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Abstract

Headphones, traditionally limited to audio playback, have
evolved to integrate sensors like high-definition microphones
and accelerometers. While these advancements enhance user
experience, they also introduce potential eavesdropping vul-
nerabilities, with keystroke inference being our concern in
this work. To validate this threat, we developed OverHear, a
keystroke inference framework that leverages both acoustic
and accelerometer data from headphones. The accelerometer
data, while not sufficiently detailed for individual keystroke
identification, aids in clustering key presses by hand posi-
tion. Concurrently, the acoustic data undergoes analysis to
extract Mel Frequency Cepstral Coefficients (MFCC), aiding
in distinguishing between different keystrokes. These features
feed into machine learning models for keystroke prediction,
with results further refined via dictionary-based word predic-
tion methods. In our experimental setup, we tested various
keyboard types under different environmental conditions. We
were able to achieve top-5 key prediction accuracy of around
80% for mechanical keyboards and around 60% for membrane
keyboards with top-100 word prediction accuracies over 70%
for all keyboard types. The results highlight the effectiveness
and limitations of our approach in the context of real-world
scenarios.

1 Introduction
In the rapidly evolving landscape of mobile device hardware,
sensors have emerged as pivotal components that enhance
user experience and functionality. Among these sensors, ac-
celerometers stand out for their ability to detect motion, while
microphones, especially those embedded in headphones and
headsets, have been refined to high-definition standards suit-
able for applications such as high fidelity voice recording and
enabling active noise cancellation. Interestingly, these head-
phones not only come equipped with multiple microphones
but also often incorporate accelerometers to discern if they
are being worn, and for advanced applications such as ges-
ture controls [10,13], adaptive noise cancellation [37], spatial

audio [24], and fitness tracking [29, 31]. However, the inte-
gration of such advanced sensors presents potential security
challenges. Given this rich sensor integration, headphones
present themselves as an attractive and novel attack vector,
especially for eavesdropping applications such as keystroke
inference. Their proximity to the user and their surrounding
devices (e.g., keyboards), combined with their multi-sensor
capabilities, offers a unique advantage for capturing sensitive
data. Despite these inherent advantages, the potential of head-
phones as a medium for keystroke inference has remained
largely unexplored.

Acoustic eavesdropping has been a thoroughly investigated
side-channel for inferring keystrokes on both physical and
touchscreen keyboards. Lie et al. [19] harnessed sound waves
produced by typing on a traditional keyboard using a smart-
phone’s microphone. In contrast, Narain et al. [27] and Lu
et al.’s KeyListener [22] focused on touchscreen keyboards,
with the the latter using an adjacent adversarial phone. Sim-
ilarly, Bai et al. [7] applied stereo audio recording from a
mobile phone near a physical keyboard for keystroke infer-
ence. These prior works mainly utilized fixed audio recording
devices, such as mobile phones controlled by attackers or
specific computer microphones, to detect the acoustic signals
from keystrokes. In practical situations, it’s unlikely that an
individual would overlook unknown devices in their vicinity.
Though an intruder could consider leveraging the victim’s
mobile phone (via a malicious app), the unpredictable and
user-dependent placement of the phone relative to a keyboard
often diminishes the feasibility of acoustic-only inference.

Past research has also explored the use of motion sensors
for keystroke inference, often utilizing mobile phones or wear-
ables such as smartwatches [9,20,23,39]. Marquardt et al. [25]
notably employed a smartphone’s accelerometer to detect vi-
brations from nearby keyboard keystrokes. However, such
methods are limited by the need for close and/or fixed prox-
imity to the keyboard or require the victim to wear or hold
the infiltrated wearable device on their hand, limiting their
practicality (as in the earlier case).

Diverging from the traditional attacker controlled devices
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or infiltrated user mobile phone based methods, we look into
the possibility of using smart headphones for keystroke in-
ference. Modern headphones, especially the latest Bluetooth-
enabled variants, often come equipped with multiple micro-
phones on both ears. These microphones serve dual purposes:
capturing audio and facilitating noise cancellation. Such a
design makes headphones an enticing vector for a keystroke
inference attack. Further, recognizing that the latest varieties
of headphones, particularly Bluetooth enabled ones, come
with smartphone/desktop apps for their respective devices,
we speculate that a malicious app which has firmware level
API access to the headphone can potentially exploit this con-
nection to discreetly record sensor data in order to carry out
keystroke inference on unsuspecting users. A likely scenario
would be an instance where a manufacturer itself acting as an
adversary using its native app to offload data to its back-end
server in order to further process this data to infer sensitive
information about the users beyond the recorded audio.

One of the significant challenges in the domain of keystroke
inference is training-free inference, where an attacker lacks
labeled training data specific to the victim. More specifically,
in a headphone-based keystroke inference attack scenario, the
relative position between the headphones and the keyboard
can vary considerably based on user traits such as height, arm
length, and the distance from the chair to the table. This is
compounded by both voluntary and involuntary head move-
ments. Prior research that utilized dual microphones, primar-
ily relied on a technique called Time Difference of Arrival
(TDoA) which uses time difference that results when sound
travels to the individual microphones, yielding stable results
primarily because the data collection device was either on the
same surface as the keyboard or was the input device itself
(e.g., mobile phone qwerty keypad keystroke inference) [44].
Further, these prior works on acoustic keystroke inference
relied on recording devices that were mostly stationary, while
in our situation, due to the motion of the headphone induced
by user head movements, the recording devices are not static
and thus may record much more noisier/inconsistent data.

Given the opportunity of being able to employ modern
headphones equipped with a variety of on-board sensors as a
novel attack vector and the associated challenges, in this paper
we propose OverHear, a framework to infer keystroke using
acoustic and motion sensor data collected from headphones.
While the accelerometer data alone lacks the granularity to
distinguish individual keystrokes, it proves to be useful in clus-
tering keys corresponding to each hand especially when tra-
ditional acoustic based sound source localization techniques
may not be working well due to potentially unsteady behav-
ior of the victims. From the acoustic data, we extract Mel-
frequency cepstral coefficients (MFCC) features, and train
and test several machine learning models to predict individual
keys. This prediction is then refined using a dictionary-based
spell-correction approach to further improve the success of a
keystroke inference in a context-aware manner. We attained a

top-5 key prediction accuracy of approximately 80% for me-
chanical keyboards and about 60% for membrane keyboards.
Furthermore, our framework demonstrated a top-50 word pre-
diction accuracy nearing 50%, and surpassed 70% in top-100
word prediction accuracy across all keyboard types.

Our main contributions are as follows.

• Development of a new keystroke inference framework:
To overcome the unique challenges encountered in head-
phone based keystroke inference, we propose a novel infer-
ence framework called OverHear. OverHear integrates data
from both microphones and accelerometers to enhance the
accuracy of keystroke inference. OverHear also includes
a keyboard type identification module to identify the type
of the keyboard a victim may be using (e.g., mechanical or
membrane).

• Enhanced word prediction mechanism: We incorporate
a word prediction technique based on spell-correction to
further improve the efficacy and prediction performance of
OverHear.

• Comprehensive empirical evaluation of the proposed
attack: OverHear is evaluated using data sourced from
real-world participants under realistic/unconstrained set-
tings, spanning across various environmental/ambient noise
scenarios. This ensures that the findings are reflective of
practical, day-to-day scenarios, offering insights into the
framework’s robustness and applicability.

