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ABSTRACT 

     Recent changes to the power grid are expected to influence the way energy is provided and 

consumed by customers. Advanced Metering Infrastructure (AMI) is a tool to incorporate these 

changes for modernizing the electricity grid. However, this information-based power grid can 

reveal sensitive private information from the user’s perspective as it can gather highly-granular 

power consumption data. This has led to limited consumer acceptance and proliferation of the 

smart grid. Hence, it is crucial to design a mechanism to prevent the leakage of such sensitive 

consumer usage information. Among different solutions for preserving consumer privacy in 

Smart Grid Networks (SGN), private data aggregation techniques have received a tremendous 

focus from security researches. In this work, a novel and efficient CDMA-based approach to 

privacy-preserving aggregation in SGNs, utilizing random perturbation of power consumption 

data, with limited use of traditional cryptography has been presented. The efficiency and 

performance of the proposed privacy-preserving data aggregation scheme is evaluated and 

validated through extensive statistical analyses and simulations. In the past few years, only 

limited work has been done on quantifying the privacy leakage of the smart grid due to the 

deployment of the smart meters. The goal of such quantification is to provide a formal 

framework to show how much privacy is lost in smart metering systems and to what extent the 

proposed solutions reduce this loss of privacy. As a second research direction, we study the 

existing metrics for quantifying privacy in various domains. Then, we present four information 

theoretic metrics to represent the privacy gained by utilizing different Smart grid Privacy 

Preserving Mechanisms (SPPMs). We investigate the applicability of the theory of information 

entropy as a potential privacy metric and suggest using conditional entropy, joint entropy, and 

relative entropy to further analyze the privacy-leakage in smart metering systems.  
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CHAPTER 1
WHAT IS SMART GRID AND WHY IS SECURITY IN

SMART GRID IMPORTANT?

1.1 Definitions: The Traditional Power Grid

In order to realize the concept of smart grid, which can refer to several things and have

numerous meanings, it is necessary to find out what the electrical grid is and then try to

make it smarter. “The US power supply network is the largest, most complex machine ever

created and engages the most complex enterprise. It involves some 5000 corporate entities,

100 million customers, four distinct forms of ownership and multiple levels of regulatory

oversight.” [1] This is basically a system for transferring electricity from generation plants to

houses and businesses. It helps leverage long-distance transmission lines which lead electricity

to local distribution grids where electricity is stepped down to a usable voltage. To keep

electricity from damage and outages as well as to route it properly, there are sensors, switches,

capacitor banks, and reclosers on the way that use manual and automated controls. To

make sure that disruptions in one part of the grid do not influence the other parts, special

protection systems or remedial action schemes are available.

The grid has an almost untidy and jumbled assembling with a lot of additions, tweaks,

and workarounds that supply electricity to every house. Even the word “grid” implies some

amount of organization which is not present. None of the US main grids, located in the

east and west of the US and Texas, are controlled centrally because each generation source,

transmission provider, and local distribution organization plays its own role in the technology

and processes involved. These grids are not completely independent, though.In spite of

limited resources, increasing demand, and infrastructures that rely on each other, we can find

few reliable systems that operate without enforcing compatibility between their components.

In the traditional electrical grid, the control and monitoring processes are carried out

with limited mechanisms. However, experienced experts in electricity industry refute this
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statement right away as they correctly believe that technologies like supervisory control and

data acquisition (SCADA) and distributed control systems (DCS) have succeeded in clarifying

and controlling grid functions for several years. Nevertheless, since these technologies, even

until recently, concentrate on major substations and the generation plant, they ignore utilities

and therefore result in outages along a distribution feeder line, and the need to repair or

replace the voltage level at home and business, or whether a transformer. However, the

abovementioned protection systems help find out faults along main distribution feeder lines.

On the other hand, identifying faults and outages, particularly at the end of the line is so

challenging due to the cost and geographical factors. Sensors installed at main transmission

substations and high- voltage power lines have given independent system operators (ISOs)

and regional transmission operators(RTOs) access to real-time information about the status

of the grid. However, this information is not thorough because it doesnt include a crucial

ingredient: interaction with the consumer [48].

Although the amount of electricity which is generated and distributed is determined

by the final consumers of the electricity, the present grid regards electricity as an endless

resource which can be consumed or not consumed without considering the cost of the demand

or who will generate the electricity.The electricity generated in the current grid, except in a

few cases, has to be used by houses and businesses that are located within a few hundred

miles of the plant. Simply put, electricity needs to be dispatchable and cannot be taken

from other sources of energy. Consumers of electricity do not notice or care what the money

they pay is for. For example, they just turn on their devices and receive a bill without being

aware of what the costs are for [27].

Now, let us briefly discuss problems of cyber security. There is no doubt that the tradi-

tional grid has some limitations for IT-oriented automation systems. The concept of air gap

means that there was a physical separation between the enterprise side of the business which

was responsible for ordinary IT resources like servers and workstations for purposes such

as human resources, finance, and procurement and the operations technology side which is
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in charge of the generation, transmission, and distribution of electricity. Furthermore, the

operations side has depended on specialized control systems designed for the real time nature

of electricity. Although typical TCP/IP networks were less common and more limited, with

communications through dial-up modems and serial communications technology. As far as

cyber security is concerned, there was more security due to the requirement of physical access

and less security because of the variation of access methods and rare application of infor-

mation security best practices. Fortunately, automated attacks that were based on famous

architectures that were constantly used were more difficult to run successfully. However,

attacks on specific parts including a dial-up modem in a substation were easier to launch

for they depended on security through vagueness. Likewise, to deal with an attack on a

person’s residential electromechanical meter, physical access was required because there was

no communications path to the meter. It wasn’t possible to launch attacks on thousands of

meters from a distant place.

1.2 Definitions: What’s a Smart Grid?

The term smart grid was proposed by a group of experts at the US Department of

Energy (DOE). The DOE tries to extend the already existing intelligence to more parts of

the grid. Smart grid is not only a technology but also a goal. Hence, a lot of the future

grid’s characteristics should be defined. Title XIII of the energy independence and security

act of 2007 mentions ten features of a smart grid [1]:

1. Increased use of digital information and controls technology to improve reliability,

security, and efficiency of the electric grid.

2. Dynamic optimization of grid operations and resources, with full cyber security.

3. Deployment and integration of distributed resources and generation, including renew-

able resources.
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4. Development and incorporation of demand response, demand-side resources, and energy-

efficiency resources.

5. Deployment of smart technologies (real time, automated interactive technologies that

optimize the physical operation of appliances and consumer devices) for metering,

communications concerning grid operations and status, and distribution automation.

6. Integration of smart appliances and consumer devices.

7. Deployment and integration of advanced electricity storage and peak-shaving technolo-

gies, including plug-in electric and hybrid electrical vehicles, and thermal-storage air

conditioning.

8. Provision to consumers of timely information and control options.

9. Development of standards for communication and interoperability of appliances and

equipment connected to the electric grid, including the infrastructure serving the grid.

10. Identification and lowering of unreasonable or unnecessary barriers to adoption of

Smart grid technologies, practices, and services.

The present electrical grid has been created through merging of several years of build-

outs, patching, and bolt-ons. Its simple goals are to generate electricity on the basis of coal,

diesel, natural gas, nuclear, wind and solar; build huge transmission lines to deliver elec-

tricity to homes and businesses; and distribute it on the local level [48]. Some monitoring

systems were then installed in important places and measurement of the total demand was

determined to see how much generation was needed. In addition, the electrical grid depended

on small and predictable increase in electricity usage and needed robust components to keep

working. There are hardly ever outages in the US and Canada. Although this one-way flow of

electricity has been in successful operation under a vertically integrated electric utility model

where one company controls the generation, transmission, and distribution for a given cus-

tomer, the model begins to fall apart when multiple players are involved. If generation can
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come from several places and several companies, more coordination is then needed. Likewise,

if customers are going to generate their own power and some of it back to the grid at the

distribution level, we can realize what problems we may face due to the lack of sophisticated

measurement and communications capabilities. If there is too much demand and not suffi-

cient supply in some areas and giving that information to customers to regulate their usage is

impossible, we will face rolling power cuts which are politically unacceptable and potentially

perilous. We will later understand that smart grid was not designed for today’s problems.

It was meant to deal with the future challenges. The electrical grid has worked successfully

with restricted command-and-control competences and little customer collaboration in the

past one hundred years. Electricity in most parts of the US is low-pricedand and outages

are controllable. If there are going to be changes in the grid, it is only because of various

kinds of demographic, technological, and socioeconomic features. Figure 1.1 shows that the

traditional grid is so hierarchical. The generation is at the top, transmission in the middle,

and distribution at the bottom working almost independently. Traditional generation which

is under the smart grid model still has a large role. But distributed generation sources in the

form of wind, solar, and numerous other customer-owned generation sources strengthen it.

These various energy sources can generate enough electricity to both send to end consumers

and sell it back to the utility. Furthermore, in order to support distributed generation as well

as to mix customer interaction with the equation, communications networks are added. This

way, utilities can both affect behavior and make better decisions based on customer choices.

An example of this could be technologies such as Advanced Metering Infrastructure (AMI)

that makes instant relaying of usage levels in houses and buildings. Also, using appliance

based communication technologies, grid components can relay appliance-level information

on the usage and receive orders from the utility to modify the behavior or ultimate oper-

ation of that appliance during peak time. Besides distributed generation, and augmented

communications and measurement abilities, the smart grid envisions the ability to save elec-

tricity through conventional technologies and by developing newer battery technologies. The
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plug-in hybrid electric vehicle (PHEV) is a storage solution that can both generate and store

electricity and can also get its energy from the electric grid. These vehicles can use the

developed form of the same technology to store energy by other devices on the electrical grid

when not needed by the vehicle. Consequently, the generating capacity is maximized and

this is one of the main characteristics of the smart grid.

Figure 1.1: Traditional Grid vs. Smart Grid [1].

1.3 Why is a Smarter Grid Needed?

The smart grid is not going to solve problems with the present electrical grid. Electricity

is abundant, reliable, and inexpensive except in warm and populated places like Florida,

and Southern California. These conditions are prone to change for different reasons. Mark

Gabriel [1] mentions a lot of trends that are influencing our ability to maintain the current

situation in his book. They include demographics, the development of energy business,

carbon constraints and capacity demands, availability of intelligent infrastructure, and the

need for customer engagement. It might be said that change will be necessary if the primary

driver is profitable and so, if investor-owned utilities cannot make a profit or if consumers

cannot afford electricity costs. Several factors are driving this profitable necessity. Because

of the demographic changes, many people have gone to warm weather climates in which more

electricity is demanded for air conditioning, the largest single electricity cost in residential

areas. Another factor which is increasing demand for electricity lies in our electronic culture,
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such as cellphones and large televisions. The problems of the supply side are caused by:

environmental regulations that limit traditional fossil fuel-based generation plants, very long

and heavily regulated deployment windows for nuclear, and the investment costs and long

payback period for renewables like solar and wind. Electricity costs will increase dramatically,

especially in large population centers in warm climates, as a result of these supply-and-

demand challenges. In addition, the work force in electric utilities will age while there are

no ready replacements. Utilities will turn to automation and outsourcing because there are

fewer people to do the work and younger generation prefers to use technology. Large investor-

owned utilities are faced with heavy regulation by public utility commissions over what they

are allowed to charge their customers at the distribution level, and consequently, they are

always looking for greater cost efficiencies and other less regulated markets to enter in order

to interest the investors. The reasons why companies look for renewable energy businesses are

taking advantage of the tax benefits, grants, and greater market-orientation on the generation

side. The DOE smart grid grants funded under the American Recovery and Reinvestment

Act of 2009 motivated some of these companies when smart grid investments were not

economically stable. Moreover, smart grid provides a large number of business opportunities

and technological innovations. Customer engagement and presence of technology that makes

its own demand are some of these opportunities. When easy and useful technologies are at

hand, what consumers and public utility commissions may never have noticed will become

an important thing. For example, nobody thought cell phones and digital video recorders

would become essential things until economical and packaged for consumers. Now they are

must-haves. The expected profits of smart grid may not seem that considerable when we

take a look at the amount of investment. What the majority of experts believe is that energy

costs will increase anyway, but through smart grid they will not have a big rise. Because

utilities will be capable of using demand response programs to turn off some appliances at

peak time, it is less likely that consumers experience as many rolling blackouts as before.

Although smart grid aims to reduce some power cuts by analyzing failures predictively and
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better and to decrease the duration of outages by immediate locating of customers without

power, or to meter connectivity, it will not be able to protect power lines from snapping

trees during storms. Some of the storm-related outages may be alleviated with the help of

distributed generation and localized energy. There may still be the danger of single points of

outage because of snapping trees and backhoe cuts. The challenges of smart grid may be the

same as those of cyber security because the savings may be in costs avoided. Most Americans

enjoy a rather low electricity monetary. However the largest benefits come from rate that

will not rise as high as they would have otherwise. This is because of the unavoidability of

some rate increases happening as a result of increases in demand for energy. Consequently,

lower staffing levels through increasing automation, smaller income losses caused by shorter

outages, and fewer generation costs as a result of demand response and dynamic pricing

plans that move usage to off-peak periods. There are also a lot of other smart grid uses

which lower the costs as well as revenue losses. Many of the uses are not known though. For

instance, demand response programs change drastically according to customer engagement

and behaviors. Savings from increasing automation can be obtained by reducing the number

of employees. The new technology can provide shorter outages which are easier to predict

and faster to fix. The cost of smart grid upgrade can be eased by government subsidies

under the American Recovery and Reinvestment Act, but utilities still pass the rest of the

costs to customers. This proposition does not go over well with public utilities commissions.

