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Abstract—Pedestrian safety continues to be a significant con-
cern in urban communities and pedestrian distraction is emerging
as one of the main causes of grave and fatal accidents involving
pedestrians. The advent of sophisticated mobile and wearable
devices, equipped with high-precision on-board sensors capable of
measuring fine-grained user movements and context, provides a
tremendous opportunity for designing effective pedestrian safety
systems and applications. Accurate and efficient recognition of
pedestrian distractions in real-time given the memory, compu-
tation and communication limitations of these devices, however,
remains the key technical challenge in the design of such systems.
Earlier research efforts in pedestrian distraction detection using
data available from mobile and wearable devices have primarily
focused only on achieving high detection accuracy, resulting
in designs that are either resource intensive and unsuitable
for implementation on mainstream mobile devices, or compu-
tationally slow and not useful for real-time pedestrian safety
applications, or require specialized hardware and less likely to
be adopted by most users. In the quest for a pedestrian safety
system that achieves a favorable balance between computational
efficiency, detection accuracy, and energy consumption, this
paper makes the following main contributions: (i) design of a
novel complex activity recognition framework which employs
motion data available from users’ mobile and wearable devices
and a lightweight frequency matching approach to accurately
and efficiently recognize complex distraction related activities,
and (ii) a comprehensive comparative evaluation of the proposed
framework with well-known complex activity recognition tech-
niques in the literature with the help of data collected from
human subject pedestrians and prototype implementations on
commercially-available mobile and wearable devices.

Index Terms—Pedestrian safety, distraction detection, activity
recognition, mobile computing, wearables.

I. INTRODUCTION

Pedestrian safety has become a critical concern in the
United States (and worldwide) as the number of serious and
fatal injuries due to pedestrian-related accidents continue to
steadily rise every year [1]. As one of the major causes of such
pedestrian-related accidents, distracted driving has received
significant attention over the past decade [2], [3], [4], [5], [6],
[7], [8], [9], which has resulted in a host of techniques to detect
and overcome distraction during driving. However, nearly 50%
[10] of all traffic related pedestrian deaths can be attributed
to distraction among pedestrians (for example, inattentiveness
while crossing roads and failure to obey traffic signs) rather
than distracted drivers, which highlights the significant role
pedestrian distraction plays in these accidents [11], [12], [13].

Besides this, distracted pedestrians are also susceptible to
other non-traffic hazards in indoor and outdoor environments,
such as, falling over the edge of a subway platform, walking
into obstacles, falling down a stairway, colliding with other
pedestrians, and falling into an uncovered sewer manhole
[14]. It is evident that distracted pedestrians pose a significant
threat not only to their own safety, but also to the safety
of other pedestrians (and drivers), and effective systems and
mechanisms to overcome this threat are critically needed.

Designing effective pedestrian safety systems to overcome
these threats, however, has been challenging. A pedestrian
safety system typically comprises of two main components
(Figure 1): (i) a distraction or hazard detection component,
and (ii) an accident prevention component. As any effective
accident prevention strategy relies heavily on the success and
timeliness of the detection component, design of efficient
techniques for accurate and timely detection and recognition
of pedestrian distractions and distraction-related activities is of
paramount importance, and often the main technical challenge
to overcome in such systems. The advent of sophisticated
mobile and wearable devices (e.g., smartphones and smart-
watches), equipped with a variety of high-precision on-board
sensors capable of capturing continuous and fine-grained user
movements and context, provides a tremendous opportunity to
design and develop such distraction detection and recognition
techniques. However, designing techniques that are fairly
accurate and able to operate efficiently and in real-time, given
the memory, computation and communication limitations of
these devices, is not straightforward.

Several recent research efforts in the literature have at-
tempted to improve pedestrian safety by detecting hazardous
contexts (e.g., incoming vehicles, obstacles, uncovered man-
holes, etc.) with the help of data available from users’ smart-
phone camera [15], [16], [17], [18] or from specialized sensors
(e.g., ultrasonic sensors or depth cameras) attached to the
phones [19], [20], [21]. Other proposals [22], [23] have em-
ployed smartphone camera to provide users with a transparent
screen and a view of the road in the front, so that they can
continue to safely use their phone while waking. Systems
for aiding pedestrian safety that rely on other smartphone
sensors such as microphone [24] or GPS [25], [26], [27],
[9], or on (motion) sensors on other forms of wearables
such as smart footwear [28], have also been proposed. In

ar
X

iv
:1

71
0.

03
75

5v
1 

 [
cs

.H
C

] 
 1

0 
O

ct
 2

01
7



addition to shortcomings such as reliance on smartphone
camera feed or other specialized sensors and devices which
limits their functionality, several of these schemes employ
computationally-intensive data processing techniques that are
challenging to implement on resource-constrained mobile and
wearable devices. More importantly, the above techniques fail
to generalize the problem of pedestrian distraction detection
by not considering a wide-variety of complex and concurrent
activities that commonly resemble distraction, for example,
detecting when users are walking, running or descending
staircases and simultaneously reading, eating or drinking [29],
[30]. As a result, the above solutions are unable to detect or
recognize a wide variety of distractions among pedestrians.

