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ABSTRACT

The increasing popularity of online social networks (OSNs) is spawning new security and

privacy concerns. Currently, a majority of OSNs offer very naive access control mechanisms

that are primarily based on static access control lists (ACL) or policies. But as the number

of social connections grow, static ACL based approaches become ineffective and unappealing

to OSN users. There is an increased need in social-networking and data-sharing applications

to control access to data based on the associated context (e.g., event, location, and users in-

volved), rather than solely on data ownership and social connections. Surveillance is another

critical concern for OSN users, as the service provider may further scrutinize data posted

or shared by users for personal gains (e.g., targeted advertisements), for use by corporate

partners or to comply with legal orders. This thesis introduces a novel paradigm of context-

based access control in OSNs, where users are able to access the shared data only if they

have knowledge of the context associated with it. This thesis presents two constructions for

context-based access control in OSNs: the first is based on a novel application of Shamir’s se-

cret sharing scheme, whereas the second makes use of an attribute-based encryption scheme.

For both constructions, the security properties are analyzed, proof-of-concept applica-

tions for Facebook are implemented, and their functionality and performance are empirically

evaluated. Empirical measurements show that the proposed constructions execute efficiently

on standard computing hardware, as well as, on portable mobile devices. With the help of

a preliminary user-study, this thesis analyzes privacy concerns associated with data sharing

on OSNs and how individuals share data on Facebook. Constructive feedback on usabil-

ity and user-friendliness of the developed prototype application was also obtained from the

user-study.
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CHAPTER 1
INTRODUCTION

An online social networking (OSN) service is a popular tool for online users to connect

with other users who are either real-life acquaintances or have similar interests and back-

ground. As of September 2013, 73% of online adults used one or more OSNs [18], most

commonly Facebook [10], Twitter [14], LinkedIn [12] and Pinterest [13]. The Wall Street

Journal reported that Facebook’s user base had increased to one billion users at the end of

2012 [26]. OSN services allow its users to maintain a profile, update personal information

and share pictures, posts, activities, events, and interests with other users in their social net-

work. The privacy of personal and shared information, with respect to the service provider

and other users, is of paramount importance to OSN users [28].

1.1 Motivation

In order to provide privacy with respect to other users, OSNs enforce access control

policies on the data being shared, wherein, only a specific set of receivers dictated by the

policy can get access to a user’s personal and shared information. Existing OSN access

control mechanisms are based on either static policies (for example, by default all users in

the friend list are allowed to view all posted images) or fine-grained ACLs where specific

groups within a user’s social network are allowed access to specific categories of the user’s

information [11]. These access control mechanisms are mostly user-centric, rather than

information or data-centric. In a recent study [31] of over 250 users, it was found that

while strangers or non-friends are the most concerning audience when it comes to sharing

data on Facebook, most users take appropriate steps to mitigate those concerns. However,

16.5% of the participants had at least one post that they were uncomfortable sharing with a

specific friend - someone who likely already had the ability to view it - and 37% raised more

general concerns with sharing their content with friends. The study concludes that, although
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Facebook privacy controls are effective against threat from non-friends, they are unsuitable

for the insider threat (i.e., from friends) who dynamically become inappropriate audiences

based on the context of a post. Thus, there appears to be a need in OSNs to dynamically

share data based on the knowledge (or context) related to the data being shared. The same

reflects in our user-study results, decsribed in section 5.3.1.

We envision a new paradigm of dynamic access control in OSNs, called social puzzles,

which performs access control based on the knowledge of the shared data and the context

related to it. Nearly all content shared on OSNs is related to past, present or future events,

where each event is associated with a unique context involving location, time, activities,

participants and preferences. Individuals involved in an event are presumed to have gained

knowledge of the related context and some of this context may remain the same for future

similar events. This makes sharing data related to events, of which the associated context

is presumed to be known by the intended audience, a suitable proposition. An example of

this includes sharing messages or pictures of a past social gathering involving the target au-

dience (who are also friends on an OSN). The idea of context-based data sharing is not only

restricted to OSNs, but can also be applied to other data sharing services such as microblog-

ging services (e.g., Tumblr), photo sharing services (e.g., Picasa and Instagram) and file

storage and sharing services (e.g., Dropbox and OneDrive). Other customized applications

can also be envisioned, e.g., data management in a corporate network, where only employees

knowing certain work-related context can get access to certain confidential documents.