However, there is a great need for investment in the electrical grid. It is not clear whether

using smart grid will enable utilities to postpone or avoid replacement of old infrastructures.

The future of the grid is not easy to predict due to the involvement of so many factors.

However, in the next 50 years, the grid is likely to be highly dynamic and distributed in

which consumers can use wind and solar energies to generate and store their own power.

We should expect a higher electric usage as our dependence on technology increases and

important loads, like plug-in hybrid vehicles, appear.
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1.4 Smart Grid Risks

A large number of risks, including physical attacks and failures caused by aging infras-

tructure, are already threatening the current electrical grid. We aim not to emphasize those

risks but rather to identify the new threats resulting from the smart grid. We will discuss

the probability of a successful attack or worsening the damage by smart grid technology.

The remote attack and the compromises that might come up through the growing amount of

interconnectivity of data communications networks which monitor grid activity are the most

important threats. The effort to increase automation and fix remote problem will lead to the

problem of protecting a larger number of attack vectors since each meter in a residential area

could be a possible entry point in grid communications networks [27]. A thorough analysis

of potential attacks at the matter level is presented later. It should be noted that expanding

the communications network to every household will basically make the threat dynamic and

bring about some serious security problems. It is because of the fact that a device over

which the utility has little physical control is used to determine how much electricity should

be generated and to whom it should be delivered. In spite of the similarity of the cable

boxes for TV and cable modems for Internet access in physical control issues, the results of

prevalent solution are limited.

Since smart grid cyber security threats sound like a moving target, understanding whether

they succeed or not needs artistic skills rather than science. We try to look into various

aspects of the smart grid and its weaknesses to compromise. Evidence shows that foreign

intelligence agencies have penetrated the US electrical grid and are inactively checking it.

However, that evidence is only hypothetical and mainly dependent on internet traffic moving

toward a utility. In general, identifying the nature of the system compromised needs more

information. One example could be a virus which infects a utility’s human resources or

finance department but causes no effect on the electrical grid because it is normally physically

or virtually separatedand thus difficult to attack. We are not saying that the present electrical

or a coming version of it would be less vulnerable. What we are trying to say is that
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the essence of the attacks, the probable attack vector, and the attacker’s impetus may be

different from traditional attacks on enterprise networks. For example, instead of targeting

the utility’s Internet connection, the attackers might either try to physically compromise the

meter and then take advantage of it to penetrate the other parts of the meter network,or

attack a consumer’s Internet connection and use the home’s network to get to the meter.

Of these two ways, the former has been simulated in lab environment using extrapolation,

while the latter in only based on speculation. Additionally, the impetus is not completely

known. Sabotage is definitely a matter of concern, but in order to do a cyber-attack a lot

of expertise and resources are required. Mostly, explosives threatening main substations

and transmission lines are easier to carry out. Plus, they do more harm to the grid and

consumers. On the other hand, when cyber-attacks are done randomly over time, they

can be more operative than an explosion because they create a great deal of uncertainty

regarding the reliability of electrical power. Examples of these cyber-attacks are the ones

that happened in the countries of Georgia and Estonia. In addition, some attacks are done

without even stepping in the US. That’s why the number of probable attackers as well as

the possibility that such attacks take place when there is not enough awareness of them will

go up.

If the smart grid is designed incorrectly, it will create additional attack vectors and a

greater harm. While the electrical grid is greatly robust, it is able to withstand intentional

attacks at its weakest point. Moreover, the grid’s power can be used against it by creating

cascade-like events. Although in the past an organized and simultaneous attack was needed

to cause a huge power outage, the future grid might face the same destiny through a hacker’s

keystroke. Nonetheless, if a smarter grid is designed, it can act more quickly in identifying

and responding to such attacks. Like majority of technological progresses, the smart grid can

also have the potential for greater effectiveness and reliability as well as for greater harm.

Another challenge that the grid may face is perception challenge. An unproven theory

that the whole grid is composed of a single meter can have a great effect on a utility’s capa-
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bility to use a smart grid successfully. It is also believed that terrorist and other malicious

groups take as much advantage of changes in behavior caused by fear and uncertainty as they

do of direct attacks. For instance, if there are small attacks on smart grid technology, peo-

ple will start to question the security of a more general technology which prevents required

improvements and brings around higher energy costs and less security. Bruce Schneier, a

security expert, mentions some of the evolutionary effects that make us mistakenly estimate

risk and accordingly react improperly.

When we compare the risks and disadvantages of new technology with the hypothetical

benefits, we remain doubtful. The vulnerability of a new technology to hackers may force the

people and decision-makers to prefer using legacy technology even if it holds bigger risks. If

smart grid causes only a few outages of which everybody is informed, the entire effort could

be useless, just like what happened to electronic voting machines a few years ago. Likewise,

privacy risks and other harms may lead to more serious opposition than more important

risks, such as the probable loss of life by utility staff. Utilities are supposed to personalize

the advantages of smart grid and show a way to get rid of risks or else some significant

developments could be missed out.

The question that comes up here is how to sort all the viewpoints and correctly detect the

real risks. In order to determine related risks, we can normally use risk assessment methods

which have their own drawbacks. In the financial services community, variety of risks could

be evaluated using quantitative risk assessment methodologies. This is because of availability

of plentiful data and the high level of transparency in public markets. With regard to what

the recent meltdown showed, these plans can be limited especially when they are based on

wrong assumptions about the broader environment, such as the weak possibility that housing

prices would decrease considerably in a short time. The fact that most security accidents

remain unreported, it’s not possible to compare one enterprise to another in a standard way,

amplifies the problem. Although car factories, by using criteria such as age, gender, location

of residence, and driving record, can reach reliable risk factors to base premiums on, we
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can’t find such consensus that certain controls result in a special frequency of compromises.

In addition, in places where criminal acts are intended, attacks develop as new controls are

used. Special industries like financial services and national security are more likely to be

subject to attack. This has caused some cyber security insurance approaches not to provide

coverage for large financial institutions. For the electricity industry, the main thing to figure

is the value of services to stakeholders. What shareholders want is nonstop income at a

decent profit. If an outage happens in a generation plant, the loss of revenue that the power

producer may have will be extremely significant even if the news is kept secret. In contrast, if

an outage takes place in a neighborhood and lasts for a few hours, it may make the news and

cause a serious public relations challenge for a utility. Smart grid should be able to deal with

these problems, and to prevent and shorten outages through advanced sensor technology

and more sophisticated outage management systems. There is also the risk of centralized

malfunction caused by centralized control which should be taken into account. Utilities,

vendors, and regulators need to comprehend all kinds of security controls that will suit the

future weaknesses and risks. They should also be aware of effects that may prevent moving

toward the smart grid.

1.5 Smart Grid Risks versus Benefits

So far it might have become clear that using a smart grid cannot guarantee a higher

amount of safety and reliability in our electrical grid since deployment of new technology

does not always cause a breakthrough. Nuclear power technology, for example, has been

delayed for several years thanks to what happened in Three Mile Island and Chernobyl.

However this technology is safer and cleaner than fossil fuels. Only in the past few years

and with the construction of new plants has nuclear power regained its footing. Comparing

nuclear power with smart grid is not reasonable because smart grid is a collection of different

technologies, many of which work autonomously. Utilities can increase automation in substa-

tions or install new sensors to electrical lines without applying a new residential smart meter.
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In the following chapters we will see that each smart grid has separate challenges related

to security, stakeholders, and stakeholder interests. The smart grid, just like the electrical

grid, is composed of areas of redundancy and interdependency.What one can understand

here is when an ecosystem like smart grid is used, it is important to know where to add

redundancy, resilience, and self-reliance to the current electrical grid and at the same time

keep the economies of scale that an interdependent grid provides. Incorrect implementation

of this would decrease the reliability of the grid and make it more vulnerable to cascading

outages. Correct implementation of this would enhance reliability, decrease costs, and facili-

tate innovation. Because security is actually a subset of quality, using a good quality system

is crucial. This means handling intentional problems caused by malicious entities as well as

unintentional ones caused by authorized entities. Every process must be done by considering

the integration of quality and security. This includes product vendors, integrators, and end

customers. Everyone is expected to play their role while paying attention to both security

and quality [1].

Many companies wonder what they need to buy in order to be secure. The answer is

that security is a process and not a product. It could also be said that security is not an

outsourced service. The main responsibility of security of the grid lies with the stakeholders.

In some cases, interconnecting pieces of the grid such as distribution-only utilities, transmis-

sion providers, generation and even consumers are responsible for security. This does not

mean that third parties are not involved in providing monitoring services, patching systems,

and drafting and implementing policies and procedures. This is exactly like the example

of the criminal defendant who is sure that he is the one who should finally go to prison if

there is a conviction, no matter how responsible his lawyer is in making decisions. Passing

on responsibility for security to someone else can end up in severe consequences.

In conclusion, in order for any utility to have outsourcing or dependence on standards or

regulations, they are expected to have continuous awareness. What a contractor is mainly

responsible for is meet the requirements of the contract including dealing with security
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threats. But they seldom take on responsibility for attacks when they have done their

contractual duties. The solution is to set clear criteria for contract compliance that are

designed to fight security risks and provide flexibility in the contract to match criteria and

responsibilities with the risk posture changes. So it is possible and in many cases better to

outsource security functions, but comes up outsourcing risk which is another matter. All

that insurance companies can do is to pay you cash. They cannot regain customer confidence

or fix compliance violations. So far, many of the risks to smart grid have been discussed from

the 10000-foot level. The advantages of smart grid are not one hundred percent certain even

if the security could be provided. As we keep looking into different smart grid technologies,

it must be remembered that this is a perilous path we are moving on.Any kind of problem

on the way, from a big security threat related to smart grid technology to an unpredicted

rate increase might either bring smart grid use to an end or cause some long delays. Simply

put, every detail is important. Utilities must not allow the messing up of security, smart

grid advertising campaign, the usability if their in-home devices, the rates they charge, or

their quality control mechanisms. Given the importance of the deployment of the smart grid

and based on the security/privacy related challenges associated with the smart grid, in this

thesis, we will address two important open problems in smart grid networks:

1. In Chapter 2, we will introduce a novel privacy-preserving aggregation scheme based

on the concepts of spread spectrum communications and using statistical perturbation

techniques to efficiently and securely aggregate power consumption data from the users

smart meters.

2. In Chapter 3, we will investigate the applicability of existing metrics for quantifying

privacy in various domains. Then, we study four information theoretic metrics, based

on the entropy of smart meter data, to effectively quantify privacy of smart metering

systems before and after using specific privacy-preserving techniques.
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CHAPTER 2
PRIVACY PRESERVING DATA AGGREGATION

2.1 Introduction and Motivation

A series of power surges over a twelve-second period triggered a cascade of shutdowns

in the US and Ontario on August 14, 2003. The result was the biggest blackout in North

American history. 61800 megawatts of power were lost to over 50 million people. Stud-

ies showed that the outage was because of lack of real-time monitoring and diagnosis and

failure in proper load balancing [43]. Recently, Smart Grid has been proposed as the next

generation power grid. A Smart Grid is an electrical grid that leverages communication

technologies and information processing to gather, process, and act on collected information

to improve reliability, efficiency, economics, and sustainability of the power grid in genera-

tion, transmission, and distribution [47]. This information-based power grid will help the

Utility Companies (UC) to act on consumer information gathered from Smart Meters (SM)

at the user’s premises. The two-way communication capability will enable functions such as

demand-response, demand-dispatch, self-monitoring, and self-diagnosis for the existing power

grid [46]. It also promises reduced prices through dynamic pricing schemes, wide penetration

of renewable resources such as wind and solar, and fewer power outages [42]. The topic of

smart grid has attracted researchers to study various aspects of modernizing the electricity

grid. The research community has been studying miscellaneous subjects such as communi-

cation technologies and infrastructure [47, 41, 40, 48, 39], legal and policy concerns [38, 83],

reliability, failure diagnosis and recovery [59, 37, 60], demand-response, demand-dispatch,

load shaping, and peak-shaving [36, 61, 49], data aggregation [47, 50, 35, 34, 30, 31, 32] and,

last but not the least, security and privacy [46, 42, 47, 33, 29, 51].

Advanced Metering Infrastructure (AMI) are systems that measure, gather, analyze en-

ergy usage, and communicate with metering devices such as water meters, gas meters, heat

meters, and electricity meters. This communication is either on request or on a predeter-
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mined schedule. Government agencies and utilities are adopting AMI systems as part of

the deployment of the smart grid. AMI improves current Advanced Meter Reading (AMR)

technology by enabling two-way communications between the meter and the utility. This al-

lows UCs to send commands to the meters for different purposes, such as time-of-use pricing

information, demand-response actions, or remote disconnects [48].

Although AMI provides the UC with state-of-the-art capabilities, having access to fine-

grained consumer usage data can reveal information regarding the private lives of its users.

For instance, it can be easily determined if a residential house is vacant or not by observing

the fine-grained energy consumption patterns [52]. It is also possible to track the location of

the residents of a household based on the appliance they are using [53]. Insurance companies

can monitor and track eating, sleeping, and possibly exercise habits of a household [28, 27].