The key to designing a pedestrian safety system that has
broad application and usage is to first generalize the problem
of detecting distracted pedestrians as a concurrent activity
recognition (or CAR) problem. Concurrent activity recognition
is a mature technical area and results from this area have
been extensively used to enable a variety of applications in
health care, comfort management, personal and information
security, and passive communications [31]. Several robust and
accurate CAR frameworks that detect and recognize a variety
of human activities, and their complex combinations, by using
data available from commercial mobile and wearable device
sensors have already been proposed in the literature [32], [33],
[34], [35], [36], [37], [38], [39]. However, the applicability
of these models for pervasive pedestrian distraction detection
applications is unclear and has not been well-studied. It
appears that a majority of these CAR models proposed in
the literature, owing to their use of computationally expensive
data processing and analysis techniques, could be challenging
to implement and/or efficiently operate on consumer-grade
mobile and wearable devices with limited computational and
energy resources. Moreover, a number of other CAR systems
proposed in the literature [40], [41] employ specialized/non-
commercial auxiliary hardware to capture and process fine-
grained user behavior, which may have cost and availability
implications, thus limiting their adoption by traditional users.

These shortcomings in existing pedestrian safety systems
and concurrent activity recognition techniques necessitates
investigations in two directions, and will be pursued in this pa-
per: (i) is it possible to design a generic pedestrian distraction
detection approach that can operate on existing commercial
mobile and wearable devices and achieve a favorable balance
between computational efficiency, detection accuracy, and en-
ergy consumption? and (ii) how do existing concurrent activity
recognition frameworks perform in a pedestrian distraction de-
tection scenario? Outcomes of these investigations will enable
the development of a pedestrian safety system that can operate
on commercially-available mobile and wearable devices and
is able to accurately detect distracted pedestrian activities in
a timely (real-time) fashion by utilizing reasonable device
resources (processing, memory, battery). In line with these
objectives, we first design a novel complex activity recog-
nition technique, called Dominant Frequency-based Activity
Matching (DFAM), which employs a lightweight frequency

matching approach on motion (accelerometer and gyroscope)
data available from users’ mobile and wearable devices to
accurately and efficiently detect and recognize a wide vari-
ety of complex pedestrian distraction related activities. Next,
we undertake a comprehensive comparative evaluation of
the proposed technique with well-known complex activity
recognition approaches in the literature [35], [39] (specifically
ones that employ classical activity classification functions,
such as, k-NN, Naive Bayes, Decision Trees, Random Forests,
and Support Vector Machine) by means of data collected
from real human subject pedestrians. In order to compare
the practical feasibility and performance of these pedestrian
distraction detection techniques, we also develop prototype
Android and Android Wear implementations and assess their
computational speed, response times and energy requirements
on commercially-available Android smartphones and smart-
watches under realistic operating scenarios and settings.

II. RELATED WORK

In this section, we first outline significant mobile and/or
wearable device based tools and techniques proposed in the
literature for improving pedestrian safety, and discuss their
limitations. As the pedestrian distraction detection problem
can be generalized as a CAR problem, later we also discuss
recent research results in the direction of concurrent activity
recognition using these devices, primarily focusing on the
recognition of human activities.

A. Pedestrian Safety Systems

Several research efforts in the literature have employed
mobile and/or wearable devices, and data available from them,
for improving pedestrian safety. WalkSafe [15] utilized the rear
camera of the smartphone to detect vehicles approaching a
distracted user (or pedestrian) in order to promptly deliver
a danger alert or notification. Deng et al. [17] used image
processing techniques and multi-sensor (barometer, accelerom-
eter and gyroscope) information on smartphones to detect
surrounding objects. Similarly, Peng et al. [18] used real
time video processing of road traffic to help partially sighted
pedestrians in spotting obstacles on their path. SpareEye [16] is
another proposal which applied image processing techniques
on a smartphone camera feed to find obstacles in a user’s
path, however unlike [18], SpareEye is able to track multiple
obstacles simultaneously. One significant drawback of all these
proposals is that they employ costly and resource-intensive
image capture and processing techniques, which can adversely
impacts the performance and battery-life of mobile devices
and thus their chances of being adopted by users. Reliance
on the smartphone’s camera, also restricts the ability of these
techniques to operate when the camera is obstructed, for
example, in a user’s pocket.

Techniques for aiding pedestrian safety that do not rely on
the camera input, but rather on a smartphone’s microphone
[24] and GPS [9] have also been proposed. For instance,
[24] uses sound features extracted from the smartphone’s
microphone to detect oncoming vehicles, while pSafety [9]



recognizes potential collisions between pedestrians and on-
coming vehicles using the smartphone’s GPS. One major
drawback of these systems is that they are useful in detecting
only outdoor traffic-related hazards scenarios. Furthermore,
techniques that employ specialized devices and sensors for
improving pedestrian safety have also been proposed. Lookup
[28] uses information from specialized motion sensors at-
tached to pedestrians’ shoes to profile step and slope in
order to detect curbs, ramps and other obstructions. Similarly,
Ramos and Irani [19] used a depth camera (paired with a
smartphone), while Ahn and Kim [20] and [21] employed
an ultrasonic sensor for detecting pedestrian hazards and/or
for guided navigation. Besides relying on specialized sensors,
these systems attempt to address pedestrian safety by detecting
obstacles or other potential hazards (to pedestrians). In this
paper, we take an orthogonal approach to pedestrian safety
by attempting to detect distraction or inattentiveness among
pedestrians; after all if pedestrians are not distracted they
will be able to easily navigate away from obstacles and other
hazards (including, traffic).