2 Motivation and Related Work
Analysis of acoustic signals for the purpose of inferring user
input on a variety of mobile and computing devices has been
the subject of several studies in recent years, each employ-
ing unique methodologies and achieving varying degrees of
accuracy. Asonov and Agarwal [5] in 2004 employed acous-
tic data collected using a dedicated PC microphone with a
trained neural network that uses frequency domain features
to show that individual key presses can be recognized with
an accuracy of 79%. They demonstrated that their inference
framework works across multiple different computer key-
boards as well as telephone and ATM key pads. In a similar
line of research, Liu et al. [19] proposed a novel approach for
inferring keystrokes on a mobile device by using the resulting
audio signals. They developed a system that utilizes the built-
in stereo microphones of a smartphone positioned adjacent to
keyboard to record sound waves produced by a user’s typing.
By means of a purely non-ML based approach such as a Time-
Difference-of-Arrival (TDoA) technique, they were able to
identify unique patterns in these recorded acoustic waves and
match them to specific keys (being typed). Their framework
was able to produce key inference accuracies close to 85%.
While both the above two research efforts are significant, they
were tested under rather restrictive conditions and focused
solely on individual key presses rather than more complex
scenarios involving word or sentence typing and prediction.
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Similar to Asonov and Agarwal [5], Zhuang et al. used a
Hidden Markov Model (HMM) to infer keystrokes from audio
signals recorded by a PC microphone, and then employed
a language model to facilitate word prediction. They were
able to achieve a prediction accuracy of 88% and 96% for
word and keys, respectively. Narain et al. [27] proposed a
framework to infer keystrokes on a touchscreen QWERTY
keyboard of a mobile device using acoustic signals. They
employed a Decision Tree based learning algorithm, achieving
a fairly high accuracy of close to 95% in a single attempt. The
most notable aspect of this study was its language-agnostic
approach, suggesting that regardless of the language or the
content being typed, the methodology can accurately infer the
keystrokes.

Similar to Narain et al.’s approach [27], Lu et al.’s KeyLis-
tener [22] attempts to infer touch screen QWERTY keyboard
keystrokes on a smartphone, but with a nearby adversarial
smartphone’s microphone. They used a Time-Difference-of-
Arrival (TDoA) based approach, achieving a top-1 word ac-
curacy of around 50% and a top-10 accuracy of around 90%.
Zhu et al. [45] also proposed keystroke inference framework
based on TDoA and achieved a key prediction accuracy of
72%. However, their framework requires at least two mali-
cious mobile phones to be in physical proximity of the victim
keyboard which making executing the attack practicality chal-
lenging. Lastly, Bai et al. [7], drawing parallels with Lie et
al. [19] and Zhu et al. [45], employed stereo audio record-
ings from a mobile phone situated near a keyboard to deduce
keystrokes. Their methodology integrates (TDoA) and Power
Spectral Density (PSD) features within a SVM model. They
achieved a top-1 accuracy of 71% and a further enhanced
top-5 accuracy of 92%.

Several past studies have also explored the use of motion
sensors for keystroke inference [9, 20, 23, 39]. These investi-
gations typically harness motion sensors in mobile phones to
deduce in-device keystrokes or employ smart wearables, like
smartwatches, to infer keystrokes on physical keyboards. Mar-
quardt et al. [25] introduced (sp)iPhone, where accelerometer
data from a device placed near a physical keyboard could
be used to infer keystrokes. For their attack, they capitalized
on the vibrations generated by the keystrokes on the key-
board and transmitted through the table to the smartphone’s
accelerometer.

Our extensive literature review has shown key research
gaps, which motivates us to explore the feasibility of a new
attack surface for carrying out keystroke inference attacks
(on external keyboards). First, previous research which em-
ployed acoustic and/or motion/vibration signals for such at-
tacks primarily relied on stationary recording sources/devices,
such as attacker-controlled mobile phones or dedicated PC
microphones, to capture the motion/vibration and/or sounds
produced by the keystrokes. In real-world scenarios, it’s un-
likely that a victim wouldn’t notice unfamiliar (recording)
devices nearby which makes actually carrying out such at-

tacks challenging. While an attacker might attempt to use the
victim’s own mobile phone (by installing some Trojan app)
for such purposes, the unpredictable positioning of the phone
near a keyboard makes this approach less practical. Further,
headphones, especially the wireless type, are ubiquitous and
often worn continuously by users, even when not in active use
(e.g., for noise cancelling purposes). This constant presence
provides a persistent eavesdropping opportunity.

Our attack model diverges from these existing approaches
by leveraging the user’s own headphones, which typically has
a fixed position over the user’s head. Given that many of these
headphones come with companion apps for smartphones or
desktops (especially modern Bluetooth ones), we assume that
a malicious companion app could serve as a side-channel to
extract sensor data (e.g., acoustic and motion sensors) from
the unsuspecting victim in order to carry out keystroke infer-
ence attacks. However, our attack setup is not free of chal-
lenges. The acoustic stream in our attack scenario presents
its own set of challenges. Unlike stationary microphones or
mobile devices placed on a surface, headphones are subject to
the nuances of human behavior. The user’s head movements,
whether subtle shifts or more pronounced turns (while typing),
can introduce variability in the captured acoustic data. Fur-
thermore, individual anatomical traits, such as the shape and
size of the user’s head, length of the arms, can influence how
sound waves are received by the headphone microphones. On
the other hand, the motion sensor data streams have their own
challenges, i.e., the vibrations (due to keystrokes) sensed by
the on-board motion sensor are less pronounced as they have
to traverse from the hands/body to the head of the user. Con-
sequently, relying solely on accelerometer or motion sensor
data for keystroke inference would not be very effective. Our
key insight is whether acoustic/sound data as sensed by the
microphones can be combined with motion sensor data, both
of which are readily available in most modern headphones,
can be used to effectively carry out keystroke inference in
this unique, yet realistic, setup. We are the first to explore this
novel attack setup for keystroke inference.

3 Background and Preliminaries
This section briefly introduce the type of sensors used in our
keystroke inference framework (OverHear), their sensor feed-
back, and the concept of Time Difference of Arrival (TDoA)
which are required to understand the rest of the paper.

3.1 Microphones in Headphones
Microphones function by capturing sound waves (acoustic
energy) and converting them into electrical signals that can
then be recorded and utilized in various audio and voice ap-
plications. The electrical signal is generated by vibrations of
a diaphragm or membrane, which moves a coil of wire or
a capacitor in response to sound waves. Microphones come
in a variety of forms, including dynamic, ribbon, condenser,
MEMS (Micro-Electro-Mechanical Systems) and electret.
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The two most common polar patterns used in microphones
are omnidirectional and cardioid. In an omnidirectional mi-
crophone, sound is picked up equally from all directions. As
a result, it can detect sound coming from the front, sides, and
back of the microphone. Conversely, a cardioid microphone
is unidirectional, which means it picks up sound primarily
from one direction (usually the front) and rejects it from other
directions. In modern headsets and earbuds where the mi-
crophones are built into the earpiece itself (compared to the
ones where a microphone arm protrudes from the earpiece to
near the mouth), omnidirectional microphones are used. This
is mainly due to the positioning, since the microphones are
not placed near the mouth, it would be challenging for the a
cardioid microphone to consistently pick up user voice. How-
ever, one drawback of using omnidirectional microphones is
the potential for more background noise. To overcome this,
many modern high-end headsets employ noise-cancellation
techniques to help isolate user’s voice and reduce ambient
noise primarily aided by the presence of multiple microphones
present in these headphones, i.e., for user input and dedicated
noise cancelling purposes [18, 33].