In 2009, the Dutch Parliament prohibited the utilization of smart meters because of privacy

issues. It is worth mentioning that in Smart Grid Networks (SGN), data-oriented privacy is

more of interest, as opposed to context-oriented privacy, because it deals with private con-

sumer data. There are also many cyber security related challenges for the deployment of the

Smart Grid [47]. This “Internet-like distributed power grid” is vulnerable to many known

and unknown cyber security attacks [54]. The security threats to the Smart Grid can target

the confidentiality and the integrity of the gathered fine-grained user data. They can also

threaten the availability of the power grid. Computerworld [26] reports more than 170 out-

ages caused by cyber-security attacks. It should go without saying that without appropriate

security and privacy-preserving techniques, large-scale deployment and consumer-acceptance

of the Smart Grid paradigm is difficult.

In general, data aggregation techniques are utilized to significantly reduce the volume

of traffic being transmitted in an SGN by compressing data in the intermediate nodes (also

called aggregators). Aggregation is an important technique for preserving network resources,

such as bandwidth and energy [25]. Also, it is deployed as a common approach to preserve

data privacy against external adversaries as the aggregation process compresses large inputs
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to small outputs at the intermediate aggregators. However, this can lead to several new vul-

nerabilities against potential internal adversaries, such as the aggregator node itself. Thus,

it is of paramount importance to design appropriate mechanisms for privacy-preserving data

aggregation [10]. Earlier privacy-preserving approaches have primarily used cryptographic

techniques such as homomorphic encryption and secure multiparty computation in order

to preserve user privacy while aggregating usage data [21]. These approaches, although

providing strong guarantees of confidentiality, are very heavy from a computational and

communicational stand-point and may not be feasible on low-end smart meters with limited

computation capabilities [58]. Considering the huge scale of future smart meter deploy-

ment and the granularity of the data being gathered, existing communication networks will

have difficulty handling this data because of resource constraints such as network capacity

(bandwidth) [86, 87, 88]. Homomorphic cryptosystems usually generate an output of a huge

fixed-length as compared with the data generated by smart meters. This ciphertext can be

up to one hundred times larger than the actual smart meter data [47]. Given the frequency

of the data being sent and possible bandwidth scarcity, this can lead to unacceptable delay

and network overhead [86].

In this chapter, we investigate the feasibility of existing privacy-preserving data aggre-

gation approaches. We devise a novel, efficient, and feasible (from a communications per-

spective) data aggregation mechanism for SMs using coding theory, spread spectrum com-

munications (SSC), and random perturbation techniques [22, 23]. Finally, we validate the

performance of our aggregation mechanism by means of simulations.

The rest of this chapter is organized as follows. Related work in the literature and back-

ground on existing secure aggregation schemes is outlined in Section 2.2. The network and

adversary model assumed in this work along with basics of SSC are presented in Section 2.3.

Our proposed perturbation-based privacy-preserving aggregation utilizing SSC is outlined in

Section 2.4. Evaluation and simulation results are discussed in Section 2.5.
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2.2 Background and Related Work

In this section, we outline mechanisms in the literature for privacy-preserving data ag-

gregation in SGNs and also study some data aggregation methods in other networking in-

frastructure with similar constraints such as Wireless Sensor Networks (WSN).

2.2.1 Homomorphic Encryption for Data Aggregation

A public-key cryptosystem is known to have homomorphic properties if E(m1 � m2) =

E(m1) 4 E(m2), where E is the encryption function, � and 4 are two mathematical op-

erations, and m1,m2 are two input messages. In other words, a homomorphic property

enables certain mathematical operations on the plaintext by performing specific operations

on the ciphertext without observing any intermediate results in plaintext. Based on the

supported operations, homomorphic cryptosystems fall into two broad categories: partially

homomorphic and fully homomorphic. Partially homomorphic cryptosystems only support

either addition or multiplication, or in some cases polynomials up to certain degrees, whereas

fully homomorphic cryptosystems support both addition and multiplication [47, 51]. It goes

without saying that fully homomorphic cryptosystems provide much more flexibility and

have recently received significant attention [20, 19]. However, given their computational

complexity, they are not widely used in practical applications yet. Well-known homomor-

phic cryptosystems include RSA [18], El Gamal [17], Paillier [19], Naccache-Stern [16], and

Boneh-Goh-Nissim [15, 14].

In general, data aggregation techniques might support different aggregation functions

such as sum, max, min, avg, median, and variance. However in SGNs, the UC is mostly

interested in total consumption (sum) of a given neighborhood in a specific time period to

enable functions such as demand-response, load-shaping, peak-shaving, and self-monitoring

[46, 47, 36, 49]. Also, the average (avg) usage of each household might be of interest. Given

that sum of consumed electricity of all smart meters in a residential neighborhood is required

to be computed in a private fashion, the additive homomorphic property of the Paillier [19]
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cryptosystm can be useful. Also, the Boneh-Goh-Nissim cryptosystem [14, 51] (which is

an extension of Paillier with bilinear groups) supports the additive homomorphic function.

Rather than adding the consumption data in plaintext, one can multiply the encrypted

values and then decrypt the result to get the addition of plaintext data. The Paillier en-

cryption system works as explained in Protocol 1 (Key Generation), 2 (Encryption), and

3 (Decryption) [50]. As it can be observed, the sum of plaintext can be computed from

multiplication of the ciphertext, i.e. D(E(m1).E(m2) mod N2) = (m1 + m2)mod N or

D(C1.C2 mod N
2) = (m1 +m2)mod N , where N is the modulus for encryption/decryption.

1 : Generate two large prime numbers p and q such that gcd(p.q, (p− 1), (q − 1) = 1);

2 : Calculate N = p.q;

3 : Calculate λ = lcm(p− 1, q − 1);

4 : Select a random number g ∈ Z∗N2 ;

5 : if ( µ exists such that µ == (L(gλ mod N2))−1 mod N and L(u) = u−1
N

then

6 : (N, g) is the public key;

7 : (λ, µ) is the private key;

8 : end if

9 : End.
****************************Protocol 1: Key Generation.

1 : Let m ∈ ZN be the plaintext;

2 : Generate random number r ∈ Z∗N ;

3 : Calculate ciphertext c = (gm.rN) mod N2;

4 : End.
******************************Protocol 2: Encryption.

1 : Let c ∈ Z∗N2 be the ciphertext;

2 : Calculate the plaintext m = L(cλ mod N2).µ mod N ;

9 : End.
******************************Protocol 3: Decryption.
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He et al. [51] present a secure data exchange scheme for the smart grid based on homo-

morphic properties of Goh cryptosystem [15]. Goh supports an arbitrary number of additions

and a single multiplication on the ciphertext. It is worth noting that the aforementioned

protocol is only a secure data communication scheme and does not address the problem of

secure aggregation. Li et al. [50] utilize the homomorphic properties of Paillier to propose

an incremental data aggregation scheme. In [50], every node passes its encrypted time-series

data to its parent node on the aggregation tree. The parent node multiplies the received value

into its own encrypted consumption data and passes the total result to the next parent node.

Therefore, all the SMs participate in the aggregation without seeing any intermediate or final

result. Garcia and Jacobs [55] present a privacy-preserving protocol using Paillier based on

secret sharing. Their proposal hides consumption data from the UC as it receives random

shares of data (instead of the entire data) which it cannot decrypt. The other nodes cannot

retrieve meaningful information either since they only receive random shares. Kursawe et al.

[56] propose two approaches to calculate total consumption in SGN. In their first approach,

called aggregation protocols, smart metering data are masked in such a way that after sum-

ming the data from all smart meters masking values cancel each other out and the UC gets

the total consumption information. In their second approach, named comparison protocols,

they consider that the UC roughly knows the total consumption. Erkin and Tsudik [57]

propose a cryptographic protocol based on a modified version of the Paillier cryptosystem

to calculate the total consumption of all the SMs in a given neighborhood as well as a single

SM in the AMI. Acs and Castelluccia [13] suggest a solution using masking and differential

privacy and utilizing the homomorphic properties of a computationally-cheap cryptosystem

for private data aggregation. Lu et al. [12] propose an Efficient and Privacy-Preserving

Aggregation (EPPA) for smart grid communications by structuring multidimensional data

and encrypting them with the Paillier cryptosystem. Erkin et al. [47] study different existing

secure signal processing mechanisms in SGNs and compare different existing cryptographic

methods in terms of computational complexity, efficiency, and imposed overhead.
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It is worth noting that in WSNs another non-homomorphic, cryptographic approach has

also been utilized; an intermediate node in the aggregation tree has to decrypt the data

received from a downstream node, then aggregate the data according to the aggregation

function, for instance sum, and finally encrypt the output of the aggregation function be-

fore forwarding the result to the up-stream node on the tree. Such schemes have several

shortcomings, the most important of which is that they do not protect the privacy of the

transmitted data from the neighboring sensor nodes. All neighbors share pairwise keys and

are able to decrypt the incoming data. Hence, if the neighboring sensor node is honest-but-

curious or if it is compromised and monitored by the adversary, the data in transit can be

easily intercepted.

2.2.2 Non-homomorphic Private Data Aggregation

A common path to privacy-preserving aggregation in WSNs is perturbing the raw data

being transmitted by introducing a random noise [22, 23, 10, 3]. He et al. [10] propose

two approaches to privacy-preserving data aggregation in WSNs. The basic idea of their

first approach, Cluster-based Data Aggregation (CPDA), is to introduce noise to the raw

data sensed by the sensor node, such that this noise will be cancelled out in the aggregation

operation resulting in an accurate aggregate value. The main idea of their second proposed

method, Slice-Mix-AggRegaTe (SMART), is to slice original data into pieces and recombine

them randomly. Next, the authors further improve their protocol to iPDA which preserves

the integrity of the data on top of its privacy [24]. In another perturbation-based effort,

Zhang et al. [3] propose Generic Privacy Preservation Solutions(GP∧2S) for approximate

aggregation. In their proposed technique, the values of the data transmitted in a WSN

are generalized such that individual data content cannot be decrypted. However, the ag-

gregator can still calculate an estimate of the data distribution, and hence, approximately

compute the aggregate value. Zanjani et al. [7, 8] propose a new energy-efficient aggregation

mechanism for WSNs using the concepts of coding theory. The sensor nodes are assigned
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unique Orthogonal Chip Sequences (OCS) that are used to code and send their data on

the CDMA channel. The authors claim that, by utilizing ESTOC, data integrity can be

protected while aggregating. Also, ESTOC reduces Bit Error Rate (BER) and interference

caused by simultaneous transmission of nodes. Yan et al. [35] propose a secure in-network

data aggregation scheme to aggregate the data from smart appliances inside a Home Area

Network (HAN) utilizing the properties of SSC for efficient aggregation. The authors only

utilize OCSs for data aggregation and not for providing any security guarantees. They use

Message Authentication Codes (MAC) for checking the authenticity of the transmitted data.

However, confidentiality and integrity of the data is not protected. In our work, we propose

a secure aggregation scheme based on the properties of OCSs to preserve the confidentiality

of the transmitted data without relying on traditional cryptographic techniques.

2.2.3 Discussion

In the homomorphic encryption-based approaches discussed in [47, 50, 51, 55, 56, 57],

we observe that the power-usage information is generally of small size (e.g. 20 bits) [46,

12]. However, the plaintext input size of most existing homomorphic cryptosystems is huge

[47, 12], for example 2048 bits for the widely-used Paillier cryptosystem [19, 55, 57, 12]. As

a result, the input data has to be padded before encryption and the size of the output is

also large. Given the high frequency of data collection and the number of deployed smart

meters, this will result in unacceptable communication overhead on the network, and also

high processing burden on the smart meters with limited computational capabilities [12, 58].

Aggregation schemes that construct and utilize the spanning-tree, for instance by Li et al.

[50], also do not consider performance issues. The processing and communication overhead

makes the protocol less suitable in practical implementations. Moreover, depending on the

depth of the spanning tree of the network, there can be large delays between the time power

consumption data is reported by the meters and the time the aggregated data is received

at the UC. In approaches proposed in [24, 10], the perturbed or the sliced data need to
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be encrypted before being sent to the neighbors. However, the key-distribution for such

symmetric pair-wise encryption is non-trivial. In other words, any two node in the network

will share symmetric keys which will result in a key distribution complexity of order O(n2),

where n is the number of nodes in the network. Moreover, this encryption can put extra

burden on the nodes with limited capabilities. Phulpin et al. [9] study the efficiency and

benefits of network coding in both Power Line Communications (PLC) and wireless SGNs.

The authors also show that using coding theory in SGN reduces the delay by decreasing the

number of time slots and saves energy by reducing the number of transmissions.

Based on the aforementioned observations, designing an efficient privacy-preserving tech-

nique for aggregating SM data without using traditional crypto primitives with homomorphic

properties seems to be necessary. We are proposing a privacy-preserving aggregation scheme

using coding theory, spread spectrum communications, and statistical perturbation in order

to efficiently aggregate power usage while improving network performance and decreasing

unnecessary communication and computation loads on the SGN. Our contention-free scheme

will also decrease the delay, BER, and interference. Our contributions are twofold: First, we

introduce a simple, yet efficient, approach to perturb user data before aggregation in order

to preserve user privacy. Second, we propose a secure aggregation scheme, AgSec, using

SSC. Finally, we assess the performance of our scheme through analytical evaluations and

simulations.