1.2 Objective

Our goal in this work is to design access control mechanisms for OSNs using dynamic

context-based policies, which not only seamlessly integrate with existing OSNs, but also

provide resistance against surveillance by service providers. These new access control mech-

anisms will complement existing static policies on OSNs, thus providing users with additional

flexibility while sharing data, and will improve privacy of the shared data without compro-
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mising the utility of the OSN service. One advantage of our proposed mechanisms is that it

will simplify the access control process in undirected OSNs such as Facebook and Google+

[8], especially when access control is required to be based on the knowledge of the context

surrounding the data. In order to provide such an access control, service provider and users

will no longer be required to maintain complex and constantly mutating and expanding ac-

cess control lists (ACL). Moreover, OSNs with directed social connections and the ones that

provide only very minimalistic access control mechanisms (e.g., Twitter [14]) will benefit even

more because the context-based access mechanism will add a layer of privacy protection.

As access control in OSNs is currently either performed by the service provider itself, or

in some cases by a trusted third-party [37, 34, 33], they typically have access to the data

being shared or the access control policy used to share the data. This is not a desirable

situation for users who do not trust the service provider (or third-parties) and want security

against release of data or access control policies to these parties. Our proposed access control

mechanism only trusts the service provider to execute the access control protocol honestly;

the service provider is able to perform access control operations without the knowledge of the

data being shared or the context based on which access control is done. Such a surveillance-

resistance property can prevent service providers from mining user data for gaining corporate

advantage (e.g., targeted advertisements) or sharing it with other entities (e.g., government

monitoring programs and corporate partners) without user consent.

Another advantage of the proposed context-based access control mechanisms is improved

content-relevance. With an increasingly large number of online social contacts, OSN users

typically find themselves bombarded with or buried under a large amount of irrelevant or

sparsely relevant information from their contacts. Good access control inherently leads to

better content-relevance for OSN users. Context-based social routing [35] is another effort

in this direction, where each user specifies their interests through a set of keywords and the

data routing algorithm routes shared objects with relevant context attributes to the users.
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We argue that our context-based access control mechanism will inevitably enforce relevant

content being read, because users cannot access contents with unfamiliar contexts.

Finally, we anticipate that any new access control mechanism should be easy to use,

else users may continue to settle for inferior privacy settings. A trivial context-aware access

control scheme can be constructed as follows: sharer generates a symmetric encryption

key (and then encrypts data) by using all the context associated with the data, while the

receiver regenerates the key (to decrypt the data) by proving knowledge of the entire context.

However, such a trivial scheme is not useful because most of the times receivers will not be

aware of the entire context related to the shared data. The proposed mechanisms are much

more flexible and allow the sharer to specify a threshold on the number or amount of context

required to be known by the receivers before they can access the data. Thus, receivers can

access data by proving only partial knowledge of the related context. We realize that when

it comes to usability, systems that require complex setup and regular maintenance [29, 25]

are not convenient and/or popular. Thus, our goal is to design and implement mechanisms

that incur low performance overhead, require little or no maintenance and can be easily

integrated with popular services such as Facebook. The level of user satisfaction found in

our user-study is detailed in section 5.3.2.

1.3 Contribution

The key contributions of this thesis are as follows:

• We propose two novel constructions for context-based access control to enable private

data sharing among OSN users.

• We demonstrate the feasibility of our constructions by developing a publicly-available

[7] proof-of-concept implementation for Facebook. A careful security analysis under

various adversarial scenarios is also performed.
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• We empirically evaluate the functionality and performance of our implementation for

a variety of operational parameters.

• With the help of a user-study, we evaluate the effectiveness, efficiency and usability

aspects of the implemented Facebook prototype application.

Part of thesis has appeared in proceedings of the 44th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN 2014).
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CHAPTER 2
LITERATURE SURVEY AND BACKGROUND

2.1 Related Works in OSN Privacy

Each OSN service addresses the problem of data privacy and access control differently.

Facebook, for example, provides customized ACLs where access to a particular data object

is restricted to only those social contacts that are present in a user’s ACL. One shortcoming

of ACLs is that they are not very scalable. Increasingly large, and highly dynamic, list of

friends or social contacts can lead to a burdensome maintenance of such access lists. In

Twitter, on the contrary, there are no privacy constraints and all tweets are public (by

default). Few other researchers have studied the possibility of role-based [32] and attribute-

based [30] access control in OSNs. But both these schemes require additional infrastructure

and support from the OSN provider, thus making them less likely to be adopted in practice.

Contrary to these, our proposed access control mechanisms can be hosted either by the

OSN provider or by some other third-party provider. In our schemes, much of the access

control functionality is performed locally on the client on an on-demand basis, which is more

efficient. Access control is performed while maintaining confidentiality of the shared object

by matching cryptographic hashes of the associated contexts.