3.2 Motion Sensors in Headphones
There has been a rising trend in incorporating intelligent fea-
tures into headphone, in order to enable smart applications.
Early adapters of this innovation, such as the Microsoft Sur-
face headphones and Bose QC35 headphones, have embedded
motion sensors, enhancing user interaction with gesture-based
controls. These headphones empower users to perform actions
like playing or pausing audio and summoning voice assistants
like Siri or Alexa through intuitive gestures [10,13]. Central to
these advancements are two critical sensors: accelerometers
and gyroscopes. Together, these sensors capture movements
of the device in three-dimensional space, breaking them down
along the x, y, and z axes. While accelerometers focus on
linear acceleration – encompassing actions such as tilting or
straightforward motion – the gyroscopes are designed to mea-
sure angular velocity, effectively capturing rotational move-
ments around the three principal axes. This ability allows for
precise discernment of the device’s orientation and angular
shifts [43].

3.3 Sensor Fusion for Keystroke Inference
Our particular interest is in the potential application of these
sensors beyond their intended use, specifically in keystroke
inference. Keyboards possess distinct mechanical characteris-
tics, resulting in the emission of unique acoustic signatures
when keys are pressed and released. As leveraged in previ-
ous works [5, 7], these audible vibrations are detectable by
microphones integrated into nearby devices (see Figure 1a).
Furthermore, as a user engages with a keyboard, the act of
typing creates additional non-acoustic vibrations. These vi-
brations, originating from keystrokes, could travel through the
fingers, palms, and further along the arms. Figure 1b shows
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Figure 1: Typing captured through a pair headphones, (a)
audio, (b) accelerometer.

the accelerometer feedback recorded from a pair of prototype
headphones (equipped with accelerometers on each ear piece)
during a typing task. The noticeable peaks correlate to the
key presses that are occurring indicating the potential of ac-
celerometers for keystroke inference. Though the strength of
these waves diminishes with distance, the sensitivity of mo-
tion sensors in headphones might be adept enough to pick up
certain subtle motions which could facilitate keystroke infer-
ence. This ability to capture such nuanced data from motion
sensors by combining it with audio data could be instrumental
in building a more comprehensive detection and inference
system. Such data fusion provides a comprehensive view of
the data, capturing different perspectives and nuances. As a
result of the integration of these diverse data streams, the de-
tection system overcomes the limitations and biases inherent
in individual sensors, enhancing the identification of patterns.
Additionally, integrating multiple data reduces false positives
and false negatives, resulting in better accuracy.

3.4 Sound Source Localization via Time Dif-
ference of Arrival (TDoA)

Time Difference of Arrival (TDoA) is a method used in acous-
tic, radar, or radio signals to estimate the location of an object
using two or more sensors. The overarching principle behind
TDoA is the sound produced by a source travels through a
medium (often air) and reaches one microphone before the
other, if the sound source isn’t equidistant to the two micro-
phones. This difference in time that the sound signal takes to
reach each microphone is appositely called the Time Differ-
ence of Arrival. Although the process of calculating TDoA
is simple in theory, it becomes complex in practice due to
factors like signal distortion, background noise, and reflec-
tion of sound waves from surfaces. These factors can affect
the signal and make it more difficult to accurately identify
the arrival time of the signal at each microphone. Several
acoustic based inference works in the past have successfully
used TDoA based techniques to predict keystroke [11, 19].
However, the problem becomes even more challenging if the
microphones are not in a fixed position, such as from a pair of
headphones due to the head movements that may occur while
a person is wearing the headphones. Further, specifically in
an inference attack scenario, victim specific anatomical dif-
ferences (e.g., height, arm length) and voluntary/involuntary
head movements could make the use of TDoA less effec-
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tive. In Section 5.3 we detail the observations we made using
real-world participants data on shortcomings of TDoA in our
attack scenario and describe the alternative techniques we
used to overcome such challenges.

4 OverHear Overview
In this section, we describe our adversary model followed by
an overview of our inference attack.

4.1 Adversary Model
The primary objective of an adversary in our attack is to infer
sensitive information typed by the user on a physical key-
board, such as passwords, credit card numbers, and personal
identification details. We assume that the adversary has the
ability to access and acquire both audio and accelerometer
data from the target user’s headphones where the adversary
intercepts the communication between the headset and the
connected device. This can be done via either a Trojan appli-
cation installed in the paired device such as a desktop com-
puter/laptop or a mobile phone which will have firmware level
API access to the headphones. Such an attack setup or adver-
sarial scenario can be easily realized by the headphone device
manufacturer themselves acting as the adversary [8, 30, 38].
The captured data is then transferred to an adversary con-
trolled server elsewhere in which the victim data will be run
through a pre-trained model to infer/predict what the target
victim typed. The adversary has knowledge of the type of
keyboard (i.e., a mechanical keyboard, membrane keyboard
(external) or a laptop membrane keyboard) the victim uses
by employing a keyboard identification model as described in
Section 5.5. The adversary does not have any other medium
of inferring the private text typed, and must rely entirely on
the data streams originating from the headphones.

4.2 Inference Framework
Figure 2 illustrates our OverHear inference framework ar-
chitecture. A malicious companion app associated with the
victim’s headphones is used to covertly capture data from the
headphones’ built-in accelerometers and stereo microphones
during typing activities. For building the training dataset, a
custom application connected to the headphones are used to
capture the data streams. The raw accelerometer and audio
data are then transmitted to a remote server, which houses
the remaining components of our inference framework. This
server processes the data, constructs training models, and
conducts evaluations on the test data.
Recording and Data Pre-processing. OverHear uses raw
audio and accelerometer data captured through their head-
phones during keyboard interactions of the victim. The type
of keyboard in use is then identified to tailor the subsequent
processing steps. Noise filtering techniques are applied to
remove any background/ambient noise that may be present in
the recorded streams. Once cleaned, a segmentation algorithm
is employed to isolate and identify individual keystrokes.

Key 
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Key 
Classification
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Figure 2: OverHear inference framework overview.

Training Dataset Assembly. Using the insights gained from
the pre-identified keyboard type and other criteria, a compre-
hensive training dataset is curated using acoustic and motion
sensor data captured using headphones. This involves data
collection sessions with a select group of participants, ensur-
ing a diverse and representative sample that captures various
typing patterns and styles.
Feature Extraction and Model Training. With the train-
ing data in place, the system extracts a set of features for
each keystroke which encapsulate the unique characteristics
of keystrokes. The keys are then clustered into three groups
based on their potential typing hand; left, right and ambiguous
(see Section 5.3.2 for more details) and then used to train a
machine learning model, optimizing it for accuracy and gen-
eralization across different users/victims with varying typing
traits.
Prediction on Victim Data. Using the trained inference
model from the previous step, the framework now processes
unlabeled data from the victim to infer their keystrokes. The
audio and motion sensor data streams captured through vic-
tim’s headphones go through the same pipeline as the training
dataset where the data streams are first pre-processed and
segmented to identify keystrokes. The unlabeled keystrokes
are then tested via the trained machine learning models to pre-
dict keystrokes. The sequences of keystrokes are then further
processed in a word prediction module with the aid of a spell
correcting algorithm to predict the closest matching words.

5 Framework Design and Implementation
In this section, we outline the design of our OverHear frame-
work and then discuss the specifics of its implementation,
including our experimental setup and data collection proce-
dure.

