activity misclassification in this example at

the ninth window, highlighted as 𝑖𝑑𝑙𝑒 in red. All of these seven

magnitude sequences (one from motion sensor data and six from

visual movement data) are utilized in the correlation and identity

ranking processes described next.

4.6 Correlation and Identity Ranking
The first intuitive assumption in our correlation framework is that

the order of activities conducted by an user (and their avatar) will be

unique when observed for a long enough duration. Intuitively, this

observation duration can be shorter in a small-scale attack where

the anonymity set is smaller. In a large-scale attack, the observation
duration has to be longer because with a large anonymity set the

occurrence of more than one anonymous user conducting the same

sequence of activities within a short observation duration is more

probable, thus creating confusion between them. We use this first

assumption to filter out unlikely matches from our identity ranking

calculations, using the activity sequences in the activity-vector

series.

Our second intuitive assumption is that varying activity magni-

tudes caused by disproportional levels of motion in various parts

of the body can be utilized to identify closely correlated visual

movement and motion sensor sequences. Accordingly, we utilize
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magnitude correlation rankings to rank known identities (from

dataset𝑀) such that users with motion sensor magnitude sequence

closely matching to a visual movement magnitude sequence (best

of the six visual positions) are ranked closer to 1.

4.6.1 Activity-based Filtering. As the activity classification is

not perfect, we cannot reliably use the sequence of activities for

correlation. Instead, we use a high degree of mismatch between

sequences of activities (across visual movement and motion sensor

data) to filter out identities whose motion sensor data are objec-

tively different from an anonymous avatar being observed. More

specifically, we calculate the hamming distance between the mo-

tion sensor activity sequence and the visual movement activity

sequence (which is the same for all six activity-vector series gener-

ated from the visual movement data). Thereafter, we eliminate pairs

with distance threshold > 𝑡 from further magnitude-based identity

rankings. We empirically evaluate threshold 𝑡 in Section 6.1 as part

of our framework parameter optimizations. For example, between

the activity-vector series illustrated in Section 4.1 and Section 4.5,

this hamming distance is 1 (or 10%) due to the activity mismatch in

the ninth time window.

4.6.2 Magnitude-based Ranking. After filtering, we are left with
identities whose motion sensor activity sequences closely matched

at least one of the six visual movement activity sequences. We

utilize Spearman’s rank correlation coefficient [69] to correlate and

rank potential identities based on magnitude sequences, which is

computed as follows:

𝜌 = 1 −
6

∑
𝑑2
𝑖

𝑛(𝑛2 − 1)

where 𝑛 is the number of observations (of𝑤 second windows) in

the activity-vector series, and 𝑑𝑖 is the difference in the paired ranks

of the two magnitudes (across the visual movement and motion

sensor data sequences) at the 𝑖𝑡ℎ time window.

The higher the Spearman’s rank correlation coefficient, the more

likely the two sequences correlate to each other, and thus the cor-

responding identity from𝑀 would be ranked closer to 1 out of the

𝑞 (minus the identities that did not pass the activity-based filter-

ing). As the adversary does not have positioning information of the

motion sensor on the users’ body, we compute Spearman’s correla-

tion coefficient for the six likely positioning of the motion sensors

(Section 4.5), and consider only the maximum for identity ranking.

Between the examples shown in Section 4.1 and Section 4.5, magni-

tude from the visual data sequence of the left-front hip will have

the highest Spearman’s correlation coefficient with the left-front

hip pocket motion sensor magnitudes.

When activity-based filtering threshold 𝑡 is set very low (i.e.,

only tolerance for very minor or no mismatches in the activity

sequences), it is also possible that all identities are eliminated from

this magnitude-based raking, thus resulting in no identity ranking.

The entire correlation procedure is digested in Algorithm 1.

5 EXPERIMENTAL SETUP
To evaluate our proposed correlation framework and trainingmethod-

ology, we collect test (visual and motion sensor) data from human

subject participants using a real VR application. In this section, we

outline the details of our data collection procedure.

Table 1: Legend of camera viewpoints used in Section 6.