A majority of the OSN providers have a “default open” policy, wherein a lot of sensitive

and personal information about subscribers is available or easily accessible by all other

subscribed users. Security and privacy of user data in OSNs has received significant attention

in the literature, but it still remains an open problem [38, 34, 21, 22, 20]. Existing research

efforts have primarily focused on: (a) decentralized OSNs, (b) dedicated infrastructure at

the end-user, (c) access control by trusted third-party, and (d) secure data sharing using

public-key cryptography.

Yeung et al. [38] propose a decentralized approach to online social networking where each

user possesses a trusted server which stores user-data and enforces pre-defined access control
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policies. Anyone trying to access a user’s personal data is redirected to the trusted server

which first makes an access control decision. Similarly, in order to view protected shared

objects in Diaspora[16], friends would need to access the user’s personal web server or start

using the Diaspora service. Dürr et al. [25] propose another decentralized OSN, called

Vegas, which allows secure information sharing with nearby users. In another related effort,

Jagtap et al. [29] propose a data-on-demand list-based social networking methodology which

abstracts sensor data of mobile devices by using a “Privacy Control Module” located on the

user’s device. Decentralized mechanisms, however, are not compatible with existing OSN

services and they require individual users to possess dedicated infrastructure for data storage

and access control. Alternatively, a semi-decentralized architecture proposed by Carminati

et al. [24] reduces client-side workload and infrastructure requirement, but it needs to be

continuously available. Compared to these, our context-based access control mechanisms

are designed to work with existing OSN services, without requiring additional hardware

infrastructure and with limited resources (ideal for resource-constrained mobile devices). To

eliminate the dependence on client-side infrastructure for access control, a few of the above

schemes propose the use of a trusted third-party. Although the third-party can be trusted

to perform access control correctly, it still needs access to user’s policies and data, which

could open door to surveillance. In our proposal, we also require a third-party (or OSN) to

host the context-based access control service, but our schemes are resistant to surveillance

by these providers or third-parties.

In order to guarantee confidentiality against service providers, data has to be encrypted

at the client-side (by the sharer) such that only the intended receiver(s) are able to decrypt it.

Beato et al. [21] achieve this by using OpenPGP. The authors propose a scheme that is hybrid

between the trusted server and the decentralized approaches. Although their implementation

integrates well with existing OSNs, the usability of their scheme suffers due to the required

public-key management operations.
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FaceCloak [34] secures Facebook profile data and messages by using symmetric-key en-

cryption and storing them on a separate server, while posting fake information on the actual

Facebook profiles. Contrary to this, the scheme by Beato et al. [20] achieves privacy by

using asymmetric encryption and by anonymizing user information from the shared data

objects. Earlier, Beato et al. [22] proposed a service provider-independent scheme, called

Scramble!, to assure confidentiality and integrity of OSN user data. The authors implement

a browser extension that allows users to enforce access control over their data, as well as,

protect it against surveillance and modification from service providers. Both FaceCloak and

Scramble! are not very easy to use because every friend has to actively exchange and main-

tain a set of valid encryption/decryption keys. In contrast, our mechanisms do not require

periodic and expensive key exchanges. Moreover, we address the problem of access control

based on the knowledge of the shared data, and not based on the users in the social network.

Most importantly, due to its JavaScript-based implementation, only a standard web browser

(without any additional installation/configuration) is required for using our scheme.

2.2 Basics and Background

Before going into the details, let us briefly outline a few well-known cryptographic con-

structions that we use in our constructions for context-based data sharing. Our first construc-

tion employs Shamir’s secret sharing scheme (section 2.2.2), whereas our second construction

uses an attributed-based encryption scheme such as CP-ABE (section 2.2.3). The mathe-

matical notions of bilinear maps and pairings (section 2.2.1) are useful for understanding

CP-ABE.

2.2.1 Bilinear Maps and Bilinear Pairing

Let G0, G1 and G2 be multiplicative cyclic groups of prime order p. Let g0 and g1 be

generators of G0 and G1, respectively. Let e be a bilinear map from G0×G1 to G2, i.e., e is a

function e : G0×G1 → G2, such that for all u ∈ G0, v ∈ G1 and a, b ∈ Zp, e(ua, vb) = e(u, v)ab
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(bilinearity property) and e(g0, g1) 6= 1 (non-degeneracy property). If G0 = G1, then the

pairing e is symmetric. This is because, e(ga0 , g
b
0) = e(g0, g0)

a,b = e(gb0, g
a
0).