5.1 Data Pre-processing
Audio Noise Filtering. To ensure the clarity and relevance of
our audio data in the context of keystrokes, we employed fil-
tering to mitigate background noise, which typically occurs at
higher frequencies distinct from those of keystrokes. Through
analysis of the audio captured via our headphone setup, we
discerned that keystrokes predominantly occur within the fre-
quency range of 1200 - 3800 Hz. Consequently, a bandpass
filter was tailored to retain information within this specific
range while filtering out extraneous frequencies. However,
while this range effectively captures both mechanical and
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membrane type keyboard keystrokes tested in our study, ad-
justments might be necessary to accommodate the unique
sound profiles of other keyboards.
Accelerometer Noise Filtering. The raw accelerometer data
very often contain noise, primarily stemming from involuntary
body movements, if from a body worn device. Specifically, in
our headphone based attack scenario, this can be accounted
to minor head movements. To address this, we employed a
low-pass filter designed to eliminate high-frequency noise
while preserving the lower-frequency vibrations induced by
key presses.

5.2 Keystroke Segmentation
A keystroke consists of two main components in its acoustic
signal, namely the the key hit and key release which produces
two different peaks in the signal. Figure 3 illustrates the typi-
cal acoustic feedback captured from the stereo microphones
on a pair of headphones from a keyboard key press event.
The initial more pronounced peak represents the key hit event,
while the subsequent, lower peak indicates the key release
event.
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Figure 3: Acoustic waveform of a keystroke.

We observed that the average duration of a keystroke is
about 80 ms. We use a sliding window with a size of 1 ms (em-
pirically determined) and calculates the energy (Equation (1)),
which is the sum of the squares of the audio amplitude values
for each window and is given by the following formula:

Ex = ∑
n
|x(n)|2 (1)

where E is the energy of the signal, n is the index of the
audio sample and x(n)2 is the square of the amplitude of the
signal at the nth sample. We then pass each window through
an adaptive thresholding peak picking algorithm called Music
Structure Analysis Framework (MSAF) [28] which considers
a local average to pick the prominent keystroke related peaks
and to discard insignificant noise peaks. The windows with the
detected peaks are then considered to be potential keystroke
start points, ps. The consecutive start points less than 100 ms
are discarded. For each start point, we extract the keystroke
as follows:

ksi = (psi−5ms, psi +80ms) (2)

where, ksi is the ith keystroke in the continuous signal, psi
is the start point of the keystroke, and psi +80ms is the end
point of the keystroke.

5.3 Key Group Clustering
One of the challenges in a keystroke inference attack is the
number of potential keys on a keyboard, which can make
the prediction task complex. Training a single model to dis-
tinguish between each key individually may require a vast
amount of data for each key to achieve reasonable accuracy.
By grouping keys, the dimensionality of the problem can be
reduced, making the training and inference processes more
practical. We first look into methods used for key grouping in
previous acoustic based keystroke inference works [19,27] for
their applicability in our attack scenario, identify challenges
posed by them, followed by proposing techniques that suits
our headphone based inference setting.

5.3.1 Traditional TDoA Based Clustering
We first look into the possibility of using traditional Time
Difference of Arrival (TDoA) based key identification/key
group clustering methods to identify similar keystrokes with
similar sound profiles [11]. We compute TDoA via the cross-
correlation method for the 2-channel audio signal. TDoA
estimation using cross-correlation involves finding the lag (or
shift) at which two signals are most similar [7]. The cross-
correlation TDoA formula is as follows:

TDoA = argmax
k

(
∑
n

S1[n] ·S2[n+ k]
)

(3)

where S1[n] is the signal at the first microphone at discrete
time n, S2[n+k] is the signal at the second microphone shifted
by k samples and argmaxk indicates the shift k at which the
cross-correlation is maximized, i.e., the shift where the two
signals look the most similar.

However, the dynamic nature of head movements during
typing tasks presented a significant challenge. Typists fre-
quently shift their gaze, alternating between various sections
of the screen and sometimes the keyboard. This constant
change in head orientation rendered TDoA an unreliable met-
ric for uniquely determining key positions. This is evident not
only for individual users/typists, as shown in Figure 4a, but
also when considering multiple users, as depicted in Figure 4b.
The extensive spread of data points across all keys or classes
further corroborates this observation. Moreover, our attempts
to identify distinct key groups/clusters based on similar TDoA
values, as was done in some previous works [11, 19], proved
to be unsuccessful. The high variability and inconsistency
in TDoA values, exacerbated by the previously mentioned
anatomical differences and head movements of the users, ren-
dered the task of grouping keys with similar acoustic charac-
teristics nearly impossible. This further highlights the unique
challenges posed by our headphone-based setup compared to
previous keystroke inference methodologies [7, 19, 27].
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Figure 4: Variability of TDoA values (a) for a single partici-
pant, (b) across all participants.

5.3.2 Energy Based Clustering
We next explored other techniques that could aid our frame-
work in identifying key groups. Specifically, we explored the
energy levels of keystrokes in the acoustic signal. As we can
observe in Figure 5a, the energy for the keystrokes towards
the right of the keyboard is higher on the right audio chan-
nel compared to left channel and vice versa. Under a setting
similar to previous works [7, 19], where the audio recording
happens from a fixed position such as a phone kept nearby the
keyboard, this type of energy based clustering can easily be
used to cluster the keys into left and right groups. However,
due to the constantly varying head direction changes that hap-
pen during typing tasks, which may include either looking at
different parts of the screen or looking at the keyboard and
then looking back at the screen, the energy differences for left
and right audio channels also turned out to be not reliable and
consistent.
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Figure 5: Difference between energy levels of left and right (a)
audio channels for keystrokes when typing the word “wheel”,
(b) accelerometer channels when pressing key ‘a’.

Although, the audio channels are affected by the head move-
ments and deemed unreliable for the use of key clustering,
we discovered an alternative in the accelerometers embedded
on both sides of the headset. These accelerometers showed
potential in estimating whether a keystroke was made by
the right or left hand, based on the motion feedback they
recorded. Specifically, the upward and downward head move-
ments, which often occur during typing (for instance, when
participants glance at the keyboard and then refocus on the
screen), is predominantly observed on the x-axis of the head-
phone accelerometers. The side-way head movements that
may occur during typing are noticeable on the y-axis. The
z-axis was observed to be the most stable axis to capture the
key press vibrations belonging to left or right hand. Figure 5b
shows the accelerometer feedback captured from from our

prototype (detailed in Section 5.7) headphone. when pressing
key ‘a’ using the left hand in which the z axis energy profile
of the left channel is clearly distinct from all the other axes.

With the aforementioned observations on energy signifi-
cance on accelerometer z-axis, to quantify the distribution of
energy between the left and right accelerometer channels, we
introduce an energy ratio metric. For each channel, the energy,
E, is computed as the sum of the squares of its samples (see
Equation (1)). The energy ratio, ER, is then defined as the
proportion of the left channel’s energy to the total energy of
both channels, formulated as:

ER =
Eleft

Eleft +Eright + ε
(4)

where ε is a minuscule constant introduced to prevent division
by zero. This metric provides a relative energy measurement
between the two channels. If a key is pressed from the left-
hand, the energy registered on the left accelerometer channel
(of the headphones) will be higher than the right accelerometer
making the ER closer to 1 and if it’s a right-hand pressed
key, ER will be closer to 0. Since the energy ratio inherently
normalizes the values between 0 and 1. This makes it easier
to adapt across different users, as the absolute energy values
can vary based on factors like distance from the source of
vibration/key press (due to anatomical differences), or even
the user’s typing intensity.