Home Legend Black Cat Legend

Static Camera 1 HC1 Static Camera 1 BC1

Static Camera 2 HC2 Static Camera 2 BC2

Static Camera 3 HC3 Static Camera 3 BC3

Static Camera 4 HC4 Static Camera 4 BC4

Mobile Camera HC5 Mobile Camera BC5

Combined HCC Combined BCC

5.1 Participants’ Task
Our participants (details in Section 5.3) carry out a set of represen-

tative activities in a virtual reality app while carrying a smartphone

and smartphone on their body (details in Section 5.4). Table 5 details

all the different types of activities that participants were instructed

to perform, in addition to other uncontrolled activities that they

may perform while navigating inside the virtual world. The con-

trolled actions include movement of the head, arms, palms, legs,

and also actions that require combination of them. These different

actions were chosen to generate a variety of different movements

within our limited time with the participants. During the uncon-

trolled activity phases, participants were free to interact with the

VR app on their own volition, not limited by the aforementioned

activities. The average time our participants spent on the virtual

reality app, in order to provide us data for our study, was 1 hours

and 8 minutes.

5.2 Adversarial Viewpoints
We continuously observe and record the participants’ avatar (Fig-

ure 4) in the virtual world by means of five different virtual camera

positions, where each camera position represents a different ad-

versarial viewpoints. Four of these camera positions are static and

positioned at different corners of the virtual room (Figure 4), each

of which represents the fixed (or static) position of an adversarial

avatar observing the target participant from that position. The fifth

camera is mobile, and represents the view of an adversarial avatar

moving and navigating in the proximity of the (target) participant’s

avatar. We carried out our experiments in two different virtual

worlds – one in a public world (called Black Cat) where other real

users’ avatars may be present, and second in a private world (called

Home) where access is restricted to a select group of users. We refer

to these five adversarial viewpoints in these two worlds by means

of a legend outlined in Table 1. In our evaluation (Section 6), we

will also analyze the effect of combining these five viewpoints on

the accuracy of activity classification (where the viewpoints are

referred to as HCC and BCC for Home and Black Cat, respectively).

5.3 Participants
Between August and December of 2022 we recruited 64 participants

for test data collection. However, due to various personal, techni-

cal, and medical factors, only 35 of them completed the study and

whose data is included in our evaluation. Participants aged between

18 and 48, with a median age of 19. Additional demographic and

other details about our participants are listed in Table 2. All partici-

pants were appropriately compensated for their time and our study

6
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Table 2: Background details of the 35 participants.

Gender
14 Female 21 Male

Dominant Hand
2 Left 33 Right

VR Familiarity
11 Slightly 24 Moderately-Extremely

Prior VR Experience
5 Never Used VR Before 30 Used VR Before

procedure was approved by our university’s Institutional Review

Board (IRB).

5.4 Data Collection Apparatus
VR Device and App. We utilize the Meta Quest 2 VR device

6

and the popular VRChat [20] app (installed on the Quest 2) for

generating and collecting test data from the participants in our

study. As of July 2022, VRChat had more than 200,000 daily active

users and more than 7 million registered users [21]. Moreover,

VRChat was one of the few VR apps which supported full-body

avatars (instead of only the upper body) at the time we started our

experiments. Although other popular apps later added integration

of full-body avatars [5], the fundamental nature of data generation

(and collection) does not significantly differ across a majority of

the VR apps.

Motion Sensors. Participants’ body motion was captured at 20

𝑚𝑠 sampling interval on a smartwatch (TicWatch 2) worn by the

participants on their wrist and on a smartphone (Moto G7 Play)

placed in their pocket. 10 participants chose to wear the smartwatch

on their right wrist, while the rest chose to wear it on their left

wrist. 23 participants placed the smartphone in one of their front

pockets, while the rest place it in one of their back pockets.

Data Logging. The VRChat app was installed on five different

desktops to record the viewpoints/perspective of an adversary as

described in Section 3, and OBS Studio [11] was used to record the

6
https://www.meta.com/quest/products/quest-2

each adversarial perspective into individual video files with times-

tamps. The motion sensors were logged in respective devices with

timestamps, and later transferred to another desktop for analysis.

Analysis Computer. A 2021 MacBook Pro was used to train and

classify activities, and also for the activity-based filtering andmagnitude-

based rankings. It is equipped with 10-Core M1 CPU, 16-Core GPU,

16GB memory, 1TB SSD storage, and 16-core Neural Engine. For

our large-scale analysis in Section 7, we also used a desktop with

Ryzen 5 3600 6-Core 3.6GHz CPU, RTX 3060 12GB GPU, 1TB SSD

storage, and 16GB memory, to train and generate large datasets

using CTGAN [3, 66].