B. Concurrent Activity Recognition (CAR)

The problem of detecting distracted pedestrians can be gen-
eralized as a concurrent activity recognition or CAR problem
where the goal is to detect concurrent pedestrian activities of
being mobile (e.g., walking, running or climbing/descending
stairs) and being distracted (e.g., texting, eating or reading).
CAR techniques that can distinguish different combinations
of elementary activities have been extensively used in the lit-
erature for complex human activity recognition. For instance,
Shoaib et al. [35] used multi-source and multi-sensor motion
data, from two smartphones, one in trouser pocket and the
other on the wrist, to recognize activities that involve hand
gestures, such as smoking, eating, drinking coffee and giving a
talk. Liu et al. [36] also employed multi-sensor time series data
to recognize sequential, concurrent, and generic complex ac-
tivities by building a dictionary of time series patterns (called
shapelets) to represent atomic activities. In another related
effort, Shoaib et al. [39] proposed a multi-layer approach to
detect non periodic concurrent activities such as smoking while
walking, where the first layer employs a traditional classifier
(e.g., Random forest and SVM) for activity identification while
the second layer incorporates context rules to correct mis-
classifications. Alternatively, Husz et al. [32] and Ma et al.
[37] proposed techniques to recognize concurrent and complex
actions from camera feed or video data. However, several
shortcomings in these approaches prevent them from being
effectively used in pedestrian safety applications. For instance,
[39] requires the system to keep track of time segments that
precede and follow the current one and thus unsuitable for
pedestrian safety applications that require real-time operation
and feedback. Others are not suitable for implementation on
resource-constrained mobile and wearable devices, primarily
due to their use of complex feature sets and classification func-
tions (as in [36], [37]) or resource-intensive image capture and
processing techniques (as in [32]). As discussed before, one of

the main functional requirement for a mobile/wearable device
based CAR framework for pedestrian safety is computational
and energy efficiency. Earlier research efforts in energy-aware
recognition mechanisms [34], [38] have achieved a favorable
balance between classification accuracy and energy consump-
tion, but these schemes have been successful in recognizing
only simple activities, such as, standing, walking and sitting,
but not concurrent (and distracted) activities. Recently, Korpela
et al. [33] proposed an energy-aware CAR framework for real-
time applications by using a minimal feature set to recognize
individual data segments and an hierarchical classification
mechanism for concurrent activity recognition. However, their
framework employs a specialized wearable device hardware,
and may not work for commercial off-the-shelf mobile devices.

III. PEDESTRIAN DISTRACTION DETECTION

As outlined earlier, any pedestrian safety system typically
comprises of two main components (Figure 1): (i) a distraction
or hazard detection component, and (ii) an accident prevention
component. In this paper, we primarily focus on the former.
Figure 1 depicts the design of a generalized learning based
framework which is the main building block for pedestrian
distraction detection in such systems. As shown in the figure,
the distraction detection framework comprises of: (i) a data
processing module (includes, noise removal, segmentation, and
feature generation), and (ii) a CAR model building phase (in-
cludes, design of an appropriate activity classification function
and training it using processed and labeled training data). Once
a trained CAR model is available, it can be employed to recog-
nize (or classify) distracted pedestrian activities. Such a design
of the distraction detection framework is commonly employed
in the literature (and in practice) for pedestrian safety and
other applications, and will also be employed by us in this
paper. Our distraction detection framework relies on multi-
sensor data obtainable from multiple mobile devices carried
by the pedestrians, specifically, motion (including, data from
both accelerometer and gyroscope sensors) and contextual
information from the pedestrian’s smartphone and smartwatch.
The data processing module in our framework filters this multi-
sensor data (to eliminate errors and inconsistencies), segments
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Fig. 1: A generic pedestrian safety system.



it into fixed-size blocks or windows, and extracts relevant
features from it. Features extracted from a set of labeled
training data are then used to train appropriate CAR models
within a supervised learning paradigm. It should, however, be
noted that the data processing task (including, features and
feature extraction) may vary depending on the chosen CAR
technique. These trained CAR models are then utilized by our
framework for distracted activity classification or recognition
tasks. As an appropriate CAR technique is central to the
design of a pedestrian distraction detection framework that can
attain a practicable balance between computational efficiency,
detection accuracy and energy consumption, in this section
we focus on designing such a technique. Technical details
of our proposed CAR technique, referred to as DFAM, are
presented next. We also outline details of other well-known
techniques that have been employed in the literature [35], [39]
for similar activity classification tasks, as we later empirically
compare the performance of our DFAM technique against
these classical activity classification techniques.