Given the energy ratio, we heuristically label three key
groups based on their spatial positioning and the hand pre-
dominantly used to press them. Specifically, we define:

GGG111: Keys predominantly pressed by the left hand, namely
{a, s, d, z, x, q, w}.

GGG222: Keys predominantly pressed by the right hand, namely
{o, p, k, l, n, m, i, j}.

GGG333: Ambiguous keys that could be pressed by either hand,
namely {r, t, y, u, f, g, h, v, b, c, e}.

We observed that keys within groups G1 and G2 are pre-
dominantly pressed by the left and right hands, respectively,
across different users, especially due to their spatial posi-
tioning on the keyboard (extreme left and extreme right).
However, the keys in group G3 presented ambiguity, with the
choice of hand varying from one user to another. Such vari-
ations could arise from individual typing habits or a user’s
inclination to favor their dominant hand. During the testing
phase on unseen data, the median energy ratio, Emed

R , is com-
puted for all samples for a given test user/victim. The rationale
behind computing the median energy ratio is to account for
the variability in key pressing intensities among different par-
ticipants. Different participants may exert different pressures
when pressing keys, leading to variations in the vibrational
feedback recorded by the accelerometers. By using the me-
dian, we aim to normalize this variability and achieve an
adaptive clustering mechanism. Keys with an energy ratio
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greater than Emed
R are classified into G1, while those with

an energy ratio less than Emed
R are classified into G2. Keys

with an energy ratio close to Emed
R , within a threshold γ, are

classified as G3.
Later in Section 5.4 we train three different classification

models, one for each group, to predict exact keys within each
group. During this prediction, if a test keystroke is initially
classified into G1 but the prediction probability is below a
certain threshold λ, the test keystroke is then also evaluated
by the models for G2 and G3. The final prediction is chosen
from the model that yields the highest prediction probability
(see Algorithm 1).

Algorithm 1 Energy Ratio-Based Key Group Classification

Require: ER, Emed
R , λ

1: if ER > Emed
R then

2: if Prediction Probability of G1 < λ then
3: Evaluate using G2, G3
4: MaxProbability(G1,G2,G3)
5: elseclassify using G1
6: end if
7: else if ER < Emed

R then
8: if Prediction Probability of G2 < λ then
9: Evaluate using G1, G3

10: MaxProbability(G1,G2,G3)
11: elseclassify using G2
12: end if
13: else
14: if Prediction Probability of G3 < λ then
15: Evaluate using G1, G2
16: MaxProbability(G1,G2,G3)
17: elseclassify using G3
18: end if
19: end if

5.4 Feature Extraction and Model Training
After the key clustering step, we then investigate acoustic
based features which could be used to identify individual
keys. One such set of features include the Mel Frequency
Cepstral Coefficients (MFCC), which have been widely used
in the field of speech and audio signal processing, particu-
larly for applications such as speech recognition and speaker
identification [2]. However, more recently MFCC based fea-
tures have been used in other acoustic related applications
such as keystroke recognition and acoustic activity recog-
nition [19, 32]. The process broadly involves the following
steps: (i) First the signal is divided fixed sized frames and
for each frame Fast Fourier Transform (FFT) is applied to
calculate the power spectrum. (ii) Then, Mel Filter Bank is
applied on the power spectrum computed for each frame.
The Mel Filter bank is a set of 20-40 (usually) triangular
filters that are spaced according to the Mel scale, which ap-
proximates the human ear’s response more closely than the
linearly-spaced frequency bands. This process converts the
frequency power spectrum into Mel spectrum [19]. For our

inference framework, we extracted 14 MFCC coefficients for
each audio channel (left and right). To capture the variability
and characteristics of these coefficients, we computed sev-
eral statistical measures: mean, standard deviation, skewness,
maximum value, median, and minimum value. This resulted
in 14×6=84 features for each channel. Thus, combining both
channels, we derived a total of 168 features. In addition to
the MFCC features, we also included the Root Mean Square
Energy (RMSE) [40] of each keystroke per channel, bringing
the total feature count to 170. Building on this, we tested
several models including Random Forest classifier, Decision
Tree Classifier and a Deep Neural Network for our analysis.
To optimize its performance, we utilized a Grid Search Cross-
Validation approach for hyperparameter tuning. As described
in Section 5.3.2, we train three different models for key groups
G1, G2 and G3 using labeled training data. The training and
testing were executed in a Leave-One-Out Cross-Validation
(LOOCV) manner, ensuring that a test/victim participant was
excluded in each iteration.

5.5 Keyboard Type Inference
A preliminary step for an attacker aiming to execute a
keystroke inference attack is to infer the type of keyboard
the victim employs. Given the distinct acoustic signatures
produced by different keyboard types, such as mechanical
or membrane, understanding the keyboard type can pave the
way for a more targeted and effective attack. In our study,
we gathered data from two distinct brands for each of the
key board categories: K1: mechanical, K2: membrane, and
K3: laptop-based membrane keyboards. The rationale behind
using two models for each category was to introduce a level
of complexity to the inference task. If the model were trained
solely on data from a single brand for each category, it would
trivially classify that brand during testing. Our objective with
keyboard type inference is to generalize across brands and
variations within each category, ensuring the model can iden-
tify the overarching category to which they belong. For the
purpose of type inference, we segment the keyboard input
audio data into 30-second windows, extracting 6 MFCC fea-
tures and Root-Mean-Square-Energy RMSE (Equation (1)
for each segment. We observed during our experiments that,
while keystroke inference demands a much more detailed fea-
ture set, keyboard type inference can be effectively achieved
with just these 6 MFCC features. Subsequently, we employ
a multi-class logistic regression model trained on this data
to predict the keyboard type. The keyboards tested in our
keyboard type inference experiment are as follows:

K1: Monoprice MP810 (with red switches) [26] and Aukey
KMG12 (with blue switches) [6].
K2: Logitech K120 [21] and Dynex DX-PNC2019 [12].
K3: Tecknet Ultra Slim Compact [36] and the keyboard of
the HP Envy x360 15" laptop [16].
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5.6 Word Prediction
After predicting individual keystrokes, we further look into
the possibility of increasing the effectiveness of our attack in
a context aware manner by predicting the possible word (com-
prising of the inferred keystrokes). To this end, we mainly
explored two methods to tackle our word prediction task. The
first approach is a naive dictionary-based method, where each
sequence derived from the top-k predicted letters (from the
aforementioned key prediction models) is cross-referenced
with a predefined dictionary. If a sequence matches an entry
within the dictionary, it’s deemed a valid word. However, this
method has its limitations, especially when the key predictions
contain inaccuracies such incorrect key predictions, missing
certain keystrokes or having extra keystrokes. Our second
method leverages the SymSpell algorithm [14]. SymSpell is
a spelling correction algorithm that works by pre-computing
possible spelling errors for every word in its dictionary, up to
a given edit distance. Instead of searching for possible correc-
tions during the lookup, it directly utilizes this pre-computed
data to identify close matches. This design allows for rapid
and memory-efficient word predictions and corrections, mak-
ing it particularly suitable for our scenario due to the possi-
bility of presence of missing, incorrect or extra keystrokes.
The procedure (see Algorithm 2) starts by initializing the
SymSpell library and loading a comprehensive frequency
dictionary. Next, given a set of top-k letter predictions, we
generate all possible word combinations. For each of these
generated terms, we consult SymSpell to gather the closest
matching words in the dictionary. This results in a collection
of suggested words, each associated with its frequency of us-
age. Finally, to provide the most probable corrections, we sort
the accumulated suggestions based on their word frequencies
and return the top-w predictions as the output. The rationale
being that words that appear more frequently in the language
(or specific corpus) are more likely to be the intended word
when a spelling error is made. In essence, the frequency of
usage helps in prioritizing common words over less common
ones when suggesting corrections.