2.3 Network Architecture

2.3.1 Network and Communication Model

Communication standards and technology to be used in the future smart grid and AMI

is an ongoing debate. There are various communication options proposed for the smart

grid including fiber optics, copper-wire line, power line communications, and miscellaneous

wireless technologies. We consider the widely used wireless architecture for the deployment

of SGN [48]. The wireless communication between SMs, which are organized into groups
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called clusters, and the aggregator or Cluster Head (CH) uses IEEE 802.15.4 or Zigbee due to

characteristics such as low power, short delay, self-organization, scalability, and high security

[48]. The aggregated data will be forwarded from the CH to the UC using a dedicated point-

to-point link.

Figure 2.1 depicts a three-level hierarchical network architecture. The communication

between the UC and the ith aggregator (CH) is denoted as UAi. Similarly ASi,j represents

the communication between the ith aggregator and the jth smart meter in the ith cluster.

Also there exists a separate out-of-band control and signaling channel between the ith ag-

gregator and the jth smart meter in the ith cluster referred to as CCi,j. The signaling and

control messages, which are used in the initialization phase, are discussed in detail in sec-

tion 2.4.1. The Zigbee medium access protocol on all AS channels is CDMA. Also, all UA

communications are on a dedicated point-to-point channel. Our signaling channel uses a

low-range wireless technology such as IEEE 802.15.4 or IEEE 802.11. The main advantage

of Wi-Fi over Zigbee is its high data rate. However, Wi-Fi’s high energy consumption is an

issue that should be considered. The Zigbee and Wi-Fi alliances have been working towards

designing a standard that promotes Zigbee to work on Wi-Fi, called Smart Energy 2.0 [48].

Finally, the ith aggregator uses a CDMA broadcast channel BCi to distribute the perturba-

tion information. n OCSs are used to broadcast random noise information on BCi. These

random numbers will be utilized by SMs to perturb their time-series data.These n random

numbers are placed in a i× j = n Perturbation Matrix, where n is the number of SMs in the

cluster. Every element of this matrix is coded with a unique OCS as described in section

2.4.3. Figure 2.3 illustrates the components implemented in different network entities.

2.3.2 Communications on the CDMA Channel

All communications take place over four separate channels, as discussed in section 2.3.1.

All smart meter data from the smart meter to the aggregator are sent over the CDMA-based

data channel, represented as the AS channel (in Fig. 2.1). The OCSs for encoding data
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transmission on the AS channel are generated using the Golay or PCC code generation

algorithms [4, 5]. These OCSs will be used to spread the data as explained later in Section

4.4. Golay OCSs can be generated recursively, as shown in Eqn. 2.1.

**************************CL =

CL
2

C̄L
2

CL
2
−C̄L

2


CL = [ AL BL ] , C̄L = [ AL −BL ] and C1 = C̄1 = [−1] (2.1)

In Eqn. 2.1, L = 2M is the total number of available OCSs (which is also equal to the

OCS length), where M ≥ 1 is the number of chips in each OCS. AL and BL are L × L
2

sub-matrices. In recursive OCS generation algorithms such as Golay (or PCC), OCSs can be

organized into groups called flock based on chip pattern similarity and chip distance between

OCSs. In Fig. 2.2-a, we can see the different flocks for 16-chip OCSs. Both Golay and PCC

algorithms are able to produce L OCSs with a length of L-chips. The PCC generator matrix

is shown in Eqn. 2.2 and OCSs of 16-chip length generated using PCC are shown in Fig.

2.2-b. OCSs generated by PCC have a uniform distribution of 1’s and -1’s, in contrast to

OCSs generated by Golay. This property, which will result in having equal number of 1’s and

-1’s, makes data transmission using PCC more fault tolerant than Golay. We can use any
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OCS generator algorithm (synchronous or asynchronous) in our proposed method. However,

PCC and Golay are preferred because of equality in OCS length and number of generated

OCSs, and high level of orthogonality [5].
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Figure 2.2: a) A 16-chip Golay OCS matrix. b) A 16-chip PCC OCS matrix.

****************P4n =



P4n−1 P4n−1 P4n−1 −P4n−1

−P4n−1 P4n−1 −P4n−1 −P4n−1

P4n−1 P4n−1 −P4n−1 P4n−1

P4n−1 −P4n−1 −P4n−1 −P4n−1


∀n ≥ 1, P1 = [−1] (2.2)
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Let us assume that time is divided into periods of random length denoted by a random

variable ψτ . During each period, each smart meter is assigned a subset of OCSs for use in

that period by the CH. The assignment happens over the CC signaling channel. The com-

munications over the CC channels are secured, from possible sniffing nodes, using symmetric

key cryptography and shared keys between SM and CH. The OCSs for each smart meter

are randomly selected by the CH from a large pool of available OCSs. Each smart meter

will use the OCSs uniquely assigned to it in the time frame ψτ . In order to spread data

bits on the AS data channel, the smart meter calculates the inner-product of every data-bit

in appropriate OCS. Every single bit of data is coded independently with an OCS different

from the previous and next data bit. This will build the foundation of our secure scheme as

described in section 2.4.3. It should be noted that it is possible for multiple smart meters

to use the same OCS for data transmission in different parts of the network as long as their

transmission ranges do not overlap and the SMs are in two diffrent clusters. This is required

to make sure that the transmissions do not interfere with each other (in general, interference

is anything that alters, modifies or disrupts a signal as it travels between a source and a

receiver). The same CDMA concepts and principles are also deployed on the BCi channel.

This broadcast channel is used by the CH to advertise perturbation data to the SMs, as

discussed in section 2.4.2.

It should be noted that, before spreading the data on the CDMA channel using the

introduced OCSs, a scrambling code is utilized between the sender and receiver for security

purposes. This code, which is generally 242 chips long , is referred to as the Long Code. In

order to appropriately use this long code, the sender and receiver must be synchronous with

a GPS or Coordinated Universal Time (UTC) system [85].

2.3.3 Adversary Model

Based on their behavior, all entities in the proposed smart grid communication network

can fall into one of the following three broad categories. (i) honest entities that fully follow
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Figure 2.3: Entities used in the privacy-preserving aggregation.

the rules of the established protocol. (ii) malicious or cheating nodes that do not follow the

protocol. Malicious behavior includes, but is not limited to, insertion, deletion, and forging

of massages in the system. (iii) semi-honest or honest-but-curious nodes that follow the

defined protocols but they attempt to infer privacy-sensitive data from the input/output of

the protocols and the intermediate data generated due to protocol execution. In our proposed

scheme we consider the UC and the CH as honest-but-curious. In other words, they follow the

established protocol but they can also try to infer privacy-sensitive information from the time-

series data. The neighboring SMs are, generally, semi-honest. Our objective is to completely

secure all the communications from malicious and semi-honest SMs and other adversarial

nodes against possible sniffing, spoofing, and inference attacks and hence, maintain the

consumers’ privacy while still providing the UC with required aggregate values. Particularly,

we are interested in protecting the system against the following attacks: (i) inference of

individual data by CH and UC. (ii) eavesdropping (sniffing) by external adversaries. (iii)

forging (spoofing) of smart meter data.
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2.4 Privacy-Preserving Aggregation

2.4.1 Initialization Phase

Upon initial deployment, CHi communicates control information to smart meter SMj

through CCi,j. For each time duration ψτ , the CH assigns each smart meter, SMj, a set

of attributes including, a temporary eight-bit identifier (IDi,j) and a group of valid OCSs,

denoted by Gj
ψτ

= {OCSj1ψτ , OCS
j
2ψτ
, ..., OCSjζψτ}. Also, the CH advertises the OCSs it is

going to use for sharing perturbation information, denoted by OCS(λ1,λ2,...,λn),τ for timeslot

ψτ , on BCi via the same CCi,j, as will be discussed later in section 2.4.2. These OCSs

will be used by SMs to code/decode on the broadcast perturbation channel. The integrity,

authenticity, and confidentiality of the communication between the CH and the SMs during

the initialization phase are ensured using appropriate cryptographic techniques. In this

phase, every smart meter gets the information required for data transmission on the CDMA

channel and for data perturbation in the next t time-slots, as illustrated in Fig. 2.4. It

should be noted that, as this is a one-time process in every t time slots and ψt � ψτ , the

imposed overhead is negligible. Also, we are not including any frame-level error checking

mechanisms such as CRC because of the inherent fault-tolerance properties present in spread

spectrum communications.
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Figure 2.4: Initialization Parameters.

2.4.2 Privacy-Preserving via Random Noise Perturbation

Before discussing our secure aggregation protocol, we would like to introduce our random

noise perturbation technique. Instead of aggregating the original smart meter data and
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sending the aggregate value to the UC, every smart meter utilizes a pseudo-random noise

to perturb its data before aggregation. This perturbed data (instead of the original data)

will be sent for aggregation to the CH. The received perturbed values Pi will be aggregated

at the CH given the aggregation function in Section 2.4.3. Perturbation techniques in the

literature usually follow two approaches. The basic idea of one group of such approaches is to

add noise to the actual data such that the aggregator, or the CH in our case, can calculate

an accurate aggregate value without inferring individual data transmitted by every node

[10]. In a second similar direction, the data can be manipulated such that the aggregator

can calculate an aggregate value which is an estimate of the histogram of data distribution

rather than the actual aggregate value of the original data [3].

After all SMs are configured with appropriate OCS and ID information; they should

start transmitting their readings periodically. Different time intervals for data reporting,

ranging from 30 seconds to a few hours, could be found in the literature [46]. However,

before transmitting, some noise should be added to this raw data. This random noise should

be chosen in such a way that it does not affect the total aggregate value.

As noted earlier, in smart metering systems, the UC is generally interested in the output

of two aggregation functions for a given neighborhood in a specific time period ψτ . First,

the sum of consumed electricity is desired, and second, the average consumption of every

smart meter is of interest. These two values can help power companies plan accordingly for

demand-response purposes. Based on these assumptions, our perturbation technique must

be designed in such a way that the aggregator can calculate an accurate aggregate value

while keeping individual meter readings confidential. Assume every SMi,j in cluster i has

the data dj to transmit. The sum and average of the data of all the SMs in this n smart

meter cluster is:

***************************SUMi = d1 + d2 + ...+ dn =
n∑
j=1

dj

******************************AV Gi = d1+d2+...+dn
n

=
n∑
j=1

dj
n
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Now, assume that every SM adds a random value (noise) to its original data before trans-

mission (How this noise is generated and distributed will be explained later in this Section).

We denote the perturbed data of SMj by Pj = dj +αj, where αj is the random noise added

to the raw data by SMj. Hence, CH will be computing the sum of Pj’s denoted by SUM ′
i :

**********************SUM ′
i = (d1 + α1) + (d2 + α2) + ...+ (dn + αn)

****************************=
n∑
j=1

(dj + αj) =
n∑
j=1

(pj)

In order for the CH to be able to calculate an accurate aggregate value we must have:

SUMi = SUM ′
i (and consequently AV Gi = AV G′i). This implies that:

**************************
n∑
j=1

αj = α1 + α2 + ...+ αn = 0

Thus, for every given time period ψτ the CH must generate a series of random numbers that

satisfy the above condition. These random numbers are advertised on the CDMA broadcast

channel BCi as an n element matrix where n is the number of SMs in cluster i. These n

pseudo-random numbers are generated considering the following principles. These principles

will guarantee that the summation of all the pseudo-random numbers is zero at all times.

1. If the number of SMs in the cluster is even (n is even), the CH will randomly generate

n
2

positive integers αj from the range [0,max]. Then, for every positive integer αj it

will place both αj and −αj in the perturbation matrix.

2. If the number of SMs in the cluster is odd (n is odd), the CH will randomly generate

n−3
2

positive integers αj from the range [0,max]. Then, for every positive integer αj

it will place both αj and -αj in the perturbation matrix. Next, it produces a positive

random number ασ and puts ασ, −ασ
2

, and −ασ
2

in the perturbation matrix (and hence

having generated n random numbers).

After the perturbation matrix is generated by the CH, it should be advertised on BCi.

Every single element of this matrix, which includes a random number, will be encoded by

an appropriate OCS (these OCSs are already shared in the initialization phase between the
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CH and SMs) and broadcast on the BCi channel. ξ(αj, OCSλj) denotes the jth element of

the matrix including pseudo-random number αj encoded with OCSλj . Every SM senses the

channel, picks a random element of the matrix, decodes it with appropriate OCS (which it

already learnt in the initialization phase) and uses that pseudo-random number to perturb

its data. After the jth element of the matrix is fetched and decoded, the SM will jam that

element of the matrix (representing an invalid or already-used pseudo-random number) [6].

Assume SMk has fetched and decoded pseudo-random number αj spread with OCSλj . After

this pseudo-random number αj is used by SMk, it needs to be jammed so that no other

SM in the network uses the same αj. In order for SMk to generate the jamming signal,

it transmits a packet with data value “all 1s” spread with OCSλj (the same OCS that the

pseudo-random number was encoded with), and with a higher transmit power. This will

result in the corruption of αj on the CDMA channel and will ensure that every αj is used

only by one smart meter, and hence, the summation of the added noise to the original data

of all SMs in a given cluster is zero. It is worth mentioning that this jamming signal is

transmitted without any transmitter-specific parameters, such as a source MAC address.