2.2.2 Shamir’s Secret Sharing Scheme

In Shamir’s (k, n) threshold secret sharing scheme [36], a secret is shared among a set of,

say n, participants by dividing it into parts (or shares) such that each participant possesses

a unique share. The secret can then be reconstructed from a threshold, say k, number of

shares obtained from the participants. Let’s assume that we want to share a secret M , where

M is an element in the finite field F of size p (p is a prime s.t. 0 < k ≤ n < p). We create

a random polynomial P ∈ F(x) of degree k by choosing k − 1 random coefficients in F and

P (0) = M . Each of the i = 1 . . . n participant receives the share (i, P (i)). Now, given any

k of these shares P (s1), P (s2), . . . , P (sk), where sj 6= sj′ and sj, sj′ ∈ {1 . . . n}, the secret

P (0) = M (constant term of P ) can be recovered by using Lagrange interpolation as:

P (0) =
k∑
j=1

γjP (sj),

where γj =
∏
j′ 6=j

sj′

sj′ − sj

(2.1)

2.2.3 Ciphertext-Policy Attribute-Based Encryption (CP-ABE)

In ciphertext-policy attribute-based encryption (CP-ABE) [23], a party encrypting a mes-

sage can specify a policy (based on attributes describing user credentials) for who can de-

crypt. Specifically, the private key (used to decrypt) is associated with an arbitrary number

of attributes. When a party encrypts a message, he specifies an access structure over these

attributes. Any user can decrypt this message only if his attributes pass through the cipher-

text’s access structure. CP-ABE consists of the following main procedures.

• Setup: The Key Authority (KA) takes no other input, except a security parameter,

and outputs a public key PK = G0, g, h = gβ, f = g
1
β , e(g, g)α and a master secret

MK = (b, gα), where G0 is a bilinear group of prime order p and α, β ∈ Zp.
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• Encrypt(PK, M , τ): This algorithm encrypts a message M under a policy τ which

is represented as a tree access structure by using the public key PK. Let s (a random

number in Zp) be the secret at the root of the policy tree, qx be the polynomial of

degree dx = kx − 1 at the node x where kx is the threshold value at the node x, Y

be the set of leaf nodes in τ and att(y) returns the attribute of the leaf node y. The

ciphertext CT is:

CT = (τ, C̃ = Me(g, g)αs, C = hs,

∀y ∈ Y : Cy = gqy(0), C ′y = H(att(y))qy(0))

(2.2)

Here, H is a hash function that maps to a random element in G0, i.e., H : {0, 1}∗ → G0

• KeyGen(MK, S): It takes as input a set of attributes S, the master secret MK and

outputs a key that identifies with that set. It chooses randoms r ∈ Zp, and rj ∈ Zp for

each attribute j ∈ S and computes the key as:

SK = (D = g(α+r)/β,

∀j ∈ S : Dj = gr ·H(j)rj , D′j = grj)

(2.3)

• Decrypt(CT , SK, x): It implements a recursive algorithm DecryptNode(CT , SK,

x). For each leaf node x in τ , DecryptNode pairs Di and D′i (from SK) with Cx and

C ′x, resp., to obtain e(g, g)rqx(0) if i ∈ S, where i = att(x). If i /∈ S, then DecryptNode

returns ⊥. For each non-leaf node x in τ , it recursively calls Decrypt(CT , SK, zj)

on all children zj of x. It then calculates e(g, g)rqx(0) for the non-root node x by using

Lagrange interpolation on at least kx such e(g, g)rqzj (0) obtained from its children {zj}.

If kx such e(g, g)rqzj (0) are not available then DecryptNode returns ⊥ for the non-

root node x. Decrypt begins by calling DecryptNode(CT , SK, R) on the root

node R and computes A = e(g, g)rqR(0) = e(g, g)rs. It then retrieves M by computing

C̃/(e(C,D)/A).
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CHAPTER 3
CONSTRUCTIONS FOR CONTEXT-BASED DATA SHARING

3.1 System and Adversary Model

In this section, we outline details of the system and adversary model considered in this

work.

3.1.1 The System

We consider an OSN provider, denoted by SP , where each subscribing user maintains

a list of contacts (or friends) and uses the OSN platform to store and share digital content

(e.g., status updates, photos, locations, etc.) with his/her social network. We consider a

symmetric social networking service, i.e, if a user a has another user b in her friend list,

then user b has user a as her friend as well. A popular example of a symmetric OSN is

Facebook. OSN services usually maintain a profile and a list of contacts (which includes

relationship type) for each registered user. A profile typically contains personal information

which uniquely identifies the user. Users can typically add/update their profile information

and access profiles of their contacts at various levels of granularity, often dictated by the

contact’s privacy setting.