1) DFAM: Our DFAM CAR technique is inspired from
the audio matching algorithm proposed by Avery Wang [42].
Proprietary versions of Wang’s algorithm is commonly used
in popular song searching applications, such as Shazam. How-
ever, it is not trivial to directly use Wang’s audio matching
algorithm for activity recognition using motion data. First,
there are significant differences between audio data (found in
audio files) versus motion data (sampled from the smartphone
and smartwatches). In the audio matching application (or song
searching, as in Shazam), matching features in the test audio
file occur at almost identical relative time offsets from the
beginning of the audio file being matched to. In contrast,
motion data from pedestrian activities generally do not occur at
exactly fixed time offsets, therefore requiring a new matching
algorithm. Other differences between motion and audio data
include a significantly lower sampling rate of smartphone and
smartwatch motion sensors (compared to audio data which is
generally sampled at a much higher frequency) and distinctly
different dominant frequency ranges of both types of data.
Recently, Sharma et al. [43] successfully applied dominant
frequency-based activity matching for simple (non-concurrent)
activities, using fixed threshold-based classifiers. In this paper,
we use pre-processing techniques used by Wang [42] and
extend Sharma et al.’s work significantly, in order to recognize
concurrent activities related to pedestrian distractions in our
framework.

DFAM Training: During the training phase, (low-pass)
filtered time-series motion data from the smartphone and
smartwatch, denoted as Tp and Tw respectively, corresponding
to each activity of interest is first segmented into smaller fixed-
sized windows of W samples. Let’s assume that this motion
data is sampled at a frequency fs.

Tp = {1bp,
2bp, . . . ,

mbp}; Tw = {1bw,
2bw, . . . ,

nbw} (1)

where m =
sizeof(Tp)

W
and n =

sizeof(Tw)

W

After this pre-processing step, the frequency response of each
window in Tp and Tw is independently calculated using
a discrete Fourier transformation technique such as a fast
Fourier transform (or FFT [44]). Let the frequency responses
corresponding to Tp and Tw be represented as Fp and Fw,
respectively.

Fp = {1rp,
2rp, . . . ,

mrp}; Fw = {1rw,
2rw, . . . ,

nrw} (2)

where irp = FFT (ibp) and irw = FFT (ibw)

Each of the frequency response blocks irp ∈ Fp and irw ∈ Fw

are then analyzed for a dominant frequency in g (empirically
determined) frequency bins1, with one dominant frequency in
each bin:

{f(0,u1), f(u1,u2), . . . , f(ug−1,
fs
2 )}

All of the observed dominant frequency in each of the g
bins are then compressed or hashed to create a ‘signature’
for the activity. As we are employing multiple devices and
sensors, with each sensor possibly outputting measurements
across multiple dimensions (e.g., each accelerometer sensor
measurement is across three dimensions), each training data
point will consist of measurements across multiple dimen-
sions. For example, a dominant frequency analysis on three-
dimensional (x, y, z) time series data window will result in
a three-dimensional training point 〈Hx, Hy, Hz〉, where Hx,
Hy , and Hz are the hashes of dominant frequencies on
respective axes. Now, let us denote the set of all distracted
activities as D, and the set of all pedestrian activities as P.
For each activity au ∈ P, a training dataset made of equalized
data points is created during the training phase, and stored
along with the corresponding label au. Similarly, for the each
concurrent activity av ∈ P×D, another training dataset made
of equalized data points is created during the training phase,
and stored along with the corresponding label av .

DFAM Activity Classification: To correctly classify the
current or test user activity (say, ac), DFAM employs a
dominant frequency matching technique using the labeled
training data (from the previous phase), as described below.
Given a test window with s-axis signatures, the activity is
matched using the following scoring function:

Si,j(ac) =



0 if
∑s

k=1 F (cHk,
trainHi,j

k ) = 0

( 1s )
s if

∑s
k=1 F (cHk,

trainHi,j
k ) = 1

( 2s )
s if

∑s
k=1 F (cHk,

trainHi,j
k ) = 2

...
...

( s−1
s )s if

∑s
k=1 F (cHk,

trainHi,j
k ) = s− 1

1 if
∑s

k=1 F (cHk,
trainHi,j

k = s

where Si,j(ac) is the matching score per training instance
j in each activity ai ∈ P × D, cHk is the current activity
signature from k-th sensor axis, trainHi,j

k is the signature from
k-th sensor axis of j-th training instance of activity ai, and

F (a, b) =

{
0 a 6= b

1 a = b

1The highest possible frequency component is fs
2

[45].



The above scoring function gives exponentially more weight
to multi-dimensional signature matches, which will intuitively
result in a higher score when matching with the ground truth
activity. Finally, the activity is classified after matching against
the entire training dataset of all activities as follows:

argmax
i

∑
j

Si,j(ac) ∀ai ∈ P× D (3)

The current activity ac is then classified as that activity ai
which achieves the maximum aggregated score as shown in
Equation 3.

2) Traditional Classifiers: Traditional supervised learning-
based classification functions, such as, Naive Bayes, k-NN,
Decision Trees, Support Vector Machine and Random Forests
have been successfully used in the literature (and in practice)
for detecting complex and concurrent human activities [35],
[39]. Given that distracted pedestrian activities are inherently
concurrent activities, these supervised learning based tech-
niques comprise of a suitable candidate set for a comparative
performance evaluation with our proposed DFAM technique.
Below, we outline how these classification techniques are em-
ployed within our pedestrian distraction detection framework,
and provide details on the related data pre-processing, feature
extraction and model training tasks.

Data Processing: The (low-pass) filtered time-series motion
data from the smartphone and smartwatch, denoted as Tp and
Tw respectively, corresponding to each activity of interest is
first segmented into smaller fixed-sized windows, as discussed
earlier for DFAM. Like before, each of the motion data stream
Tp and Tw comprises of both the accelerometer and gyroscope
sensor data sampled along all the three axes at some frequency
fs. A set of time and frequency domain features are then
computed from each window of the time-series motion data
streams, which are widely used in the literature for activity
recognition [35], [46], [40], [47], [48]. The computed features
for each window include:

• Mean, minimum, maximum, standard deviation, variance,
along with energy and entropy of discrete FFT compo-
nents for each of the three axes of both the accelerometer
and gyroscope time-series data.