This will ensure that the jamming signal cannot be linked to the transmitting SM, and thus,

the pseudo-random numbers used by the smart meters are kept private and can be identified

neither by the CH, nor by passive sniffing adversaries. To make the protocol more efficient,

after αj is replaced by all 1’s, the CH can infer that this element of the matrix has been

used, and hence, will stop advertising αj. Consequently, SMk will stop jamming on that

specific OCS. Figure 2.5 illustrates the perturbation matrix.

As an alternative solution, after a smart meter fetches a pseudo-random number, it

can send a packet on the control channel back to the CH indicating that pseudo-random

number has been used. The sender of the packet has to be anonymized such that CH

cannot distinguish which SM is using that pseudo random number. Different anonymization

techniques (such as replacing the sender ID with a pseudonym) can be found in the literature
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[2]. In the anonymization process, the packets sent from SM to CH are anonymized, i.e., the

user part (source) of each packet is replaced by a user pseudonym.

One-to-one Random Number Assignment : In order for the perturbation proposal to work

as desired, we need to make sure that there is a one-to-one relationship between the random

numbers αi and the smart meters SMj. This one-to-one assignment cannot be handled by

the CH as it will result in compromising the privacy of SM data. Thus, it is crucial to design

a mechanism to guarantee that every SM is using one unique random number and every

random number is being used by atmost one SM. Let us assume that the SMs in a given

cluster are time-synchronized. While the CH is advertising the random numbers matrix on

BCi channel, at the beginning of each time slot every SM accesses the data on each OCS

with probability p and the SM will not read the data encoded with that specific OCS with

probability (1− p). A SM can use the accessed α only if no other SM has fetched the same

α. Remember, after every αi is fetched, the SM will send a jamming signal on that specific

OCS; if more than two SMs are jamming the same OCS a collision is detected. This process

is continued until all SMs have received one unique perturbation value. Suppose there are

n′ smart meters trying to access unique pesudo-random numbers at a given time instant.

Then, the probability that accessing a given α is successful is the probability that only one

of the SMs accesses that α and the other (n′ − 1) SMs do not. The probability that an SM

reads α is p; the probability that all other SMs do not read that α is (1− p)(n′−1). Therefore

the probability that a given SM has a success is p× (1− p)(n′−1). Because there are n′ SMs,

the probability that any one SM has a success is n′ × p× (1− p)(n′−1)
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Figure 2.5: Perturbation Matrix.

33



2.4.3 Proposed Secure Aggregation Protocol(AgSec)

After each SM adds appropriate noise to its original metering data, this perturbed data

should be transmitted to the CH. In order to preserve data confidentiality against possible

malicious entities and also other semi-honest smart meters and aggregators, we introduce a

novel aggregation scheme that does not utilize cryptography and yet keeps the transmitted

data secure. As discussed in section 2.3.2, each node j is assigned a group of OCSs (Gj
ψτ

)

for each time interval ψτ . The kth bit of the (perturbed) data-stream generated by SMj will

be coded with Oj
(k mod g), where g is the total number of OCSs assigned to SMj in a given

timeslot ψτ . The OCS Oi(t) assigned to any SMi at any instant of time t can be represented

as shown in Eqn. 2.3.

Oi(t) =
L−1∑
j=0

O(j,i).p(t− jTc) (2.3)

In Eqn. 2.3, p(t) is a rectangular pulse which is equal to 1 for 0 ≤ t < Tc and zero otherwise.

Tc is the chip duration of the OCS and O(j,i) is the jth chip of the OCS assigned to SMi

(from the set of all OCSs CL). The signal generated after encoding a data symbol of SMi

with the corresponding OCS is given by:

xi(t) = di

L−1∑
j=0

O(j,i).p(t− jTc) 0 ≤ t < Tf (2.4)

where, di is the data symbol of SMi that needs to be encoded and Tf = L.Tc is the duration

of the encoded data symbol or data bit. The inner product of the sent bit with the OCS is

done bit-synchronously. Then, the overall transmitted signal x(t) of all n SMs in a cluster

can be given by Eqn. 2.5 [4].

x(t) =
n∑
i=0

xi(t) (2.5)

CH will receive a signal including all the bits transmitted by all the smart meters. The

received signal will be decoded by CH using all valid OCSs that it initially assigned to the

SMs. Since CH maintains a table of assigned OCSs (in the same order that was agreed in

the initialization phase) and IDs to every single SM in the network, it is able to decode the
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data by using appropriate OCS for every bit. Hence, after decoding the received signal, CH

has all individual (perturbed) data sent by all the SMs in the cluster. Then, it adds all the

received data and sends the aggregate value to the UC on the point-to-point UA link. It

should be noted again, the perturbation noise will be cancelled out upon addition. Our pro-

posed secure aggregation technique is outlined in protocols 4, 5 and 6. (Even if data in transit

could be decoded, it would still not be useful to the adversary as they are already perturbed.)

1 : Function (UA data transmission)

2 : While data on UA channels do

3 : For all valid received aggregated data do

4 : Collect all data values;

5 : End For

6 : End While

7 : Utilize the aggregated data;

8 : End Function.
******************************Protocol 4: UC function.

In protocol 4, the UC receives the aggregated data from the CH on the UA channel.

Protocol 5 elaborates how CH generates and distributes OCSs (for aggregation and pertur-

bation) to the SMs. Also, it shows how the data is despread, aggregated, and forwarded to

the UC by CH. Finally, protocol 6 elaborates how SM receives the initialization information,

perturbs data and transmits to the CH on the AS channel.

2.4.3.1 Security Analysis

Here, we would like to show that sniffing attacks against our CDMA-based aggregation

are not feasible. This argument is based on the following considerations:

1. In any CDMA system, synchronous transmitters and receivers use a scrambling code,

referred to as the Long Code or Privacy Code, which is used as a measure of security.

This code is generally 242 chips long and will return to its initial state after 41.43
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days. For any sniffing adversary to decode the transmitted packets, it requires a prior

knowledge of this long code [85].

2. Every P bits of data in the smart meter packet is encoded with sixty four possible

OCSs resulting in LP combinations (every SM packet is P bits long). Also, every one

of these LP combinations is a valid numeric value (assuming that smart grid data only

contains numbers) that are indistinguishable from the adversary’s perspective.

Now, assume that a packet is captured by a sniffer. Every bit of this packet will be

spread with a 242 bit long code and a L chip OCS. Given the length of the packet, this

will result in (242 × L)
P

possible combinations which will be infeasible to decode for sniffing

attackers. The only entity in the network that knows about the set of assigned OCSs to the

smart meters is the CH. Hence, data confidentiality, to a great extent, will be preserved and

privacy-sensitive information cannot be inferred by semi-honest and malicious entities.

1 : Function (AS operation)

2 : For each each time perioud ψτ do

3 : Generate the OCS table with Golay;

4 : Function (Initialization);

5 : For each each time period ψτ do

6 : Generate the perturbation table and advertise on BC do;

7 : For each advertised element on BC do;

8 : If receive jamming signal on OCSλi then;

9 : Stop advertising on OCSλi ;

10 : End If

11 : Function(AS data transmission);

12 : End For

13 :End For

14 :End Function
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15 : Function (Initialization)

16 :Generate random IDs for SMs;

17 :Assign OCSs to each SN;

18 :End Function

19 : Function (AS data transmission)

20 : While data on AS channel do

21 : For all valid OCSs do

22 : Decode every received bit with appropriate OCS and reconstruct every SMs data;

23 : End For

24 : Calculate the SUM of all the received data;

25 : Forward the aggregate value to the UC;

26 : End While

27 : End Function.
******************************Protocol 5: CH function.

1 : While network is ON do

2 : Function(BC data);

3 : Function(Metering engine);

4 : End While

5 : End Function.

6 : Function (BC data)

7 : For OCSλj do

8 : Decode the received αj on OCSλj ;

9 : Transmit a jamming signal on OCSλj to jam αj ;

10 : End While

11 : End Function.
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12 : Function (Metering engine)

13 : While metering engine is ON do

14 : Add αj to the original data;

15 : Encode the kth of the perturbed data with Oj
(k mod g);

16 : Spread the encoded data on the AS CDMA channel;

17 : End While
******************************Protocol 6: SM function.

2.5 Evaluation and Simulation Results

Below, we present a simple analysis that compares end-to-end and hop-by-hop delays in

homomorphic approaches versus our proposed CDMA-based aggregation. We evaluate the

performance of our aggregation scheme through extensive simulations.

2.5.1 Performance Evaluation by Numerical Analysis

As discussed in section 2.2.1, existing secure aggregation schemes impose a significant

communication and computation overhead on SGNs with limited capabilities. Private ag-

gregation schemes based on the homomorphic properties of cryptosystems require fixed large

size input blocks and are not ideally suited for small-sized data generated by SMs. The 20

to 30 bit [47] output data generated by SMs has to be padded, e.g., to 2048 bits for Paillier

[19], before encryption. In our approach, by choosing OCSs with appropriate length, this

overhead can be significantly reduced. Readers should note that in our scheme each bit will

be spread to L bits after encoding.

In this section, we will numerically compare End-to-End (ETE) delay in our approach

and homomorphic-based aggregation schemes. We are evaluating our results with clusters of

ten and also twenty smart meters and assuming that each SM is assigned three OCSs to use

in every given time slot. Given that each SM is assigned three OCSs, using an OCS with

L = 32 and L = 64 will be ideal for each scenario, respectively. The OCS length L limits

the maximum number of users per cluster to L

|Gjψτ |
. The total number of users in the network
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is independent of the OCS structure used. The transmission delay (DT ) for one SM can be

calculated as:

DT =
(F +HID).L

R
(2.6)

where F is the frame length, HID is the ID header, L is the OCS length and R is the link

bit-rate. Given Eqn. 10, the transmission delay using L = 32 and L = 64, assuming a 200

kbps ZigBee link, is 4.8 ms and 9.6 ms, respectively. However, using traditional homorphic

cryptosystems as proposed by [50], the transmission delay(DT ) is:

DT =
(HID +DC + TCRC)

R
(2.7)

where HID is the identifier header, DC is the encrypted data (payload) and TCRC is the

error-checking trailer. Common SM and AMR systems generate data packets which contain

a 24-bit meter ID (HID), a 22-bit meter reading and a 16-bit CRC checksum (TCRC) [46].

This 22-bit meter reading is padded to 2048 bits before encryption and generates and output

cipher of length 2048 bits (DC). Based on these values, the transmission delay will be 10.44

ms for one SM. Another shortcoming of the privacy preserving homomorphic aggregation

schemes, such as [50], is that every node’s data should be passed hierarchically to the upper

level node in the aggregation tree. This process continues until all the data is aggregated at

the UC. However, this can increase the total delay which depends on the depth of the aggre-

gation tree. Thus, if the depth of the aggregation tree is ℘, the total transmission delay will

be DT × ℘. Given clusters of 10 or 20 SMs, in the worst case scenario, ℘ = 10 and ℘ = 20,

and consequently DT℘ = 104.4ms and DT℘ = 208.8ms, respectively. In the average case,

the length of the aggregation tree, considering clusters of ten or twenty SMs, will be ℘ = 4

and ℘ = 5. Hence, transmission delay is DT℘ = 41.76 ms and DT℘ = 52.2 ms, respectively.

Our approach overcomes this issue as all nodes are able to transmit their data simultane-

ously and independently. This shows that our protocol is independent of the depth of the

aggregation tree. Hence, using an OCS with appropriate length we are able to decrease the

39



overhead significantly, as seen in Table 2.1. It should be noted that we are only considering

the transmission delay. Moreover, given the high processing load and queuing delays due to

the non-simultaneous transmission and high BER and retransmissions, the overall delay of

the homomorphic approaches are too high compared with AgSec. Table 2.1 summarizes the

transmission delay and total communication overhead = Transmitted data
Actual payload

.

Table 2.1: Transmission Delay and Communication Overhead

Agsec****
L=32
chips

Agsec
****
L=64
chips

Homomorphic
(Paillier)

DT for one SM (ms) 4.8 9.6 10.44
DT for ten SM (ms) 4.8 9.6 104.44
DT for twenty SM (ms) 4.8 9.6 208.8
Communication Overhead 43.63 87.26 94.91

It is worth mentioning that Saputro and Akkaya [58] have analyzed the performance

of homomorphic aggregation through extensive simulations. Not surprisingly, their results

confirm our evaluation. The authors show that homomorphic encryption for data aggrega-

tion is very expensive in terms of communication overhead. They have also compared ETE

homomorphic data aggregation with Hop-by-Hop (HBH) decrypt, aggregate, encrypt at in-

termediate aggregator nodes via regular stream-ciphers, such as RC-4. Surprisingly, both

approaches show similar performance from a computation perspective (One multiplication

in homomorphic ETE aggregation is as expensive as three operations in HBH aggregation:

decrypt, add, encrypt) [58]. However, as our analysis also confirms, the authors show that

ETE aggregation via homomorphic encryption generates extraordinarily large data which

will result in unacceptable communication overhead on the SGN.
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Figure 2.6: OCS Length versus Error.

Figure 2.7: OCS Length versus Communication Overhead.

2.5.2 Simulation Results

We evaluate our proposed privacy-preserving aggregation protocol in a 100 × 100 km2

simulated metropolitan area with 50000 SMs. Our first goal is to verify the efficiency of

our protocol in securely aggregating SM data as compared with existing approaches that

employ homomorphic encryption for aggregation. One of the first observations we make is

that, if appropriate parameters are chosen, our scheme performs more efficiently in terms of

communication overhead and delay. Simulation parameters can be found in Table 2.2.
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Figure 2.8: OCS Length versus Delay.