6 EVALUATION
We next evaluate the proposed correlation framework utilizing

the test data collected from participants, which represents a small-
scale attack with anonymity set size of 271 (accumulating different

motion sensor locations from individual participants). We start

with identifying suitable framework parameter values such as the

activity window size (𝑤 ) and activity-based filtering threshold (𝑡 ).

After extensively evaluating the correlation framework in the small-
scale setting, we also generate and evaluate a representative dataset
for a large-scale correlation in Section 7.

6.1 Framework Parameters
Our correlation framework has two key parameters that are critical

for the rest of our empirical evaluation. The first parameter is the

activity window size (𝑤 ), which is the time duration used to classify

an action. The second parameter is the Hamming distance used

as the activity-based filtering threshold (𝑡 ), which is the minimum

requirement for an activity-vector to be considered in the identity

ranking. As the total observation time, and thus the number of

observed activity windows, will vary between different target users,

the activity-based filtering threshold (𝑡 ) is normalized with respect

to the number of observed activity windows. No filtering occurs

when the filtering threshold is set at 100%, whereas at 0% even one

mismatch in the activity sequence will result in that activity-vector

being filtered out.

(a) HC1 (b) HC2 (c) HC3 (d) HC4 (e) HC5

(f) BC1 (g) BC2 (h) BC3 (i) BC4 (j) BC5

Figure 4: Adversarial viewpoints.
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(a) 𝑤 = 0.5𝑠 (b) 𝑤 = 1𝑠 (c) 𝑤 = 2𝑠 (d) 𝑤 = 3 (e) 𝑤 = 5𝑠

Figure 5: Right smartwatchmotion sensor and visual movement data correlated with different𝑤 and normalized 𝑡 parameters.
Accuracy based on top-1 identity in the rankings.

(a) 𝑤 = 0.5𝑠 (b) 𝑤 = 1𝑠 (c) 𝑤 = 2𝑠 (d) 𝑤 = 3𝑠 (e) 𝑤 = 5𝑠

Figure 6: Front right pocket smartphone motion sensor and visual movement data correlated with different𝑤 and normalized
𝑡 parameters. Accuracy based on top-1 identity in the rankings.

Figures 5 and 6 show the correlation accuracy, where "None

Correlated" occurs when the activity-based filtering filters all can-

didate activity-vectors, "Incorrectly Correlated" occurs when the

top ranked identity is incorrect, and "Correctly Correlated" occurs

when the top ranked identity is correct. From these figures we

can see an overall trend that as we increase 𝑤 , the percentage of

identities that passes the activity-based filtering and then used for

identity ranking also grows. Conversely, the percentage of “None

Correlated” is diminished as𝑤 is increased. This can primarily be

attributed to (i) the size of activity sequence in the activity-vector is

inversely proportional to𝑤 for a constant observation time period

thereby reducing the number of probable mismatches, and (ii) the

activity inference tends to perform more accurately for larger𝑤 .

While the above observation should compel us to select a larger

𝑤 , in Figures 5 and 6 we also observe that there exists a trade-off

between𝑤 and correctly correlated identities for different activity-

based filtering thresholds. For instance, when𝑤 = 5𝑠 we observe

that the percentage of correctly correlated identities starts to de-

crease beyond the filtering threshold of 70% in Figure 5e. This is

most likely because as the size of activity-vector is reduced with in-

creasing𝑤 , the probability of confusion with another person’s activ-

ity magnitudes is increased. This trend was consistent across other

experimental variables, such as different adversarial viewpoints,

different motion sensors, and different motion sensor positions on

the body.

Based on empirical observations across different experimental vari-
ables we set 𝑤 = 1𝑠 and 𝑡 = 30% for the rest of our analyses. On
average, these selected values are best suited for maximizing the

percentage of correctly correlated identities. The average correctly

correlated identities using these parameter values within top-1 of

the ranking was 16.3%, and 17.0% of the identities were within

top-3. In an alternate adversarial model where the motion sensor

positions on the body is known to the adversary, more specific (i.e.,

per target user)𝑤 and 𝑡 values can be selected to further improve

the percentage of correctly correlated identities.