5.7 Experimental Setup
Due to the absence of published APIs in current generation of
commercial headphones that allow for accelerometer data ex-
traction, we were compelled to devise our own custom setup
to evaluate OverHear. Our experimental setup comprises of a
Raspberry Pi, and a 3D-printed over-the-ear headphone pro-
totype (see Figure 6). To capture audio, we equipped each
earpiece with an Adafruit I2S MEMS Microphone [1] and a
MPU-6500 accelerometer [34] to record the motion data. The
audio was sampled at a maximum of 96 kHz while accelerom-
eter was sampled at a maximum of 500 Hz. The microphones
and the accelerometers were connected to the Raspberry Pi
via the GPIO interface and a Python script was used to record
the data from each microphone/sensor. The data processing
and inference framework evaluation was done on a Ubuntu

Algorithm 2 Word Prediction with SymSpell.
Require: predictions:top-k letter predictions
Require: topK: number of words to return

1: function SPELLCORRECTION(predictions, topK)
2: Initialize sym_spell and load dictionary
3: possible_combinations ← GENERATECOMBINA-

TIONS(predictions)
4: Initialize predicted_words_with_counts as empty list
5: for each input_term in possible_combinations do
6: Get suggestions for input_term from sym_spell
7: Append unique suggestions to

predicted_words_with_counts
8: end for
9: Sort predicted_words_with_counts by word frequency re-

turn First top−w words from predicted_words_with_counts
10: end function

22.04 virtual machine with 32GB memory and 32 cores using
Python 3.10.

Our experiments included a diverse range of keyboards
to ensure a comprehensive evaluation. We used a AUKEY
KMG12 [6], a full-sized mechanical keyboard (104 keys)
to represent K1 category. For the K2 category, we utilized
a Logitech K120 [21], another full-sized model. To closely
replicate a keyboard of modern laptops a Tecknet Ultra Slim
Compact keyboard (68 keys) [36], was used (representing the
K3 category) This diversity in keyboard types allowed us to
assess the robustness and adaptability of our framework across
different tactile feedback mechanisms and form factors.

5.8 Data Collection
We recruited 17 participants, in the age range from 18-38, to
collect typing data using our custom prototype pair of head-
phones. The participants conducted two experiments across
three types of keyboard while wearing our custom headset (as
described in Section 5.7. The experiments were conducted in-
side a closed office space. For the first experiment, they typed
individual keys/English alphabets displayed on the screen one
at a time, where each key is repeated for five times at random.
The second experiment involved them typing 300 English
words from a 5000 most frequent words with number of let-
ters ranging from three to seven [42]. Participants engaged in

Figure 6: A user wearing our headphone setup.
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the typing tasks using a 24-inch computer monitor. To ensure
comfort and a natural typing posture, they were provided with
a height adjustable chair, allowing them to choose a seating
level they found most comfortable. We did not impose any
specific typing techniques on the participants; instead, they
were encouraged to type in a manner consistent with their
daily habits. The participants also filled out a short survey (see
Appendix D) at the end of the experiments which included
questions relating to their typing behaviors and headphone
usage. Some useful/interesting insights obtained via the sur-
vey are given in Appendix E. All participant recruitment and
data collection experiments for our study were done under
approval from our institution’s Institutional Review Board
(IRB).

6 Evaluation
In this section, we comprehensively evaluate the performance
of our proposed keystroke inference framework, OverHear,
under a wide variety of different experimental settings and
conditions.

6.1 Metrics
We use the following metrics for quantifying the performance
of OverHear.
Precision and Recall. Precision measures the number of cor-
rectly predicted keystroke segments out of the total predicted
keystroke segments, while recall (or sensitivity) calculates the
number of correctly predicted keystroke segments out of the
actual keystroke segments. We also use precision and recall
to measure the prediction performance of our keyboard type
inference module of the OverHear framework.
Top-kkkkey Accuracy. This metric evaluates the accuracy of the
top-k key predictions. Specifically, if the true label is within
the top-k predicted labels, then the prediction is considered
correct. We utilized top-kkey accuracy for assessing the per-
formance of our OverHear framework at an individual key
prediction level.
Top-kkkword Accuracy. Evaluates the accuracy of the top-k
word predictions. If the true word is within the top-k predicted
words, the prediction is deemed accurate.

6.2 Keyboard Type Inference
Across all keyboard type categories, our keyboard type identi-
fication model demonstrated robust performance, consistently
achieving an accuracy exceeding 0.95 when the training data
includes data from the same brand of keyboard. However,
when the type inference model is trained using one keyboard
brand for each category, the performance slightly degrades,
yet except for K2 category of keyboards, both the other cate-
gories (see Table 1) demonstrated a recall over 0.95.

6.3 Keystroke Detection
Our keystroke segmentation algorithm, as part of the Over-
Hear framework, exhibited consistent performance across

Table 1: Keyboard Type Inference Performance.

Keyboard Type Precision Recall

Mechanical (K1) 0.86 0.96

Membrane Type 1 (K2) 0.98 0.76

Membrane Type 2 (K3) 0.88 0.99

various keyboard types (see Figure 7). For keyboard type K1,
the precision and recall were both measured at 0.80 (σ=0.05
and σ=0.08, respectively). For keyboard type K2, the preci-
sion was 0.78 (σ=0.07) and the recall was 0.77 (σ=0.07). For
keyboard type K3, we observed a precision of 0.75 (σ=0.08)
and a recall of 0.80 (σ=0.06). While these results indicate
stability in performance, there are inherent challenges that
contribute to the slightly lower accuracy. One primary chal-
lenge arises when keys are pressed quickly in succession.
Particularly with adept typists, the acoustic energy from one
key can overlap with the subsequent key, complicating the
distinction between individual keystrokes. Additionally, the
unique typing dynamics of each individual introduce vari-
ability. Some users exert varied force on keys, while others
occasionally press two keys nearly concurrently. These issues
add layers of complexity to the keystroke detection process.
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Figure 7: Keystroke detection performance for different key-
boards types.

6.4 Overall Performance
As mentioned earlier, we evaluated OverHear’s performance
across three keyboard type categories, K1, K2, K3. The re-
sults revealed that, K1, achieved the highest top-5key accuracy
of 0.77 and a top-10key accuracy of 0.88. In comparison, K2,
recorded a top-5key accuracy of 0.58, and K3, had a top-5key
accuracy of 0.53. Mechanical keyboards, i.e., category K1
tend to produce near distinct tactile feedback and sound pro-
files for each key press. This unique acoustic signature for
each key can make it easier for the system to differentiate
between keystrokes, leading to higher accuracy as observed
in our results. While larger external membrane keyboards (cat-
egory K2) too produce a some amount of tactile feedback, the
sound profiles might not be as distinct as those of mechanical
keyboards. The smaller, membrane type K3 which closely re-
sembles laptop keyboards, typically have keys closer together,
leading to overlapping or less distinct sound profiles, espe-
cially when keys are pressed in rapid succession. Additionally,
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the build and material of such keyboards might dampen the
sound further, making it harder to infer keystrokes accurately.