The 50000 SMs are clustered into groups of n SMs per cluster, where n ≤ L

|Gjψτ |
as every

SM will be assigned ψτ OCSs out of the all L possible OCSs. One important aspect of

the protocol that must be studied is the OCS length L which affects the number of SMs

per cluster, tolerated error at the receiver, delay, and communication overhead. We observe

that, at a constant SNR, the number of corrupted bits at the receiver decreases by increasing

OCS length (Figure 2.6). As it can be clearly seen in Fig. 2.6, at SNR = 10−3, if the OCS

length is equal to or greater than 32 chips, there will be no error at the receiver. OCS

lengths 16 and 8 will be ideal for SNR = 10−2 and SNR = 10−1, respectively. However,

there is a trade-off between error and communication overhead. An increase in the OCS

length will result in more communication overhead on the network. Our proposed scheme

will outperform homomorphic aggregation, in terms of communication overhead, if the OCS

length used is less than 128 chips. Figure 2.7 compares the communication overhead of our

proposed CDMA-based aggregation with homomorphic aggregation schemes such as [50].

This confirms our analysis that an OCS length of 32 or 64 will be ideal in terms of error and

communication overhead at SNR = 10−3.

As mentioned earlier, the delay in ETE homomorphic encryption depends on the number

of nodes and the depth of the aggregation tree. On the contrary, in our proposed scheme all
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Table 2.2: Simulation Parameters

Parameter Value

Network size 100 × 100 km2

Cluster radius 100∼200 m
Number of SMs 50000
Number of SMs per cluster bL

3
c

AS Communication multi-
plexing

CDMA

OCS generator algorithm 4 to 1024 chips Golay OCSs
UA link point-to-point
AS, BC, CC links IEEE 802.15.4 Zigbee, FHSS, 2.4 to

2.48 GHz
AS Bit rate 200 Kbps
SM TX and RX power 100 mW, 20 dbm
Aggregator tree fixed/static
CC security public-key cryptography and digital

signiture
Propagation model free space

the SMs are able to transmit their data independently and simultaneously. This will result

in a considerable decrease in the end-to-end delay. Figure 2.8 compares the delays of our

scheme with an ETE homomorphic approach such as [50]. As it can be clearly observed, our

CDMA-based aggregation scheme significantly reduces delay.

2.6 Conclusion

Existing approaches to privacy-preserving data aggregation in smart grid generally utilize

the homomorphic properties of public-key cryptosystems. However, as we have thoroughly

investigated, these approaches are expensive from a communication stand-point. In this

paper, we proposed a two- step process towards efficient private data aggregation in SGNs.

First, we introduced a random perturbation technique which is used to statistically alter

the time-series data of every SM such that individual consumption patterns could not be

inferred and yet the sum and average values of the reported power consumption in a given

neighborhood can be calculated accurately. Second, we proposed an efficient and secure data
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aggregation scheme which utilizes the properties of spread spectrum communications. Our

evaluation and simulation results confirmed that our approach increases performance and

decreases unnecessary communication overhead on SGNs considerably, as compared with

existing homomorphic aggregation schemes.

44



CHAPTER 3
QUANTIFYING SMART GRID PRIVACY WITH

INFORMATION THEORETIC METRICS

3.1 Introduction

In order to provide power reliably and efficiently to consumers, information and commu-

nication technologies (ICT) are being merged into the traditional power grid [48]. A Smart

Grid is an electrical grid that leverages communication technologies and information pro-

cessing to gather, process and act on collected information to improve reliability, efficiency,

economics, and sustainability of the power grid in generation, transmission, and distribu-

tion [44, 48, 83]. This two-way communication system enables Utility Companies (UC) to

remotely gather power consumption data from the users at short time intervals. This highly-

granular power usage data collected from the users’ Smart Meters (SM) will equip the UCs

with advanced features such as real time monitoring, fault-detection, self-healing [59, 60],

load balancing, demand-response, and peak-shaving [61, 49, 83]. The deployment of smart

grid will save energy, enable the use of dynamic pricing schemes, integrate renewable re-

sources and electric vehicles into the power grid, and provide greener and cleaner energy

[48, 83, 61].

The availability and processing of high precision energy data raises serious privacy-related

concerns from the consumers’ point of view. Due to such privacy issues, the Dutch Parliament

prohibited the deployment of smart meters [47]. Various research efforts have attempted

to study the private information that can be inferred from the fine-grained power data

[46, 47]. To bring up some tangible examples, Lisovich and Wicker [52] show that smart

meter data has a potential risk for absence/presence attack, i.e., it can be easily detected if

a residential building is vacant or not. In a similar research effort, Lisovich et al. [53] also

demonstrate that the location of the residents of a household can be easily tracked based on

the appliance they are using. Cohen [54] studies different privacy and security vulnerabilities
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of the smart grid. The author shows that, apart from the extraction of possible private

information, the smart grid is also vulnerable to many cyber security attacks which can

target the confidentiality and integrity of the transmitted data or even the availability of the

power grid.

Many existing privacy-preserving techniques utilize the homomorphic properties of public-

key cryptosystems to perform data aggregation on encrypted SM data [50, 47, 51, 55, 56, 57].

These privacy-preserving approaches, although providing strong guarantees of confidential-

ity, are very heavy from a communication and computation standpoint [44, 58]. In another

research direction, large batteries are used between the resources (home appliances) and

the service provider (utility) in order to hide user’s usage patterns and to prevent physical

resource monitoring. Such techniques try to flatten the time-series smart grid data and hide

easily detectable usage information [63, 62, 64, 65]. It should be noted that these approaches,

although solving the problem to a great extent, do not seem to be practical as stated by

the authors in [62]. Alamatsaz et al. [44] propose an efficient and secure CDMA-based data

aggregation scheme to prevent possible sniffing and spoofing attacks using the properties of

orthogonal chip sequences.

Although there have been several efforts on designing Smart grid Privacy-Preserving

Mechanisms (SPPM), there has been very limited research on quantifying the privacy pro-

vided/lost by employing such SPPMs. It should go without saying that utilizing any mech-

anism to hide power usage information for preserving user privacy will result in a loss of

benefit (utility) from the UC’s perspective [69]. Thus, it is of paramount importance to

design a theoretical framework which can give both the consumers and the UCs the ability

to numerically evaluate the provided/lost privacy. Such privacy metrics can be utilized in

data sharing control systems, privacy visualization applications, etc.

In various other domains, such as databases [71], RFID [70], anonymity protocols [72, 82],

location-based services [67, 68], voting systems [81], and social networks [66], there have been

several contributions made to quantify privacy. Inspired by all the available privacy metrics
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in the literature, in this chapter we thoroughly investigate the applicability of such metrics

for quantifying the privacy gained by applying different SPPMs. Then, we evaluate four

information theoretic metrics for smart grid privacy based on the concepts of information

entropy and try to analyze the certainty of the inference results of the adversary.

The rest of the chapter is organized as follows. In Section 3.2, we outline the framework

considered in this work and also look at some privacy-preserving techniques and terminolo-

gies. Then, we thoroughly investigate existing metrics for quantifying privacy in general.

In Section 3.3, we study the applicability of entropy-based metrics for quantifying smart

grid privacy. In Section 3.4, we evaluate the validity of such metrics through extensive il-

lustrations and simulations. Also, we apply this metric to study the privacy leakage of real

electricity usage data gathered from a set of smart meters deployed in the United Kingdom.

3.2 Preliminaries

3.2.1 The Framework

Here, we outline a formal framework for smart meter data and SPPMs. This abstraction

will allow us to precisely evaluate the applicability of existing privacy metrics. First off,

let us assume that SM readings are denoted with a Gaussian random variable X [69]. The

sampled instances of this random variable X take values from the set SX = {xi ∈ [0,max]},

called support or range of X. We also assume a generic Transfer Function (TF) that maps

the readings to an obfuscated value X̂ with realizations of SX̂ = {x̂i ∈ [δ, %]}, where δ and

% depend on the TF (different obfuscation mechanisms are discussed in section 3.2.2). Let

fX(x) and fX̂(x̂) denote the probability density functions (pdf) of random variables X and

X̂, respectively. The TF: X → X̂ is a one-to-one function. Different TFs for obfuscating

the data can be found in the literature [67]. The Transfer Function is a function that maps

actual metering values, xi ∈ SX , to obfuscated values x̂i ∈ SX̂ . To keep our discussion general

enough, we are not assuming any specific TF at this point. The goal of the adversary is to

infer X from observing X̂ and a set of other a priori knowledge such as partial traces of X,
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time information, etc. denoted by {E1, E2, · · · , En}. Let AF denote the Attack Function

(AF) that takes the obfuscated values X̂ and a vector of random variables {E1, E2, · · · , En}

as inputs and generates output Y with range SY = {yi ∈ [0,max]} and pdf fY (y). We would

like to argue that a privacy metric should be general and independent from the SPPM and

the capabilities of the adversary given the fact that SPPMs and extraction and inference

techniques from smart grid data are at their early stages and such techniques are expected

to mine information from smart meter data in ways that are possibly a lot more advanced

and complicated in the future. Hence, we are not considering any specific Attack Functions

in our analysis. Given the strengths and a priori knowledge of the adversary, the output Y

of the AF differs significantly.

Transfer 

Function
X

Attack

Function
X̂ Y

1E 2E nE

. . .

X̂

Figure 3.1: Transfer and attack functions

3.2.2 Privacy-Preserving Techniques and Terminologies

In general, privacy-preserving mechanisms can be classified into one of the following three

broad categories:

Elimination: One approach to preserving privacy is eliminating some events (based on

a specific algorithm). This will reduce the precision of the data and hence make inference

more difficult.

Obfuscation: In this category of privacy-preserving techniques, the actual data is modified

or distorted before being released to the outside world, i.e., before becoming observable,
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the values xc ∈ SX are generally replaced with an obfuscated value x̂o ∈ SX̂ . Different

obfuscation mechanisms include, reducing precision, perturbation (adding noise), adding false

data [67], and time-series manipulation, for example, using large batteries [65].

Anonymization: In anonymization techniques, the goal is to hide the source of the data,

or the user. The user identifier is generally replaced with a user-pseudonym. One of the

well-known annonymization techniques is k-anonymity as elaborated in section 3.2.3 [80].

However, most of the privacy-preserving mechanisms in smart grid lack a formal analyt-

ical model to compute the amount of privacy gained. In other words, these methods simply

attempt to preserve consumers’ privacy without showing how private the method is. In this

section, we will present some of the existing metrics in the literature, but before doing so,

let us define three common terms that are, mistakenly, used interchangeably in the context

of quantifying privacy. There is a subtle yet important difference between the accuracy,

certainty, and correctness of the inference attack of the adversary [67].

Accuracy : Confidence intervals and confidence levels are used to measure the accuracy of

the inference. Confidence level is equal to the probability that the precise value of Pr(x|x̂) is

within the confidence interval. Suppose L and U are functions of the random sample. L and

U are determined such that the interval includes a parameter θ. In other words, if 0 < α < 1,

then, P (L < θ < U) = 1− α. The interval (L,U) represents a confidence interval for θ with

confidence level 1 − α [76]. In the worst case scenario, the confidence interval will be zero,

and hence, the confidence level will be 1. In this case the inference will be very accurate. It

can be concluded that the accuracy of the inference will be higher if the confidence level is

high and the confidence interval is small [67].

Certainty : Entropy shows how uniform or concentrated the estimated distribution is and

with how much certainty the adversary can pinpoint a single result from its inference attack.

The higher the entropy is, the lower the adversary’s certainty will be. Given the functions

introduced in Section 3.2.1, the entropy of the obfuscated values is [67, 68, 69]:
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H(X̂) = E[− log f(X̂)] =

+∞∫
−∞

[−logf(x̂)]f(x̂)dx̂ (3.1)

Correctness : In the context of location privacy, correctness is defined as the expected

distance between the actual value xc ∈ SX and the inferred value y ∈ SY and fY (y) =

Pr(x|x̂) where Y represents the results of the inference [67]:

∑
x

fY (y)‖y − xc‖ (3.2)

Given that the notion of privacy can be different in different domains, privacy can be

measured by either accuracy, certainty, or correctness. Thus, before quantifying privacy, it

is important to know which of the aforementioned measures is useful in the domain being

investigated, for instance, smart grid in our case.

3.2.3 Metrics for Quantifying Privacy

Now, let us introduce some of the proposed metrics for quantifying privacy in diffrent

domains.

3.2.3.1 k-anonymity

The concept of k-anonymity is a way of releasing information to the public while main-

taining both integrity and privacy of the data by using generalization techniques [68, 80]. In

order to hide and preserve the privacy of the data released by a given user by k-anonymity

techniques, the data of that user should be indistinguishable from the data of k − 1 other

users [73]. In the context of smart grid networks, smart meters can be divided into clusters

of k SM per cluster such that the data transmitted by these k SMs are not distinguishable,

i.e. it should not be possible to identify the source of a transmitted packet out of k users.

However, such k-anonymity-based metrics seem to be not feasible for smart grid networks

for reasons such as billing, linkablity, and accountability.
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3.2.3.2 Mutual Information Rate

Sankar et al. [69] present an abstract framework for modeling the privacy-utility tradeoff

in smart grid by utilizing concepts from information theory and a hidden Markov model.