6.2 Activity Confusions
The accuracy of the activity classification models play an important

role in the correlation framework’s overall success rate. Activity

classification between visual and motion sensor data differs sig-

nificantly due to the modality (of input signal), and is potentially

subject to different types of noises and interference signals. Differ-

ent adversarial viewpoint angles, distances, and occlusion levels

affect the visual data classification. For instance, if only half of the

avatar is visible due to being behind a coach or another avatar

is in front of the target avatar, the chance of a misclassification

is significantly increased. On the other hand, the positioning and

orientation of the device used to collect motion sensor data also

imposes certain limitations on the activity classification accuracy,

especially as we assume that the adversary is unaware of the exact

position of the motion sensor. For instance, if the motion sensor

data is from a smartwatch worn on the right hand, it is very useful

to classify activities involving the right hand, but may result in high

misclassification of activities not involving the right arm.

Due to these apparent limitations, we analyze the direct conse-

quence of misclassifications, i. e., the confusion of activities between

8
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(a) Using right wrist smartwatch.
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(b) Using front right pocket smartphone.

Figure 7: Activity classification confusion between motion
sensor data and visual movements.

Figure 8: Correctly correlated accuracy (top-1 rank) with ar-
tificially introducedmisalignment, shown for data from the
right wrist.

the visual and motion sensor data. In Figure 7, we observe that the

idle activity has noticeably low accuracy (36% and 22% for right

wrist smartwatch and front right pocket smartphone, respectively),

and is often confused with other activities. An unexpected, yet

clearly discernible, confusion exists between motion sensor idle
and visual walking. One possible factor behind this observation is

that VR users may be using the VR joystick to walk in the virtual

world. As a result, the target user appears idle in the motion sensor

data, while their virtual avatar is visually walking. Another note-

worthy observation is that head movements had high confusion due

to the fact that placement of motion sensors around hip and wrist

areas is not suitable for capturing the target user’s head movements,

where as a head-mounted VR device is accurately able to capture

head movements and apply them to the avatar in the virtual world.

In light of these insights, we further optimize our framework as

follows. Rather than considering all the classified actions, we only

utilize activities with less than 60% of confusion – body, hand, walk,

bend, jump, and others – for our activity-based filtering. Remaining

activities in the activity-vector are ignored from the Hamming

distance calculations. The average correctly correlated identities

after this optimization within top-1 of the ranking was 37.3%, while

38.7% of the identities were within top-3.

6.3 Time Alignment
Both the visual and motion sensor data are collected with device

timestamps for synchronization. Although most modern smart-

phones and smartwatches are by default periodically updated against

internet-based time servers, motion sensor data collection in the

wild may contain time drift errors and thus misaligned with the

visual movements. Misaligned data sources will likely cause con-

fusion between classified activities, resulting in a high failure rate

in satisfying the activity-based filter threshold. As shown in Fig-

ure 8, misaligned data can drop a 62.1% correctly correlated result

down to 0% in the presence of only 2.4 seconds (of artificially in-

troduced) misalignment. The adversary can potentially detect and

overcome such misalignments by offsetting the (motion sensor)

data in increments, and selecting a time offset (±𝛿) that results
in the minimum Hamming distance in the activity-based filtering.

Realistic assumptions must be made on the bounds of 𝛿 in order to

keep the computational time practical.

6.4 Different Motion Sensors and Camera
Locations

We next detail how different positions of the motion sensor on

the (human) body and different adversarial viewpoints affect the

correct correlation of our proposed framework. Overall, smartwatch

(motion sensor) on left or right wrist performed better than the

smartphone in the hip pockets (Figure 9). For example, for the

Home world, the smartwatch yielded about 41% and 68% correct

correlations (top-1 rank), for left and right wrists, respectively. In

contrast, the front left-front pocket smartphone data resulted in

about 9.1% correct correlations, while other smartphone locations

are in a similar range. Intuitively, one of the main factors behind

this observation is the inability of smartphone motion sensors to

pick up hand and head movements when they are located in the

hip area pockets. This causes higher confusion between activities

(Figure 7), resulting in the activity-vector of the target user being

filtered out with high likelihood.
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(a) Motion sensor in back left pocket (b) Motion sensor in back right pocket. (c) Motion sensor in front left pocket.

(d) Motion sensor in front right pocket. (e) Motion sensor on right wrist. (f) Motion sensor on left wrist.

Figure 9: Accuracy for different cameras positions and motion sensors locations of devices during the free-movement phase.
Accuracy based on top-1 identity in the rankings.