• Root mean square (RMS) correlation measures among the
three axes for each of the accelerometer and gyroscope
time-series data.

• Mean, median, and maximum of the instantaneous speed
(only for the accelerometer data)

• Mean, median, and maximum of roll velocity (only for
the gyroscope data)

As the motion time-series of an activity comprises of several
windows, features computed for all the windows are com-
bined to create a feature set for that activity. This process
(filtering, segmentation, and feature extraction) is repeated for
all the considered distraction-related activities in D and non-
distraction activities in P in the training dataset to create a
labeled feature set for all the activities. Such a labeled training
(feature) set is then used to train each of the concurrent activity
classification models, details of which are outlined below. It

should be noted that the above data pre-processing and feature
extraction tasks remain the same for all the supervised learning
based classification functions considered below.

Naive Bayes (NB): Given a test (or unlabeled) feature set,
a trained NB model estimates the posterior probabilities of
each activity (in the set of all considered concurrent activities
P × D), assuming that the input features are independent of
each other. The unknown or test activity is then assigned an
activity label corresponding to the maximum posterior proba-
bility value. Posterior probabilities are estimated according to
the Bayes rule as follows:

P (a|X) =
P (a)P (X|a)

P (X)
(4)

where, P (a|X) is the posterior probability of the activity a
given a feature set X , P (a) is the prior of the activity a,
P (X|a) is the likelihood of the feature set given a, and P (X)
is the probability of occurrence of the feature set which is
independent of the activity.

Decision or Classification Tree (DT): This technique
constructs a tree structure using the labeled feature sets of the
training data, where leaves of the tree represent the class labels
of the different concurrent activities, whereas the branches
represent conjunction of features that lead to these class
labels. Now given the feature set of an unknown activity,
the corresponding activity label is determined by traversing
through the branches of the trained tree model using the
discrete feature values in the feature set until a leaf node is
reached. The unknown activity is then classified with the label
corresponding to the reached leaf node.

Random Forests (RF): These are ensembles of decision
trees that could output multiple activity labels, one each from
a decision tree, for an unknown activity sample. The unknown
activity is then assigned an activity label using a majority rule.

Support Vector Machine (SVM): This technique uses the
labeled training data (feature sets) to learn the hyperplanes
separating the different activity classes. These hyperplanes
or decision boundaries are optimized to achieve maximum
separation distance between activity classes. After the model is
trained, i.e. separating hyperplanes are determined, the feature
set corresponding to an unknown activity is assigned a label
corresponding to its placement in the bounded n-dimensional
feature space.

k-Nearest Neighbours (k-NN): This technique creates a
trained classification model by grouping labeled training data
or feature sets into separate clusters based on their class label
or the activity they represent. Then, data sample from an
unknown activity (or an unlabeled feature set) is classified as
the class (or activity) of a majority of its k closest or nearest
neighbors. Euclidean distance can be used as a closeness
measure to compute the proximity between two feature sets.

IV. EVALUATION AND RESULTS

In this section, we evaluate the performance of the DFAM
and other activity recognition schemes as CAR techniques
used for detecting distracted pedestrian activities.



A. Experimental Setup

We collect motion sensor data of distracted pedestrian
activities using a wrist-worn smartwatch and a paired smart-
phone (Motorola Moto XT1096). To test the versatility of
our framework, we test it across two different smartwatches,
namely a Sony Smartwatch 3 and a LG Urbane W150. A
combination of smartwatch and smartphone was placed on
participating pedestrians2, for a total of four different device
placement scenarios. For the same-side placements, either both
smartwatch and smartphone are worn on the right wrist and
placed inside right hip pocket (RR), or worn on the left wrist
and placed inside the left hip pocket (LL). The remaining
two scenarios alternate the placements to the opposite sides,
i.e., smartwatch on right wrist along with phone in left hip
pocket (RL), smartwatch on left with phone in right pocket
(LR). Each participant performed a pre-defined but random-
ized set of activities for one or more of the scenarios. The
set of activities consisted of non-pedestrian, pedestrian and
distracted-pedestrian related activities outlined in Table I. All
concurrent activities except the starred (*) activities form a set
of distracted pedestrian activities.

TABLE I: Activities performed by the participants.