In evaluating the efficacy of our clustering algorithm, we
compared the accuracy of our model with and without the
clustering approach. As presented in Table 2, the clustering
algorithm considerably enhanced the accuracy across all key-
board types. For the mechanical keyboard type, K1, the top-
5key accuracy improved from 0.59 to 0.77. Similarly, for the
membrane type, K2, there was a noticeable increase from 0.41
to 0.58. The membrane type, K3, also saw an enhancement
in accuracy, with top-5key accuracy rising from 0.37 to 0.52.
These results shows the effectiveness of the accelerometer
based clustering algorithm in refining the keystroke inference,
making it an important component of our OverHear inference
framework.
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Figure 8: Top-kkey accuracy comparison across different key-
board types.

Table 2: Accuracy comparison (top-5key), with and with out
the clustering algorithm.

Keyboard Type w/o Clustering with Clustering

K1 0.59 0.77

K2 0.41 0.58

K3 0.37 0.53

In our evaluations, the Random Forest classifier consis-
tently outperformed other models across all keyboard types
(see Figure 9). Specifically, for K1, it achieved a top-5key
accuracy of approximately 0.77, while for K2 and K3, the
accuracies were 0.57 and 0.53, respectively. In contrast, the
Decision Tree classifier managed a top-5key accuracy of 0.57
for K1 and around 0.33 for both K2 and K3. The Deep Neural
Network (DNN) model was the least effective, with accuracies
falling below 0.15 for all keyboard categories. The Random
Forest classifier outperformed other models likely due to its
ensemble nature, effectively capturing complex patterns with-
out overfitting. In contrast, the Deep Neural Network (DNN)
model struggled, likely because DNNs require substantial
amount of data for effective training, beyond the dataset that
we collected. Moving forward, exploring alternative models
such as single- and few-shot learning techniques could poten-
tially offer more robust solutions, especially when training
data is limited [41].
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Figure 9: Model comparison (top-5key accuracy).

6.5 Sampling Rates
In our experiments, we explored the impact of different sam-
pling rates on the performance of our OverHear inference
framework (see Figure 10), starting from our default rate of
96kHz for the audio signal. Our findings indicate that the
performance at 48kHz is nearly on par with that at 96kHz.
However, when the sampling rate is further reduced to 16kHz,
we observed a considerable degradation in OverHear’s per-
formance. This indicates OverHear can work fairly well even
at lower sampling rates.
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Figure 10: Top-5key prediction accuracy vs. sampling rates.

6.6 Ambient Noise
We evaluated the robustness of OverHear under various am-
bient noise conditions. In a university cafeteria setting, the
environment was busy with people eating, working on their
laptops, and background music playing. The open office space
had 2-3 individuals working nearby on computers, accompa-
nied by the typical sounds of typing, mouse clicks, and the
occasional mobile phone ringing. In contrast, the closed office
space provided a quiet environment with minimal background
noise. From the results (see Figure 11), it’s evident that Over-
Hear’s accuracy is highest in quieter environments, such as
a closed office, and decreases with increasing ambient noise,
with the cafeteria setting being the most challenging with ac-
curacies dropping below 0.45. This trend is consistent across
all three keyboard types. This shows that OverHear works
well in quieter (ideal) environments, but the accuracy is rea-
sonable even in noisier (less ideal) environments.

6.7 Word Prediction
Our word prediction technique, leveraging the SymSpell li-
brary, as seen in Figure 12, demonstrated considerable ef-
ficacy, achieving top-50word accuracies nearing 0.50 across
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Figure 11: Top-5key accuracy under vs. types of ambient noise.

all keyboard categories. Further, K1 reached a 0.76 accuracy
for top-100word predictions, while K2 and K3 closely fol-
lowed with 0.71 and 0.70, respectively. For K1, five out of
six, participants achieved an accuracy exceeding 0.60 for top-
50word predictions, with only one participant falling below
the 0.40 mark. In the case of K2 and K3, barring one outlier
in each category, all participants consistently achieved around
the 0.50 accuracy level for top-50word predictions. In con-
trast, the naive dictionary-based approach, which relies solely
on exact matches, lagged behind. Its limited adaptability to
variations in keystroke data meant it consistently registered
accuracies below 0.4 for all keyboard types. These results
can be attributed to SymSpell’s ability to efficiently handle
typographical errors, which aids in more accurate word sug-
gestions, especially in the presence of potentially inaccurate
key predictions along with extra or missing keystrokes.
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Figure 12: Top-kword accuracies.

6.8 Effect of Typing Speeds
We initially observed that, faster typing speeds does not im-
pact our keystroke segmentation step (see Appendix A). En-
compassing keystroke segmentation and subsequent process-
ing, OverHear demonstrates consistent key prediction perfor-
mance across varying typing speeds (see Figure 13). While
the majority of participants yielded consistent accuracy, an
exception was observed in one participant with a typing speed
of approximately 35 WPM, who registered an accuracy below
0.5. Despite this outlier, the overall robustness of OverHear
across varied typing speeds is evident, highlighting its adapt-
ability to diverse user behaviors.
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Figure 13: Typing speeds vs. key-level accuracy.

6.9 Factors Affecting Accuracy
In our analysis of the factors that may be affecting accuracy
OverHear, several patterns emerged. For the key group G2,
no major misclassification patterns were observed. However,
there are instances where the key ‘k’ is misinterpreted as ‘i’,
and ‘m’ is confused with ‘n’. In the G3 group, the keys ‘j’ and
‘h’ as well as ‘y’ and ‘r’ are often interchanged. Furthermore,
the keys ‘q’ and ‘w’ consistently exhibit lower accuracy rates.
In G1 we observed that the key ‘z’ is frequently misclassified
as ‘x’, and ‘x’ is often mistaken for ‘s’ (see Appendix B for
further details). These confusion patterns can be mostly ac-
counted to the spatial closeness of these keys on the keyboard
leading to similar acoustic profiles that can be challenging to
distinguish. Figure 14 visualizes this relationship between the
frequency of misclassifications and the Euclidean distance
between ground truth and predicted keys on a QWERTY key-
board, categorized into our three key groups: G1, G2, and G3.
A prominent observation from the plot is that misclassifica-
tions are more frequent for keys that are closer in distance,
particularly for the G3 group. This suggests that keys in the
G3 group are often confused with their immediate neighbors
on the keyboard. The plot shows the inherent challenge in
distinguishing between keystrokes of adjacent keys, empha-
sizing the spatial aspect of the misclassification problem on a
physical keyboard layout.
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Figure 14: Frequency of misclassifications vs. key distance.

Certain users possess the ability to type without glancing at
the keyboard, maintaining a steady gaze on the screen. This
consistent posture ensures minimal head movement, leading
to relatively stable acoustic profiles. Conversely, users who
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frequently look down at the keyboard introduce regular verti-
cal head movements. These continuous and pronounced shifts
can also influence the acoustic signatures, potentially chal-
lenging the models employed by OverHear to accurately dis-
tinguish and classify keystrokes. To get a better understanding
of such head movements and their potential correlation to the
accuracy of OverHear, we analyzed the frequency spectrum
of the gyroscope data (collected alongside accelerometer data
with the MPU-6500 sensor used in our custom setup). Partic-
ularly, we looked at the median frequency of each participant,
which can be considered as the frequency below which 50%
of the power of the signal lies. A higher median frequency in
gyroscope data typically indicates more rapid changes in the
signal, which can be interpreted as more intense or faster head
movements. As it can be seen in Figure 15, the three partici-
pants with the higher median gyroscope showed the lowest
top-5key accuracies with values below 0.70 allowing us to po-
tentially hypothesize that more intense head movements might
introduce more noise or variability in the audio/accelerometer
data, making keystroke inference more challenging.
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Figure 15: Participants vs. their median gyroscope frequency.