As far as the impact of different adversarial viewpoints on the

correlation accuracy of our framework is concerned, we can see

from Figure 9 that, except for BC1, all other camera locations (or

adversarial viewpoints) yielded comparable results within each of

the motion sensor locations. The reason behind BC1 performing

particularly poor is that its location was near the entrance point of

the Black Cat world and most participants eventually moved away

from the field-of-view of this camera during the data collection

experiments. In summary, combining multiple viewpoints and the

availability of wrist-basedmotion sensor data are themost favorable

conditions for the adversary.

6.5 Conflicting Activity Sequences
There can be cases, especially in a large-scale attack, where mul-

tiple target users perform a similar or even an identical sequence

of activities. In such cases, the magnitude-based ranking should

ideally still rank the real identity higher than others. In this part of

our analysis, we study the extent to which our magnitude-based

ranking is able to do so, by comparing correlation accuracy when

participants (and their avatars) performed the same sequence of

activities. In Figure 10b, we observe 16.5% correct correlation for

motion data from the right wrist in top-1 of identity rankings and

50.1% correct correlation within the top-3 ranks. This demonstrates

that to an extent the magnitude-based ranking is in fact able to

discern the difference between identities based on the magnitude

of movements.

7 OPTIMIZING FOR LARGE-SCALE ATTACKS
An adversary trying to correlate thousands or millions of anony-

mous avatars with identified motion sensors data is presented with

a very significant computational task. In this section, we analyze

(a) Front left pocket motion data (b) Right wrist motion data

Figure 10: Identity correlation for conflicting activity se-
quences.

the computational complexity of this task and propose related opti-

mizations to our correlation framework.

Synthetic Data Generation To test the scalability of our frame-

work, we must first generate a very large synthetic dataset utilizing
real participant data collected in Section 5. While it was not feasible

for us to collect real-world data from thousands or millions of par-

ticipants, due to the time and resources required for systematic data

collection per participant, we still want to test using a dataset that

has resemblance to the small-scale dataset instead of generating

completely random activity-vectors. The activity classification and

magnitude calculation tasks take constant time, and will grow lin-

early with the size of each dataset (𝑝 and𝑞, for visual movement and

motion sensor datasets, respectively). For large 𝑝 and 𝑞, the more

complex task is that of calculating the correlation of all 𝑞 identities

against all 𝑝 anonymous avatars. However, as seen in Section 6, the

activity-based filtering is very effective in reducing the complexity

of the magnitude-based identity rankings. Therefore, for large 𝑝 and

𝑞 the most computationally complex task in the entire framework

comes down to the activity-based filtering. Accordingly, we gener-

ate our large-scale dataset to test the scalability of our activity-based
10



Exploiting Out-of-band Motion Sensor Data to De-anonymize Virtual Reality Users , ,

Table 3: Computational time and correlation accuracy for GAN generated datasets, for default and optimized activity-based
filtering. Tested for 𝑘 = 5 with 𝑡 = 2, and 𝑘 = 10 with 𝑡 = 3. Entries marked as “–” did not finish.

GAN Generated Time (ms) Average Correctly Correlated (%)

Motion × Video Default Hash 3/5 Hash 7/10 Default Hash 3/5 Hash 7/10

100 × 100 22 7 29 47.00 41.00 44.00

500 × 500 586 36 177 44.00 43.00 41.00

1000 × 1000 2415 80 386 45.80 39.40 40.10

10000 × 10000 267293 1020 4714 51.30 42.60 34.70

100000 × 100000 31481325 9617 54736 39.10 31.10 21.50

1000000 × 1000000 - 99304 644596 - 30.90 21.90

Table 4: Correlation accuracy for permutation generated
datasets, for default and optimized activity-based filtering.
Tested for 𝑘 = 5 with 𝑡 = 2, and 𝑘 = 10 with 𝑡 = 3. Entries
marked as “–” did not finish.

Permutation Generated Average Correctly Correlated (%)

Motion × Video Default Hash 3/5 Hash 7/10

100 × 100 54.00 49.00 49.00

500 × 500 55.00 42.00 40.00

1000 × 1000 48.90 41.10 43.10

10000 × 10000 53.20 40.90 36.20

100000 × 100000 51.70 36.60 29.80

1000000 × 1000000 - 38.70 24.50

filtering, which only requires activity sequences as input. Our first

large-scale dataset was generated using a modern tabular Genera-

tive Adversarial Network (GAN) technique [3], called CTGAN [66],

which is trained using activity sequences from real participants, as

outlined in Section 5. Our second large-scale dataset was generated
using random permutations of our activity sequences from Sec-

tion 5. Each of these large-scale datasets contained 1 million activity

sequences for the motion sensor and 1 million activity sequences

for the visual movements.