Simple Activities Concurrent Activities
Standing Walking + Using Smartphone Walking + Reading
Walking Climbing stairs + Eating Walking + Eating
Climbing stairs Descending stairs + Eating Walking + Drinking
Descending stairs Climbing stairs + Drinking Standing + Drinking*
Sitting Climbing stairs + Using Smartphone Standing + Reading*
Running Descending stairs + Using Smartphone Standing + Eating*

Running + Using Smartphone Sitting + Using Smartphone*
Standing + Using Smartphone* Descending stairs + Reading
Descending stairs + Drinking Climbing stairs + Reading

We developed a custom Android application using Android
Studio IDE v2.2.3 running on Java 8 platform, to record
activity related motion sensor data from the Moto T1096
running on Android 6.0 and the smartwatches running on
Android Wear 1.5, at a sampling rate of 50 Hz. The ac-
tivity data collected includes three-dimensional accelerometer
and gyroscope sensor data from the aforementioned devices.
Throughout the data collection, we took several precautionary
measures to ensure participant safety during certain distracted
activities, due to potential falling and injury risks. For ex-
ample, we placed a safety harness on the participant when
descending stairs and reading at the same time. However,
we also ensured that these safety measures did not interfere
with the activities performed by the participants. For more
details on how individual activities were carried out, please
refer to [49]. On an average, each participant took about 2
hours to complete all the activities. The physical demands of
our experiments, together with these additional constraints in
selecting participants thereby limited our ability to recruit a
larger number of participants, or obtain data for all possible
device placements from the same participant.

We implemented the proposed framework using Java on (i)
a 64-bit Debian Linux PC with an Intel Core i5 processor and

2A total of 23 participants took part in our study, which was approved by
Wichita State University’s Institutional Review Board (IRB).

8 GB RAM and (ii) the Motorola Moto XT1096 smarphone.
Implementations for the traditional classifiers were derived
from the Weka 3 machine learning toolkit [50] and its Android
counterparts. The PC implementation was used to extensively
analyze the performance of DFAM, which is not possible
on a resource constrained smartphone. On the other hand,
the smartphone implementation is helpful in evaluating on-
device response time and resource utilization in real-life usage.
Next, we explore how different training sets can affect the
classification accuracy of the proposed DFAM scheme. This
step is crucial for the pedestrian safety application, because not
all users would be willing to setup a personally trained model.
In other words, personalized datasets may not be a realistic
scenario, and thus the proposed DFAM scheme should work
well with unseen test sets.

B. DFAM Performance

We first validate the feasibility of detecting distracted pedes-
trian using DFAM, by creating personalized models for each
participant using their individual datasets, and then performing
a Leave-One-Out Cross Validation (LOOCV) using the trained
model. In LOOCV, one block is allotted as test data, while
the rest remain in the training set. The individual participant
accuracies are then averaged out for each group, where the
datasets are grouped based on the smartwatch used, and
further grouped based on the device placements (Table II).
For different window W and bin sizes (g) of the collected
data, we evaluate DFAM performance across three different
averaging methods – weighted, micro and macro – based on
metrics such as classification accuracy, precision, recall and
F1 score as shown in Figures 2 and 3a.

TABLE II: Datasets collected per placement scenario.

RR LL RL LR Total
LG+Moto 5 6 4 4 19

Sony+Moto 6 6 5 5 22
Total 11 12 9 9 41

Figures 2a and 2b show the precision, recall and F1 scores
for same-side (LL, RR) device placement, where as figures
2c and 2d show the precision, recall and F1 scores for
different-side (LR, RL) device placement. We observed that
the precision and recall improve with increasing number of
frequency bins. The mean F1 score for g = 3 was 0.7475,
compared to 0.6586 and 0.7335 for g = 1, 2, respectively, for
all four placement scenarios combined. We did not observe
any significant performance difference using weighted, micro
and macro averaging methods between the Sony+Moto and
LG+Moto datasets. The mean classification accuracy (for
g = 3 and W = {32, 64, 128, 256, 512}) for Sony+Moto
and LG+Moto datasets are 0.79 and 0.75, respectively, with
a standard deviation of 0.07 and 0.06, respectively. This
implies that the proposed DFAM is implementable across
different wrist-based wearables. We also observed slight per-
formance difference between the same-side and different-side
datasets. The mean classification accuracy (for g = 3 and
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Fig. 2: DFAM performace for datasets of (a) same-side using Sony+Moto, (b) same-side using LG+Moto, (c) different-side
using Sony+Moto, and (d) different-side using LG+Moto.

W = {32, 64, 128, 256, 512}) for same-side and different-
side datasets are 0.81 and 0.72, respectively, with a standard
deviation of 0.04 and 0.05, respectively. This implies that
DFAM works slightly better for same-side smartphone and
smartwatch placement.

Next, we investigate the effect of combining datasets from
different participants from the same group to obtain a trained
model, and validate it using k-fold cross validation where k
equals 10. In 10-fold cross validation, the dataset is split into
10 equal parts, one of which becomes the testing set, and the
remaining nine folds constitute the training set. We compute
the classification accuracies for different window W and bin
g sizes as shown in Figure 3a. DFAM achieved classification
accuracy of 0.70 for g = 3 and W = 32 (0.64 seconds at 50
Hz). As intuitively expected, classification accuracy improves
as the window size is increased to W = 512 (10.24 seconds
at 50 Hz), although at a cost of increased detection time as
we evaluate later in Section IV-D.

In a real world implementation, it may not be practical to
combine data exclusively from participants having the same
hardware. Moreover, not all wearables may have both ac-
celerometer and gyroscope sensors, compelling us to examine
whether DFAM can classify the activities in the absence
of either gyroscope (GYR) or accelerometer (ACC) data as
shown in Figure 3b. We observed that classification accuracy

dropped to 0.57 when using only accelerometer data, for g = 3
and W = 32 (compared to 0.70 in ACC+GYR datasets).
Similarly, classification accuracy was 0.66 when using only
gyroscope data, for g = 3 and W = 32. This implies that
DFAM works better in the presence of both accelerometer and
gyroscope sensors. We also reinforce our earlier observation
that classification accuracy is highest for g = 3. As a result,
we set bin size g = 3 for all following experiments.