7 Discussion
Attack Impact. The ubiquity of headphones, equipped with
advanced microphones and motion sensors, highlights the po-
tential reach of our keystroke inference attack. Leading prod-
ucts like the Pixel Buds [15], Apple AirPods [4], and the over-
ear AirPods Max [3] not only promise superior audio/voice
call quality but also come integrated with accelerometers and
gyroscopes for a better user experience. These features, while
enhancing user experience, inadvertently make these devices
susceptible to OverHear. Our results, particularly the high
accuracy on external mechanical and membrane keyboards,
emphasize the feasibility and potential success of such an
attack in real-world scenarios. Question 7 of the participant
survey (Appendix D) further corroborates the threat landscape.
With 12% of respondents using mechanical keyboards and
47% on membrane keyboards it’s evident that a large seg-
ment of users could be vulnerable. Specifically, mechanical
keyboards have seen a resurgence in popularity over the past
decade, especially among certain demographics, such as, the
gaming community, technology enthusiasts and professional
typists [35]. Given the projected Compound Annual Growth
Rate (CAGR) of 6.79% from 2022-2027, it’s evident that this
user base is not only substantial but also expanding [35]. Our

OverHear inference framework, which demonstrates height-
ened efficacy for mechanical keyboards, poses a notable threat
to this growing user base.
Mitigations. Noise-canceling features included in most mod-
ern headphones offers a promising avenue to counteract the
threat of acoustic keystroke inference. Originally designed
to minimize ambient sounds, this can be further optimized
to specifically target and suppress the unique acoustic sig-
natures of key presses. While it’s challenging to completely
mute the sound of keystrokes, integrating such targeted noise-
canceling features to the headphones can significantly degrade
the quality of captured keystroke sounds, thereby reducing the
effectiveness of inference attacks. Additionally, employing
quieter keyboards, such as Scissor keyboards, can further mit-
igate such attacks. Scissor keyboards [17], often in laptops,
offer a slim profile and quiet typing due to their scissor-like
hinge structure. They outperform mechanical keyboards with
audible switches and membrane keyboards with rubber domes
by minimizing key-press noise. Further at an operating sys-
tem level of the paired smart device (e.g., smartphone or a
computer), a system-level service could be introduced to mon-
itor the amount and frequency of data being sent by each
application. If an app, such as a headphone companion app,
starts offloading unusually large amounts of data or at an
unexpected frequency, it can be flagged for review.
Limitations. While OverHear demonstrates promising re-
sults in the context of keystroke inference using headphones,
there are several limitations. Given the current accuracy levels,
predicting complex passwords, especially those that incorpo-
rate a mix of alphanumeric characters, symbols, and vary-
ing cases, becomes challenging. This is particularly true for
passwords that do not adhere to common linguistic patterns.
Further, OverHear is robust only up to certain levels of am-
bient noise. In extremely noisy environments, such as noisy
cafeterias or situations where multiple overlapping acoustic
sources are present, the attack performance is expected to
significantly degrade (as also observed by us in Section 6.6).

8 Conclusion
Headphones have transitioned from mere audio playback
devices to sophisticated tools equipped with high-definition
microphones and accelerometers. This evolution, while en-
hancing user experience, has inadvertently opened doors to
potential security threats, notably keystroke inference. In this
study, we presented OverHear, a framework that adeptly har-
nesses both acoustic and accelerometer data from headphones
to infer keystrokes achieving a top-5 key accuracy nearing
80% for mechanical keyboards and 60% for membrane key-
boards. Further, we were able to achieve top-100 word ac-
curacy of over 70% for all categories of keyboards. While
our results highlight the vulnerabilities introduced by modern
headphones in real-world scenarios, they also emphasize the
importance of understanding and addressing these emerging
security challenges.
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A Keystroke Detection vs. Typing Speeds

Figure 16 illustrates the precision and recall of our keystroke
detection algorithm (detailed in Section 5.2 and Section 6.3).
Notably, the algorithm’s performance remains consistent even
at higher typing speeds.
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Figure 16: Precision and recall for keystroke detection vs.
user typing speed (WPM) for K1.

B Confusion Matrices for Key Predictions

Figures 17 to 19 present confusion matrices for key predic-
tions across groups G1, G2, and G3. Notably, while G2 and
G3 exhibit minimal misclassifications, in G1, most keys sur-
rounding ‘a’ are frequently mistaken for ‘a’.
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Figure 17: Confusion matrix for group G1 keys.
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Figure 18: Confusion matrix for group G2 keys.
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Figure 19: Confusion matrix for group G3 keys.

C Word Prediction Under Noise

Figure 20 illustrates the word-prediction performance in a
cafe ambient noise setting. Despite the key prediction accu-
racy being notably lower than in quieter environments, top-
100word predictions still approached an accuracy close to 0.60.
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Figure 20: Word-level top-w accuracy under cafeteria ambient
noise.

D Participant Survey

1. What is your age?

2. What is your dominant hand?
Right, Left

3. Do you currently own any of the following digital de-
vices?

• Yes, No - Bluetooth Over-the-Ear Headsets

• Yes, No - Bluetooth Earbuds

4. How often do you type on a computer keyboard while
wearing a pair of headsets/earbuds?
Never, Rarely, Sometimes, Often, Always

5. How many hours a day do you perform typing tasks in
general?
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6. How many hours a day do you perform typing tasks
while wearing a headset/earbuds?

7. What type of a keyboard do you own?
Membrane, Mechanical,Not Sure

8. Where do you typically perform your typing tasks?
café, library, classroom, home, other (please specify)

9. Do you keep your headphones/earbuds near your com-
puter/keyboard while not wearing them?
Yes, No

10. Have you installed the smartphone app that comes bun-
dled with your headset/earbuds?
Yes, No

11. Are you aware that modern headphones and earbuds
have embedded motion sensors in them?
Yes, No

E Insights from Participant Survey Responses

Through the responses from our participant survey, we were
able to gain the below insights into the individual typing be-
haviors and the prevalent patterns of headphone usage among
participants.

• A majority of participants (52.94%) often type on a com-
puter keyboard while wearing headphones or earbuds,
with 17.65% doing so always. On average, 11.76% type
for 2.5 hours per day with these devices on (see Fig-
ure 22).

• Regarding awareness of modern headphone technology,
52.94% of participants know that headphones and ear-
buds often have embedded motion sensors..

• In terms of keyboard ownership (see Figure 23):

– 47.06% own a membrane keyboard.

– 11.76% own a mechanical keyboard.

– 41.18% are uncertain about their keyboard type.

• A significant 88.24% of participants keep their head-
phones or earbuds near their computer or keyboard when
not in use, while only 11.76% store them away (see
Figure 24).

• As for typing locations, 33.33% of participants typically
type at their home or apartment, and 24.24% prefer the
library (see Figure 21).
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Figure 22: Frequency of typing on a computer keyboard while
wearing headsets/earbuds.
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