Activity-based FilteringWithout Optimizations.Without any

optimizations, the activity-based filtering has a time complexity of

𝑂(𝑝𝑞𝑘2), where 𝑝 is the number of unique avatars from the visual

movement data, 𝑞 is the number of different identities from the

motion sensor data, and 𝑘 is the size of the activity sequences. As

such, we can further assume that increasing the size of𝑘 would have

diminishing returns (computationally), making it less attractive

for an adversary to record each target for too long. Therefore, we

assume𝑘 would not be scaled, unlike 𝑝 and𝑞, and treat𝑘 as constant,

thus resulting with a complexity of 𝑂(𝑝𝑞). As shown in Table 3,

our setup takes 2.2 ∗ 101 ms to finish activity-based filtering when

𝑝 = 𝑞 = 100. However, when we scale up to 𝑝 = 𝑞 = 10
5
, it requires

3.15 ∗ 107 ms (or about 8 hours) to finish activity-based filtering.

We estimate that for 𝑝 = 𝑞 = 10
6
, it will take approximately 30 days

to finish, and about 3000 days when 𝑝 = 𝑞 = 10
7
, which is not very

scalable.

Optimization. We propose the use of a hash table to store our

activity sequence data in order to reduce the time complexity of

activity matching and filtering. However, as even a single mismatch

between two activity sequences will result in completely different

hash values (i.e., the keys in a hash table), we design a larger hash

table that allows for some degree of mismatch. Specifically, we

populate a hash table with keys based on permutations of the 𝑞

activity sequences in𝑀 (each of length 𝑘) from the motion sensors

data, accounting for possible errors allowable within the Hamming

distance threshold (𝑡 ). Let us assume that the numbers 0 to 7 denotes

1 of the eight activities we classify. If 𝑘 = 5, an example of the

activity string would be ⟨47634⟩. If our hamming distance threshold

is 𝑡 = 2, then any two activities can be mismatched and still pass the

threshold. Now, assume the character ∗ as a wildcard activity that

may or may not be a match. To populate the hash table exhaustively,

we compute every possible permutation of each activity sequences

in 𝑀 including up to two ∗. For our previous example, ⟨47634⟩,
some of the permutations generated would be ⟨∗ ∗ 634⟩, ⟨4 ∗ 6 ∗ 4⟩,
and ⟨47 ∗ 3∗⟩. All these permutations are then used as the key

in our hash table, while the corresponding value is the identity

of users from the motion sensor data (𝑀). Thereafter, during the

correlation process, each activity sequence from the video dataset

also undergoes permutations with up to two ∗, and then queried

against the above hash table for a match. If a matching key exists,

the corresponding identity and activity-vector has satisfied the

activity-based filtering and is included in the identity ranking.

Optimized Performance Analysis. The number of permutations

per activity-vector does not scale with the size of datasets and thus

can be treated as 𝑂(1) time complexity. Similarly, hash table search

and insertion is𝑂(1) time complexity. Therefore, with the use of our

hash table, the new time complexity becomes 𝑂(𝑝 + 𝑞), where 𝑂(𝑞)

time is required to create the hash table, and 𝑂(𝑝) time is require

to iterate through 𝑉 for filtering. Our empirical results (Tables 3

and 4) show that with the optimization, the activity-filtering is

significantly faster. For instance with 𝑝 = 𝑞 = 100000, 𝑘 = 10, and

𝑡 = 3, using the optimization technique was 575 times faster than

the default activity-based filter.

8 DISCUSSION
Next, we highlight some interesting observations that we made

during our experiments, which may need to be considered by an

adversary carrying out the above de-anonymization attack. Further,

we also list some additional adversarial optimizations that could be

applied to the proposed framework and identify potential mitigation

strategies against this threat.

Object Spawning. During out experiments, we observed random

objects, for example, a tent (Figure 11b) and ameteoroid (Figure 11a),
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being spawned arbitrarily and at random locations within the VR-

Chat worlds. While the reason for these arbitrary objects appearing

was unclear, depending on their location, they could interfere with

the adversary’s viewpoint by blocking his (visual) line-of-sight to

the target. In addition to randomly appearing stationary objects,

we have also sometimes observed arbitrary appearances of mov-

ing non-playable characters which can also impact the adversary’s

view of the target. In summary, an adversary should plan for such

arbitrary obstructions during visual data collection, and perhaps

employ multiple viewpoints (or perspectives) to the target user in

order to overcome this issue, similar to what we do in our experi-

ments.