They employ the theory of rate distortion to quantify this tradeoff. The authors demonstrate

that the aforementioned tradeoff can be modeled with an inference-aware reverse waterfilling

solution. They consider, similar to our proposed framework, a generic transfer function with

an input X and an output X̂. They assume an n-variable real Gaussian distribution for SM

readings and also consider an attack model that infers Y , correlated to X, from the observed

values X̂. Given these assumptions, they propose a privacy leakage metric as the mutual

information rate between Y and X̂. They also define the utility function of the UC which

measures the fidelity of X̂ by limiting the Euclidian distance (mean square error) between

X and X̂. The desired utility is given by an average distortion constraint:

D =
1

n

n∑
k=1

E[(Xk − X̂k)
2] (3.3)

Also the leakage function in the following equation quantifies the information leakage:

L =
1

n
I(Y n; X̂n) (3.4)

where I(Y ;X) denotes the mutual information [69, 78].

3.2.3.3 Clustering Error

Fischer et al. [74] propose a metric for quantifying location privacy. In their approach,

the attacker clusters the observed events into a number of subsets, considering one subset

for every user. As the adversary does not have prior knowledge about the set partitions,

it hypothesizes multiple set partitions probabilistically. The location privacy is measured

by the adversary’s expected clustering error [68]. Since such clustering-error based metrics

estimate the adversary’s error by comparing each hypothesized set partition with the actual

one using a distance function, they do not seem to be applicable to the smart grid domain.
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3.2.3.4 Distortion-based Metric

Shokri et al. [67] claim that in quantifying location privacy correctness of the adversary’s

attack can be used as a potential metric, instead of using certainty or accuracy-based metrics.

The authors consider an attack model which infers Y , correlated to X, from the observed

values X̂. We denote the set of possible outcomes of the inference as SY . The correctness

of the attack is measured using the expected distance between the correct xc ∈ SX and the

inferred value y ∈ SY (Eqn. 3.2). In a similar research effort, Shokri et al. [68] show that

the expected distortion in the reconstructed location of the users can be used as a metric to

quantify privacy:

ED(u, t) =
∑

Υ

D(whereis(u, t), loc(tail(Υ))).πj∗(Υ) (3.5)

The above formula shows the distortion in a reconstructed trace of user u at time t denoted

by ED(u, t). Υ is a path from source to destination and loc(tail(Υ)) shows the location

of the last event in path Υ. πj∗(Υ) is a probability assigned to a trace Υ and D is a

distance function between two locations. Given the above distortion, the authors compute

the location privacy of user u at time t, with a location/time sensitivity function lts, as

follows:

LP d
u (t) = 1− lts(u,whereis(u, t), t).(1− ED(u, t)) (3.6)

Hence, the average location privacy of user u at any time instant t during the time period

T is:

LP d
u =

1

T

∑
∀t∈T

LP d
u (t) (3.7)

3.2.3.5 Regression Analysis

Kalogridis et al. [65] propose a metric for quantifying smart grid privacy based on

regression analysis in a battery-based SPPM. In this approach, the authors combine cross-

correlation and regression procedures. The main idea is that the degree to which X̂ predicts
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X can be quantified by shifting X̂ in order to align it with X at the point of their maximum

cross-correlation and comparing the two aligned signals using regression methods. The au-

thors consider the coefficient of determination, R2, to show the proportion of variability in

a data set that is accounted for by the statistical model. R2 is defined as follows:

R2 = 1− SSE
SSR + SSE

, 0 ≤ R2 ≤ 1 (3.8)

In the above equation, SSE and SSR denote the error sum of squares and the regression

sum of squares, respectively. R2 = 1 elaborates that predictions are fully explained by the

model, whereas R2 = 0 shows the opposite. The authors claim that R2 can be used as a

privacy metric. The lower R2 is, the higher the privacy protection will be.

3.2.4 Discussion

Although numerous proposals for privacy protection in smart grid can be found in the

literature, most of these approaches lack an analytical model and hence cannot answer some

important questions: (i) what are different possible attacks that will result in a loss of

privacy? (ii) how much privacy is lost in smart grid networks and how employing different

SPPMs will reduce this privacy loss? (iii) how much privacy sensitive information is enough

for the UC to be left in the smart grid data while still preserving consumer privacy? In this

chapter, we will introduce a new framework based on the entropy of the smart grid data to

formally model the privacy loss in smart metering systems.

3.3 Information-Theoretic Metric

Here we investigate the feasibility and applicability of information-theoretic metrics uti-

lizing well-established probabilistic methods [76, 77] and using concepts from the theory

of information entropy [75, 78]. First off, let us revisit the variables and notations used.

We assume that the data generated by smart meters follows the normal (Gaussian) dis-

tribution and can be modeled with a continuous random variable X ∼ N(µ, σ2) where
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µ is the average (mean) and σ2 is the variance [69]. X takes values in the set SX and

has the probability density function fX(x) = 1√
2πσ

e−
1

2σ2
(x−µ)2 , x ∈ R, µ ∈ R, σ > 0.

Let X ∼ N(µ, σ2), then the continuous random variable Z = X−µ
σ

has a standard Guas-

sian distribution. Based on the definition of the cumulative distribution function, we have:

FZ(z) = P (Z ≤ z) = P (x−µ
σ
≤ z) = P (X ≤ σz + µ) =

σz+µ∫
−∞

1√
2πσ

e−
1

2σ2
(x−µ)2dx.

Then, with a change of variable t = x−µ
σ

, we have: FZ(z) =
z∫
−∞

1√
2π
e
−t2
2 dt = φ(z). Hence,

FX(x) =
x∫
−∞

fQ(q)dq = φ(x−µ
σ

).

As the transfer function we consider a simple perturbation function that maps the input

X to the output X̂, where X+A = X̂ (we are assuming this TF for illustration purposes only

and it can be replaced by any other TF). A ∼ U(b, c) is a continuous random variable with a

uniform distribution and the pdf fA(α) =


1
c−b , b ≤ α ≤ c

0 , otherwise

, that models the generated

perturbation data. The cumulative distribution function of A, FA(α), for b ≤ α ≤ c is

FA(α) = P (b ≤ α ≤ c) =
α∫
−∞

fA(t)dt =
b∫
−∞

0dt +
α∫
b

1
c−bdt = α−b

c−b . The output of the TF is a

random variable X̂. Assuming X̂ = X+A, the probability density function of X̂ is as follows:

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗fX̂(x̂) =
+∞∫
−∞

fX(x̂− α)fA(α)dα

=

+∞∫
−∞

fA(x̂− x)fX(x)dx (3.9)

In order to solve Eqn. 3.9, we should have b < x̂− x < c or x̂− c < x < x̂− b. Then,

fX̂(x̂) =

x̂−b∫
x̂−c

1

c− b
fX(x)dx

=
1

c− b

x̂−b∫
x̂−c

fX(x)dx =
1

c− b
[F (x̂− b)− F (x̂− c)]

=
1

c− b
[φ(

x̂− b− µ
σ

)− φ(
x̂− c− µ

σ
)] (3.10)
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The probability density function and cumulative distribution function of the output of the

attack function (Y ) are unknown at this point as we are not assuming any specific attack

models. Given the desired attack function, one can use the appropriate distribution for Y

and apply our metric to evaluate the privacy of the SPPM. Based on the introduced notations

and functions so far, we will elaborate the information-theoretic metrics that can be used to

evaluate the privacy gained as the result of using any SPPM. As a case study, we will apply

this metric to a simple perturbation SPPM. We were able to access highly-granular real

smart meter data collected in one-minute time intervals [84]. Using this data and employing

a perturbation SPPM, we evaluate the privacy of such SPPM using the introduced metrics

by means of statistical tools, simulations, and illustrations.

3.3.1 Entropy

Shannon introduced a function of a given random variable Z which has a very well-

known and practical expectation, g(Z) = − log f(Z) [75]. Let Z be a continuous random

variable with pdf fZ(z), then, H(Z) = E[− log f(Z)] is referred to as the entropy of Z

(log is generally considered in base 2 or e). The entropy of Z is H(Z) = E[− log f(Z)] =
+∞∫
−∞

[− log f(z)]f(z)dz. Entropy is often-times used as a measurement for quantifying uncer-

tainty. The maximum uncertainty is achieved when H(Z) is maximized. It can be shown

that the uniform distribution has the maximum entropy, and thus, the maximum uncertainty

among all random variables with the same support or range. Uncertainty is minimized when

Z is degenerated as the observed values of Z are already known with 100% certainty. It

can be also concluded that entropy is used as a measure of dispersion as well. Now, we

would like to present an entropy analysis of the random variables assumed in our framwork

X ∼ N(µ, σ2), A ∼ U(b, c), X̂ = A+ Z, and Y = TF (X̂, E1, E2, · · · , En).

The entropy of X ∼ N(µ, σ2) is calculated as follows:
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H(X) = E[− loge f(X)] =

+∞∫
−∞

[− ln fX(x)]fX(x)dx

=

+∞∫
−∞

− ln(
1√
2πσ

e−
(x−µ)2

2σ2 )
1√
2πσ

e−
(x−µ)2

2σ2 dx

=

+∞∫
−∞

[ln(
√

2πσ) +
(x− µ)2

2σ2
]

1√
2πσ

e−
(x−µ)2

2σ2 dx

= ln(
√

2πσ) +
1

2σ2

+∞∫
−∞

(x− µ)2 1√
2πσ

e−
(x−µ)2

2σ2 dx

= ln(
√

2πσ) +
1

2σ2
σ2

=
1

2
ln(2πσ2) +

1

2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ (3.11)

As it can be clearly observed in Eqn. 3.11, the entropy of a random variable with a

Gaussian distribution depends solely on the variance σ2 (or the standard deviation σ) of

the distribution and is independent from the average µ. In order to increase entropy (and

thus increase uncertainty of the adversary), σ2 must be increased. As power consumption

is related to the energy consumption patterns of the consumers, σ2 cannot be generally

manipulated or controlled by the UC or any third party entity.

Assuming the perturbation data are randomly selected from [0, l], the entropy of A ∼

U(b, c) when b = 0 and c = l, will be:

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗H(A) = E[− loge f(A)] =
+∞∫
−∞

[− ln fA(α)]fA(α)dα

=

l∫
0

1

l
ln l dα = ln l (3.12)

It should go without saying that larger l will result in more entropy. In other words, in order

to increase uncertainty, the random numbers should be selected from a wider range [0, l].
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Among all random distributions with support [0, l], the uniform distribution, as expected,

has the highest entropy, and thus, the highest uncertainty. As opposed to σ2 which cannot

be controlled, l can be used as a parameter to control the amount of privacy leakage.

Now, we would like to analyze the entropy of the output of our transfer function denoted

by the random variable X̂ = X + A. The initial goal of applying the TF on the smart

metering data was to hide the power consumption patterns of the consumers. In other

words, it is of paramount importance to numerically evaluate the results of employing the

TF (perturbation in this case). Below we evaluate the entropy of the addition of two random

variables. Assume X and A are any two discrete random variables, then:

max{H(X), H(A)} ≤ H(X +A) ≤ H(X) +H(A) (3.13)

And if X and A are any two continuous random variables, we have [75, 78]:

H(X +A) ≥ max{H(X), H(A)} (3.14)

Given Eqn. 3.11 and Eqn. 3.12, if both the random variables X ∼ N(µ, σ2) and A ∼ U(0, l)

have the same support, based on Eqn. 3.14:

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ .H(X +A) ≥ max{H(X), H(A)}

≥ max{1

2
+

1

2
ln(2πσ2), ln l} ≥ ln l (3.15)

It can be clearly observed that the uniform distribution has the maximum entropy among

all distributions with support [0, l]. Based on Eqn. 3.14 and Eqn. 3.15, the entropy of any

random variable, if added with a uniform random variable, will be maximized. Hence, in

order to minimize the certainty of the results of any inference attack, it is enough to add the

random variable denoting the actual data with a uniform random variable. However, in our
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case, the support of the random variables X and A are different, and thus, Eqn. 3.15 will

not always stand. Instead, we can write:

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗H(X̂) = H(X +A) ≥ max{H(X), H(A)}

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ≥ max{1

2
+

1

2
ln(2πσ2), ln l} (3.16)

Given Eqn. 3.16, the entropy H(X̂) = H(X + A) depends on l and σ2. Choosing a large

enough l, H(X̂) = H(X+A) ≥ ln l. It can be concluded that, independent from the support

of the random variable, l is the only parameter that can be altered in order to achieve the

maximum possible privacy, i.e., a large enough l will minimize the centainty of any inference

by the adversary. Finally, it is worth noting that the entropy of the random variable Y

(output of the AF),
+∞∫
−∞

[−logf(y)]f(y)dy, depends on the pdf Fy(Y ) and the capabilities of

the adversary.

3.3.2 Relative Entropy

Another information theoretic metric that can be used to compare two sources of infor-

mation is the relative entropy (or KullbackLeiber Distance) [65, 75]. The relative entropy

between X and Y , D(X‖Y ), is:

D(X‖Y ) =

+∞∫
−∞

fX(x) log
fX(x)

fY (y)
dx (3.17)

The relative entropy, as defined above, quantifies the relation between X and Y . Relative

entropy is always positive (as opposed to entropy that can also take negative values). It

should be noted that larger relative entropy shows that the TF used has been successful in

decreasing the certainty of the adversary’s inference from SM data.
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3.3.3 Joint Entropy

The joint entropy of two (or more) random variables with a joint pdf fX,Y (x, y) is defined

in Eqn. 3.18 and shows their joint uncertainty:

H(X, Y ) = E(− log f(X, Y )) (3.18)

Given Eqn. 3.22 and Eqn. 3.18, it can be proved that H(Y,X) = H(X|Y ) +H(Y ).