C. Comparison with Traditional Classifiers

A realistic setting involves using already trained models
to recognize activities of a previously unseen participant.
We evaluate and compare DFAM in such a setting by leav-
ing out one participant’s dataset for testing purposes and
training using the rest. This Leave-One-Subject-Out (LOSO)
approach validates the generalization performance of the CAR
schemes. We compare the classification accuracies of DFAM,
and other CAR schemes for different window sizes (W =
{32, 64, 128, 256, 512}) as shown in Table III. Results show
that DFAM’s classification accuracy is comparable with SVM,
DT, RF, NB and 1-NN. However, 2-NN and 3-NN performs
better than DFAM in most cases, but they also impose higher
resource utilization as we evaluate next in Section IV-D.



0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

g=1 g=2 g=3 g=1 g=2 g=3 g=1 g=2 g=3 g=1 g=2 g=3

Same-Side Different-Side Same-Side Different-Side

Sony LG

W = 32 W = 64 W = 128 W = 256 W = 512

(a)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

g = 1 g = 2 g = 3 g = 1 g = 2 g = 3 g = 1 g = 2 g = 3

ACC GYR ACC+GYR

W = 32 W = 64 W = 128 W = 256 W = 512

(b)

Fig. 3: Classification accuracy of DFAM for (a) combined
datasets, and (b) individual sensors.

TABLE III: Classification accuracy of DFAM compared with
traditional classifiers.

DFAM SVM DT RF NB 1-NN 2-NN 3-NN
W = 32 0.4538 0.4298 0.4744 0.5063 0.5243 0.5203 0.4733 0.5133
W = 64 0.4845 0.4408 0.572 0.58 0.464 0.637 0.52 0.644

W = 128 0.5396 0.4774 0.4182 0.507 0.482 0.5234 0.5242 0.5218
W = 256 0.5099 0.4803 0.4892 0.6718 0.5379 0.5114 0.5224 0.515
W = 512 0.5392 0.5424 0.5367 0.5227 0.5421 0.5373 0.5409 0.532

D. Response Time and Resource Utilization

We next evaluate the response time, CPU, RAM and power
consumption of the CAR models on the Motorola XT1096
smartphone paired with the Sony Smartwatch 3. The XT1096
with a 2300mAh Li-ion battery was running Android 6.0,
while the Smartwatch 3 with a 420mAh Li-ion battery was
running Android Wear 1.5. For this analysis, we use the same
participant data and pre-trained classification models from
Section IV-B. However, in this case the signature (or feature)
generation and matching (or classification) is executed on the
mobile and wearable device, unlike the previous evaluation
(Section IV-B) where they were executed on a PC. Table IV
compares the response time and resource utilization of DFAM
compared with traditional classifiers, with ranges signifying
varying window sizes (W = {32, 64, 128, 256, 512}). The
response time excludes the communication delays, time taken
to obtain a data block and consumed time not related to
generation of block-related features, which would be same for
all the techniques. The time taken to obtain the data blocks
remained constant across the different CAR models for a
window size W , along with the time taken to generate features
across the traditional CAR models. The CPU utilization, power
consumption and RAM utilization were also recorded in these
trials over a period of two minutes and repeated 10 times. The
RAM usage is measured in megabytes (MB), whereas the CPU
utilization is in percentage indicating the fraction of available
processing power used.

Results show that DFAM has significantly lower response
time compared to traditional classifiers, which is beneficial
for alerting distracted pedestrian in real-time. CPU utilization,
power consumption and RAM utilization are also on the lower
side for DFAM, which means users will notice minimal impact

on performance of their smartphone. Notably, 2-NN and 3-
NN which achieved slightly better classification accuracy
earlier, also have the highest response times and generally
consumes more system resources. Quick response time is vital
in determining the effectiveness of our framework, because
any delay in alerting distracted pedestrians can be decisive in
potential accident preventions. These results positions DFAM
as the preferred candidate for use as a CAR technique in the
distracted pedestrian detection framework.

E. A Hierarchical CAR for Distracted Pedestrian Detection

We propose a modification to the CAR model presented
earlier in order to improve detection accuracy, with minimal
impact on resource utilization and response time. We pro-
pose to use a hierarchical CAR model representing various
user activities in form of states (Figure 4), where simple
or concurrent activity classification is performed only within
the corresponding states. In state S1, only simple pedestrian
activities are observed using smartphone and smartwatch mo-
tion data. Once a pedestrian activity is detected, the flow
moves to state S2, where contextual information is used to
determine two possible types of distractions: smartphone-
related distractions and non-smartphone-related distractions.
For smartphone-related distractions the detection and notifi-
cation is relative straightforward, whereas non-smartphone-
related distractions are observed using both smartphone and
smartwatch motion data (S3). If a pedestrian is observed to be
distracted, appropriate notification is given, and the flow moves
back to S1 after a periodic reset. Such a hierarchical approach
will reduce the computational and communication overheads
involved in activity recognition, because the CAR model is
executed only within a subset of all the states (S1 and S3 in
Figure 4). As a result, the smartphone can preserve system
resources during non-pedestrian and smartphone-related dis-
traction activities. The hierarchical approach can also improve
the individual classification accuracies of states S1 and S3,
because the classification problem in each of these states is
reduced from a multi-class classification problem to a binary
classification problem.