(a) Meteoroid (b) Tent

Figure 11: Examples of object spawning.

Image & Link Injections. Another challenge an adversary could

face in the virtual world (especially, public worlds) while collecting

visual data (corresponding to the target) is random and uniniti-

ated interactions with other VR users. During our experiments,

we observed random users positioning themselves in front of our

adversary (and its view), thus blocking his line-of-sight (to the tar-

get) and impacting the attack. While a mobile adversary may be

able to adjust his position (within the virtual room) to regain view

of the target, a stationary adversary may be unable to do it and

thus unable to record useful visual data for the attack. Other forms

of interactions (by other users with our adversary) could include

sharing of images and links, which could also disrupt the visual

data recording by the adversary. For instance, during our experi-

ments we observed that when an image is shared (see Figure 12a)

by a VRChat user (with our adversary), it overlays a transparent

image on top of the adversary’s viewpoint, rendering the visual

data collected by him ineffective during that period. Similarly, we

also observed that sharing of links can also have undesirable effects

on the adversary’s avatar (Figure 12b), rendering it ineffective in

collecting useful visual data.

(a) Injected image. (b) Injected link.

Figure 12: Examples of image/link injection.

Detecting and Ousting Suspicious Avatars. The VRChat ser-

vice employs an anti-cheat software which attempts to detect bots,

inactive avatars, and avatars who misuse VRChat terms of services

and kicks them out or bans them from the service. During our

experiments, we did observe that some of our adversarial avatars,

especially stationary avatars, were kicked out of the room (being

monitored) or even banned altogether from VRChat. Although the

main reasons (could be the anti-cheat software or other users re-

porting our adversarial avatars) behind such kick-outs or bans are

unclear to us, we believe this could present a significant obstacle

to an adversary attempting to accomplish the proposed attack. In

order to continue collecting visual data in the presence of such

room kick-outs and bans, an adversary would need to find ways

to circumvent such “anti-cheat" measures or be ready to deploy

backup avatars, similar to what we did during our experiments.

Additional Optimization. In addition to the optimizations we

presented earlier in Section 7, an adversary can carry out additional

optimizations as part of the framework to improve the overall accu-

racy by further reducing the number of incorrect correlations. For

example, suppose that an adversary has collected visual and motion

data over multiple sessions/days. It is highly unlikely that a corre-

lation between motion data of two (or more) unique people/users

to a target avatar will repeat over a span of multiple independent

observed virtual reality sessions. To utilize this factor, the adver-

sary has to first increase the activity-based filtering threshold (𝑡 ) for

all the observed sessions/days. With a higher allowable mismatch

between the activity sequences, the adversary is more likely to

include the target user’s identity in the rankings across all of the

sessions. Thereafter, with elimination of identities not present in

rankings of all the sessions, the combined ranking/search set will

reduce drastically, increasing the probability of correct correlation.

ActiveMitigationMeasures.The bestmitigation for the de-anonymization

attack presented in this work is to fully decouple the visual and

motion sensor data by not making the motion data available to

the adversary when users are in virtual environments. This can be

accomplished through various means such as increasing user aware-

ness of such threats, not wearing/carrying smart mobile devices

(with in-built motion sensors) while using VR services or through

appropriate user-notifications at the beginning of VR sessions. If

the smart mobile device(s) is synced with the VR device, access to

the mobile device motion sensor could also be automatically and

appropriately regulated while the user is in a virtual reality session.

Alternatively, another option to protect against such attacks would

be to use non-humanoid avatars or a humanoid avatar with adver-

sarial patches [60]. Adversarial patches typically overlay an image

patch on a target image object (in our case, an avatar), causing

some pre-trained machine learning or deep learning classifier into

misclassifying the object. An appropriate adversarial patch on the

user’s chosen avatar would prevent recognition of the humanoid

character in our framework, thus preventing accurate generation

of the activity-vector series required for correlation.

9 CONCLUSION
We proposed a novel framework to correlate anonymous avatars

in virtual worlds with identified out-of-band motion sensor data.