H(X|Y ) = E(− log fX|Y (X|Y ))

=

+∞∫
−∞

+∞∫
−∞

[− log fX|Y (x|y)]fX,Y (x, y)dy dx

=

+∞∫
−∞

+∞∫
−∞

[− log
fX,Y (x, y)

fY (y)
]fX,Y (x, y)dy dx

=

+∞∫
−∞

+∞∫
−∞

[− log f
X,Y

(x, y)− log f
Y

(y)]f
X,Y

(x, y)dydx

=

+∞∫
−∞

+∞∫
−∞

− log fX,Y (x, y)fX,Y (x, y)dx dy

+ [−
+∞∫
−∞

+∞∫
−∞

(− log fY (y))fX,Y (x, y)dy dx]

= H(X, Y )−
+∞∫
−∞

(− log fY (y))

+∞∫
−∞

fX,Y (x, y)dx dy

= H(X, Y )−
+∞∫
−∞

− log fY (y)fY (y)dy

= H(X, Y )−H(Y )

And hence,

H(X, Y ) = H(X|Y ) +H(Y ) (3.19)
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Similarly, H(X, Y ) = H(Y |X) +H(X). Also, it can be shown that [78]:

H(X) +H(Y ) ≥ H(X, Y ) ≥ max{H(X), H(Y )} (3.20)

As the above equation explains the joint entropy of two random variables is always greater

than or equal to individual entropies of the random variables. Assuming that f(X,Y )(x, y) is

the joint distribution of the smart meter data X and the inferred values Y , H(X, Y ) can be

used as a potential privacy metric.

3.3.4 Conditional Entropy

Conditional entropy shows the average uncertainty of one or more random variables

assuming the values of the other random variables are known. The conditional entropy of X

for a known Y = y, H(X|Y = y), is:

H(X|Y = y) = E(− log fX|Y (X|y)) (3.21)

And hence:

H(X|Y ) = E(− log fX|Y (X|Y )) (3.22)

Thus, if (Y,X) is a continuous vector, we have:

H(X|Y ) =

∫ ∫
SXY

[− log fX|Y (x|y)]fX,Y (x, y)fY (y)dx dy

=

∫ ∫
SXY

[− log fX|Y (x|y)]fX,Y (x, y)dx dy

=

∫
SY

fY (y){[− log fX|Y (x|y)]fX,Y (x, y)dx}dy

=

∫
SX

fY (y)H(X|y)dy

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ (3.23)
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Eqn. 3.21, Eqn. 3.22, and Eqn. 3.23 analyze the entropy of the actual data, X (or input of

the TF), if some given values of the perturbed data, Y (or output of the AF), are known to

the adversary. The higher this conditional entropy is, the more uncertain the results of the

attack will be.

Thus far, we introduced information-theoretic metrics to quantify smart grid privacy.

Assuming a generic transfer function, comparing the entropy of the information before and

after applying the TF can be a potential metric for analyzing the privacy leakage of smart

grid networks. We would like to reiterate that these privacy metrics is general enough and

can be used independent of the transfer and attack functions.

3.4 Evaluation and Illustration

3.4.1 An Analytical Perspective

Now, we would like to analytically evaluate the validity of the aforementioned metrics.

We model the smart meter data with random variable X ∼ N(µ, σ2) with a constant µ = 500

(representing power consumption of 500Wor 0.5kW in one minute) and a variable σ changing

from 36 to 108 as depicted in Fig. 3.2. In Fig. 3.4, the pdf of the random variable X̂ is

illustrated. This random variable is generated by adding a uniformly distributed noise to

the original data, i.e. X̂ = X + A. In order to evaluate the validity of the introduced

information-theoretic metrics, representing SM privacy, we need to compare the entropy of

information before and after perturbation. As it can be seen in Figures 3.3 and 3.5, the

entropy has increased after perturbation. These results confirm what was expected based on

the information-theoretic concepts, as indicated in equations 3.15 and 3.16. This increase in

entropy is equivalent to decreasing the certainty of possible inference attacks.

For instance in Fig. 3.2, the tallest graph is the pdf of a random variable with distribution

X ∼ N(µ = 500, σ = 36). The entropy of X (before perturbation) is 5.0022, as shown in Fig.

3.3 by ?. Figure 3.4 illustrates the pdf of the perturbed random variable X̂. As indicated

by ? in Fig. 3.5, entropy has increased from 5.0022 to 6.2684 after perturbation.
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        σ=   36

        σ=   42

        σ=   45

        σ=   58

        σ=   62

        σ=   85

        σ= 108

Figure 3.2: pdf’s of Gaussian Distributions with µ = 500 and Variable σ2.
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Figure 3.3: Entropy of Smart Meter Data, H(X).

3.4.2 A Practical Experiment

In this section, we analytically evaluate the privacy metric with real smart meter data.

This analysis is based on measured electricity used at one-minute time intervals in twenty-two

houses in East Midlands, UK [84] over two complete years (2008 and 2009). Each house used

a single meter covering electricity usage of the whole house. The meters are BS EN 62053-

21002003 and measure true active power. As it could be clearly observed, sensitive private

information of the house-hold can be extracted without much effort or requiring advanced

technologies. These results confirm the findings of [52, 53, 54] regarding privacy threats
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        σ=   36

        σ=   42

        σ=   45

        σ=   58

        σ=   62

        σ=   85

        σ= 108

Figure 3.4: pdf’s of Random Variables X̂, fX̂(x̂) = f
X+A(x+ α).
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Figure 3.5: Entropy of Perturbed Smart Meter Data, H(X̂) = H(X +A).

of the smart grid such as potential risks for absence/presence attacks, tracking residents

inside a house, etc. For instance in summer 2009, one of the houses was empty until around

5:35 P.M. every weekday. It could be concluded from the data that the resident usually

came back home and had dinner between 5:35 and 6:00 P.M. (there was significant sudden

increase in power consumption in the mentioned time frame which could have happened

as a result of using a device such as an oven). We analyzed the data of the smart meters

with Statgraphics [79]. Surprisingly, the power consumption of the houses did not follow

the Gaussian distribution as opposed to what we initially expected. Fig. 3.6 demonstrates
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the power usage of one of the dwellings from 12:00 A.M. to 11:59 P.M. on 01/24/2009. We

use this example to discuss our results. We evaluated 1439 values ranging from 0.03216 to

9.8662 kW. Initially we ran several different tests for normality on the smart meter data

to determine whether the data can be adequately modeled by normal distribution. Based

on the Shapiro-Wilk test [45] and comparing the quantiles of the fitted normal distribution

to the quantiles of the data, since the smallest P-value amongst the tests performed is less

than 0.05, we can reject the hypothesis that the values comes from a normal distribution

with 95% confidence (The same process was done for several different smart meters and also

different time intervals, days, months, and seasons, in two different years. The results were

all similar in terms of normality of the data). Also using Kolmogorov-Smirnov Goodness-of-

Fit Test confirms the above result [45]. The estimated parameters of the best fitted normal

distribution for the data have a mean of 0.356934 and standard deviation of 1.07374. This

analysis shows the results of fitting a normal distribution to the data generated by the studied

smart meter in a 24 hour period. Fig. 3.7 demonstrates the histogram of the data along

with the best fitted normal distribution. Fig. 3.8 shows the Quantile-Quantile plot. A

Figure 3.6: Power Consumption in a Household in a Twenty-four Hour Period.

Q-Q plot is a probability plot for comparing two probability distributions by depicting their

quantiles against each other. As it can be observed in the figure the data do not lie on the

normal distribution. Assuming that the data comes from a normal distribution, the tolerance

limits state that, with 95.0% confidence, 99.73% of the distribution lies between −2.96759
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Figure 3.7: The Histogram of the Power Consumption Data.

and 3.68146. This interval is computed by taking the mean of the data ±3.09622 times the

standard deviation. Without assuming that the data comes from a normal distribution, the

tolerance limits state that we can be 95.0% confident that 99.6708% of the distribution lies

between 0.03216 and 9.8662. This interval is computed from the smallest and largest values.

Figure 3.8: Quantile-Quantile Plot.

Fig. 3.9 demonstrates the pdf of X ∼ N(µ = 0.356934, σ = 1.07374) which is the best

fitted normal distribution to the real data. Also, the pdf of X̂ = X + A and the entropy of

X and X̂ are shown in Fig. 3.9. As it can be observed, employing entropy as a potential

privacy metric, the privacy of the system has increased after perturbation. Based on Fig.

3.9, the entropy of the perturbed data H(X̂) is around 2.7. According to Eqn. 3.14, we have:

H(X̂) = H(X+A) ≥ max{H(X), H(A)} ≥ max{1
2
+1

2
ln(2πσ2), ln l} ≥ max{1.4898, 2.5560}

And hence: H(X̂) = 2.7 ≥ 2.5560.
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Figure 3.9: Distribution and Entropy of X and X̂.

Table 3.1: Comparison of Alternative Distributions

Distribution Est.*****
Parameters

Log*********
Likelihood

KS D

Loglogistic 2 780.222 0.101606
Inverse Gaussian 2 760.408 0.170564
Lognormal 2 728.591 0.120295
Birnbaum-Saunders 2 554.66 0.258551
Weibull 2 356.201 0.219304
Gamma 2 186.854 0.263503
Exponential 1 43.4622 0.340769
Laplace 2 -663.191 0.353445
Largest Extreme Value 2 -696.247 0.316778
Logistic 2 -1155.78 0.352364
Normal 2 -2143.73 0.381145
Uniform 2 -3289.34 0.882466
Pareto 1 −1.44× 1012 3.06981

We would like to reiterate that the data coming from the smart meters were not generated

by a normal distribution with 95% confidence. In Table 3.1, you can find a list of alternative

distributions. This table compares the goodness-of-fit when various distributions are fit

to the data. According to the log likelihood statistic, the best fitting distribution is the

Loglogistic distribution. However, given Eqn. 3.14 if the smart meter data is perturbed with

uniformly distributed random numbers, the entropy of the output H(X̂) is independent of

the distribution of original smart meter data.
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3.5 Conclusion

Due to privacy and security issues from the consumers’ perspective, the deployment of

the future power grid has been delayed. Although researchers have studied miscellaneous

approaches for preserving consumer privacy in smart grid communications, to this date, most

of these SPPMs lack a formal analysis to show how much privacy is gained as a result of de-

ploying that SPPM. Thus, it is crucial to design a generic framework for quantifying smart

grid privacy. In this paper, using well-established probabilistic and information theoretic

methods, we introduced a metric that enables us to numerically evaluate the performance

of different SPPMs from a privacy point of view. This certainty-based metric leverages the

theory of information entropy and shows how uncertain the results of an inference attack by

the adversary will be. As a case study, we applied this entropy-based metric to evaluate an

SPPM that perturbs the smart metering data by simply adding the meter readings with ran-

domly generated numbers. The results confirmed that the proposed metric can successfully

measure the privacy of the smart meter data, before and after applying the perturbation

transfer function. We also used our proposed metric to evaluate real electricity usage data

gathered from twenty-two smart meters with one-minute granularity. As part of our future

research, we are investigating the applicability of such entropy based metrics for systems

with different adverserial strengths.
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CHAPTER 4
CONCLUDING REMARKS

Due to privacy and security issues from the consumers’ perspective, the deployment of

the future power grid has been delayed. Existing approaches to privacy-preserving data

aggregation in smart grid generally utilize the homomorphic properties of public-key cryp-

tosystems. However, as we have thoroughly investigated, these approaches are expensive

from a communication stand-point. In Chapter 2, we proposed a two-step approach towards

efficient private data aggregation in SGNs. First, we introduced a random perturbation

technique which is used to statistically alter the time-series data of every SM such that

individual consumption patterns could not be inferred and yet the sum and average values

of the reported power consumption in a given neighborhood can be calculated accurately.

Second, we proposed an efficient and secure data aggregation scheme which utilizes the prop-

erties of spread spectrum communications. Our evaluation and simulation results confirmed

that our approach increases performance and decreases communication overhead on SGNs

considerably, as compared with existing cryptographic-based aggregation schemes.

In another research direction in chapter 3, we observed that, although researchers have

studied miscellaneous approaches for preserving consumer privacy in smart grid communica-

tions, to this date, most of these SPPMs lack a formal analysis to show how much privacy is

gained as a result of deploying that SPPM. Thus, it is crucial to design a generic framework

for quantifying smart grid privacy. In Chapter 3, using well-established probabilistic and

information theoretic methods, we introduced a metric that enables us to numerically eval-

uate the performance of different SPPMs from a privacy point of view. This certainty-based

metric leverages the theory of information entropy and shows how uncertain the results of

an inference attack by the adversary will be. As a case study, we applied this entropy-based

metric to evaluate the SPPM that perturbs the smart metering data by simply adding the

meter readings with randomly generated numbers (introduced in chapter 2). The results
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confirmed that the proposed metric can successfully measure the privacy of the smart meter

data, before and after applying the perturbation transfer function. We also used our pro-

posed metric to evaluate real electricity usage data gathered from twenty-two smart meters

with one-minute granularity.
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