For implementing the improved hierarchical framework, we
modified the on-device Android application by splitting the
activity set into simple and concurrent activity sets for S1 and
S3, respectively, and trained a DFAM model for each. The
simple pedestrian activity is determined first (S1 activities),
followed by the distracted or concurrent activity which is
triggered only when the pedestrian is moving (S3 activities),
and not when the pedestrian is using the smartphone (S2
conditions). Another modification to the application involves
building a service to synchronize and trigger sensor data
logging on the smartwatch only when the smartphone starts
logging sensor data. This allows the smartwatch to go into
sleep mode, and consequently save energy (by approximately
33.3 mW) when the concurrent activity recognition state is
not triggered. The hierarchical approach achieved between 91-
96% classification accuracy for pedestrian activities (S1) and
77-89% for non-smartphone related-distraction activities (S3),



TABLE IV: Average response time and resource utilization of DFAM compared with traditional classifiers.

DFAM SVM DT RF NB 1-NN 2-NN 3-NN
Response Time (ms) 640-1150 2000-6000 1200-4480 2800-10630 890-2980 2800-8600 1900-8600 2900-6600

CPU Utilization 0.5-4.5% 1.3-8% 0.3-1.6% 0.5-7.4% 0.7-2.4% 1.5-3.8% 1.2-3% 1.2-2.9%
Power Consumption (mW) 33.3-129.5 33.3-188.7 33.3-85.1 85.1-222 40.7-96.2 85.1-214.6 85.1-188.7 85.1-218.3

RAM Utilization (MB) 20-24 26-53 17-67 56-108 19-29 15-26 29-53 30-92 MB
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Fig. 4: Hierarchical CAR using DFAM.

with a slightly decreased CPU utilization (0.4-1.4%). This
range of percentages for the classification accuracy and CPU
utilization are for an increasing value of the window sizes
W = {32, .., 512}.

V. DISCUSSIONS AND FUTURE WORK

Accident Prevention: In this work, we limit ourselves to
solely study the viability of using a CAR based framework
for improving pedestrian safety. In order to prevent unwanted
distraction related injuries and fatalities, we plan to develop
an on-device alert module for users’ mobile and/or wearable
devices, to remind distracted pedestrians that they should pay
more attention to their surroundings while they are in motion.
Additionally, we plan to implement a cloud-based alert module
that will employ crowd-sourced contextual information from
distracted users to alert other users in the vicinity about the
presence of distracted pedestrians. The design of these alert
modules, however, is not trivial and requires a careful analysis
of the associated human-factors issues. An alert mechanism
that is not carefully designed may annoy users with frequent
notifications, who may in turn decide not use it anymore, or
may become a source of distraction themselves. We plan to
accomplish this as part of our future work.

Number of Bins: In this work, we observed that the
classification accuracy of DFAM improves as the number
of bins g increases. It is possible that this trend continues
for higher bin sizes, i.e., g > 3. However, having g > 3
for smaller window sizes did not yield good classification
accuracies (as seen in Figure 2), thus making it difficult to
do an equitable and meaningful analysis along side larger
window sizes. Also, the resource utilization may change for

more number of bins. As part of our future work, we will
focus on empirically determining the optimal number of bins
(g) for each window size that can achieve an improved trade-
off between classification accuracy and resource utilization.

Other Future Work: In this work, we validated the
performance of the proposed CAR technique (DFAM) and
its Android implementation across different wearable device
hardwares, i.e., smartwatches. It will also be interesting to
study how the performance of the proposed CAR technique
and its implementation varies across different smartphone
hardwares. Also, we reckon that other CAR techniques (e.g.,
k-NN, RF, DT, NB or SVM) can also be employed in the
hierarchical CAR model. However, the viability and efficiency
of these techniques would depend on the feature set they use
(for classification) in each state of the hierarchical model.
As part of future work, we plan to conduct a comprehensive
comparative evaluation of the hierarchical model comprising
of these other techniques.

VI. CONCLUSION

We outlined and comprehensively evaluated a novel frame-
work that detects and recognizes distracted pedestrian activi-
ties by using motion data available from users’ mobile and
wearable devices. As part of our framework, we designed
and evaluated a novel dominant frequency matching based
concurrent activity recognition model, called DFAM, and com-
pared the performance and execution efficiency of the DFAM
model with other well-known learning-based classification
functions, such as Random Forests, SVM, k-NN, Naive Bayes
and Decision Trees. Our evaluation results showed that the
proposed DFAM model is a suitable candidate for detecting
concurrent activities, such as that of distracted pedestrians, and
that it has reasonable concurrent activity recognition accuracy
compared to traditional classification functions, such as, k-
NN, Naive Bayes and Decision Trees. We also observed
that DFAM has lower power consumption rates and quicker
response time(s) compared to Random Forests, SVM, k-NN,
Naive Bayes and Decision Trees. In summary, we have not
only comprehensively evaluated the efficacy and feasibility
of various concurrent activity recognition techniques for de-
tecting and recognizing pedestrian distraction, but have also
proposed a novel concurrent activity recognition technique that
achieves a good balance between recognition accuracy and
alert response time, while being energy efficient.
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