12
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Our work highlights a newfound privacy risk to users of the grow-

ing VR ecosystem. Specifically, VR users can be vulnerable to de-

anonymization attack if they carry a smartphone or wear a smart-

watch while using a VR system. Our evaluation of the proposed

framework is a step towards demonstrating the feasibility of such an

attack, utilizing real-world data from human participants. Through

our empirical analyses, we were able to optimize framework pa-

rameters, improve scalability, and identified current limitations and

potential for further improvements.
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A FRAMEWORK DETAILS

Figure 13: Keypoints on a human user or humanoid avatar.

Algorithm 1 Correlation Algorithm.

1: Input:
2: 𝑣𝑖𝑑𝑒𝑜[] ⊲ Video’s activity-vectors series

3: 𝑚𝑜𝑡𝑖𝑜𝑛[] ⊲ Motion’s activity-vectors series

4: 𝑡 ⊲ Filtering Threshold

5: Output:
6: 𝑟𝑎𝑛𝑘𝑒𝑑[] ⊲ Ranked list of correlated motion/video indexes with

maximum Spearman’s rank correlation coefficient

7: procedure Correlate
8: 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑[] ⊲ Maps motion indexes to correlated video indexes

9: 𝑢𝑛𝑟𝑎𝑛𝑘𝑒𝑑[] ⊲ Unranked list of correlated motion/video indexes

with maximum Spearman’s rank correlation coefficient

10: for 𝑖 in range(𝑣𝑖𝑑𝑒𝑜.𝑠𝑖𝑧𝑒() − 1) do
11: for 𝑗 in range(𝑚𝑜𝑡𝑖𝑜𝑛.𝑠𝑖𝑧𝑒() − 1) do
12: if 𝐻𝑎𝑚𝑚𝑖𝑛𝑔𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑣𝑖𝑑𝑒𝑜[𝑖],𝑚𝑜𝑡𝑖𝑜𝑛[𝑗]) < 𝑡 then
13: 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑[𝑖].𝑎𝑝𝑝𝑒𝑛𝑑(𝑗 )

14: end if
15: end for
16: end for
17: for 𝑖 in range(𝑣𝑖𝑑𝑒𝑜.𝑠𝑖𝑧𝑒() − 1) do
18: for 𝑗 in range(𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑[𝑖].𝑠𝑖𝑧𝑒() − 1) do
19: 𝑚𝑖𝑑𝑥 = 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑[𝑖][𝑗] ⊲ motion index

20: 𝑚𝑎𝑥𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛 =𝑚𝑎𝑥 (𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛(𝑣𝑖𝑑𝑒𝑜[𝑖],𝑚𝑜𝑡𝑖𝑜𝑛[𝑚𝑖𝑑𝑥 ]))

21: 𝑢𝑛𝑟𝑎𝑛𝑘𝑒𝑑[𝑖].𝑎𝑝𝑝𝑒𝑛𝑑({𝑚𝑎𝑥𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛,𝑚𝑖𝑑𝑥 })
22: end for
23: 𝑟𝑎𝑛𝑘𝑒𝑑[𝑖] = 𝑢𝑛𝑟𝑎𝑛𝑘𝑒𝑑[𝑖].𝑠𝑜𝑟𝑡 () ⊲ sorted based on

Spearman’s rank correlation coefficient

24: end for
25: end procedure
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Table 5: List of controlled actions performed by participants in the real and virtual reality worlds.

Action Types Action Description

Head-based Looking [left, right, up, down]

Rotating the head in [clockwise, anti-clockwise] directions

Arm-based Raising [left, right, both] arms in [forward, upward, sideward] directions

Rotating [left, right, both] arms in [clockwise, anti-clockwise] directions

Stretching arms [forward, upward, sideward]

Palm-based Handshaking with [left, right, both] arms

Waving with [left, right, both] arms in [forward, upward] directions

Thumbs up and down with [left, right, both] arms forward

Clapping with hands forward

Leg-based Stepping along [left, right, forward, backward] directions

Walking diagonally towards [left, right, forward, backward] directions

Raising [left, right] knee

Combination-based [Twisting hip, turning body around] in [clockwise, anti-clockwise] directions

Crouching or squatting, Jumping up and down

Sitting on the [floor, chair]

Exploring [public, private] instances

[Walking, running] in [straight, zig-zag] paths

[Talking, browsing] smartphone in [portrait, landscape] modes

Fiddling with an object

Picking up objects placed on the [floor, table]
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