We consider a user S, referred to as the sharer, who has a registered account with the

service provider SP . The sharer S wants to share some data object O, e.g., a picture or

video file, with her contacts (or social network) ST , provided they have some knowledge of

the context related to the sharer and/or the object O. S is unwilling to share the object

with those contacts who may not know this context. There may also be contacts who may

not be interested in receiving certain data objects from the sharer without knowing the

related context. Such situations are very common in social networking or other data sharing

applications. For instance, a user may want to share pictures of a particular private event

with only those contacts who were either at the event or were invited but missed the event.
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Some other contacts, such as professional contacts, may not be interested in viewing the

sharers’ personal event pictures or it may be inappropriate for the sharer to share those with

them.

The context CO related to an object O can be formulated as a set of N key-value (or

question-answer) pairs {〈q1, a1〉, 〈q2, a2〉, . . . , 〈qN , aN〉}. Without loss of generality, let us

assume that each context can be represented by exactly N key-value pairs. Each key qi

typically defines a domain with the corresponding ai taking exactly a single value (from

that domain). For each shared object O, the sharer S typically sets a threshold ζO on the

minimum number of key-value pairs that should be known to the receiver before she can

access O. Let RO ⊆ ST be the set of S’s contacts that know the ai values corresponding to

at least ζO qis related to an object O. Thus, users in RO are said to “know” the context.

Without loss of generality, let’s assume that ζO = k, for some k < N for all objects O.

The shared object O is stored in an encrypted form on a storage service denoted as DH.

Details of the encryption strategy will be clear soon. The storage service DH is logically

separate from SP , but physically, it can either be co-located with the SP or hosted by a

different third-party provider such as Dropbox[9]. The encrypted object stored on the DH

is publicly accessible by means of a unique URI or web resource locater denoted as URLO.

3.1.2 The Adversary

We want to protect against the unauthorized disclosure of the sharer’s object O to the

following entities: (i) all users (including users in the sharer’s social network ST −RO) who

do not know the context (have knowledge of less than ζO key-value context pairs), and (ii)

the SP and the DH, if they do not know the context. Although our scheme is general

enough and can protect against any entity that does not know the context, we focus here

only on those users that belong to the sharer’s social network. We rely on the social network

service’s access control policies to protect against users outside the sharer’s social network.
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Access (or non-access) for an object O granted to users in the sharer’s social network,

based on amount of context known, is referred to as the access control property, whereas,

preventing disclosure of the object O to the hosting services, such as SP and DH, is referred

to as the surveillance resistance property. Context-based access control and surveillance

resistance are the two main requirements of the proposed system. We assume that users who

do not know the context, i.e., all users in ST − RO, can collude with each other. However,

there is no collusion between users in RO and users in ST − RO, as otherwise the access

control property can be trivially compromised.

We also assume that entities who do not know the context, including SP and DH, do

not perform active attacks. One example of such an attack is compromising accounts of

users in RO in order to obtain context CO related to an object O. All entities that desire

access to the object O will first interact with the access control protocol who will verify the

context known by the entity, and accordingly, either enable or disable access to O. Malicious

users (except, SP and DH) may attempt to circumvent the operation of the access control

protocol by manipulating inputs to the protocol or learn from the intermediate outputs.

Finally, we assume that the SP and DH execute the access control protocol truthfully. Due

to business and legal consequences resulting from malicious behavior, such a semi-honest

model is a practical assumption for the service provider.

3.2 Constructions

In this thesis, we propose two novel constructions for context-based access control in OSN

services. These mechanisms are implemented as puzzles, referred to as social puzzles, where

users willing to access a particular object are presented with a series of questions based on

the context related to the object. Only those users that know the context (i.e., solve the

puzzle) are able to access the object. Our first construction makes an elegant use of Shamir’s

secret sharing scheme [36], while the second construction uses an attribute-based encryption

scheme such as CP-ABE [23].
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3.2.1 Construction 1: Based on Shamir’s Secret Sharing Scheme

Let F be a finite field of size p (where, p is a prime). Let, H be a cryptographically secure

hash function and let E be a secure symmetric cryptosystem. Our first construction (Fig.

3.1) consists of the following subroutines.

Sharer (S) 

Storage Service (DH) 

Service Provider 

(SP) 

Data (O) 

1. Upload (O,k,n) 

Puzzle (ZO) 

Encrypted 
Data (     ) 

5. Access( 𝝈 𝒋 , 𝒂𝝈(𝒋)⊕𝒅𝝈(𝒋)
𝑴𝑶 , … , 𝑼𝑹𝑳𝑶) 

Sharer’s Social 

Network (ST) 

O
K
O

Figure 3.1: Construction 1

• Upload (O, k, n): The Upload subroutine is executed by the sharer S to create a

social puzzle and to securely upload the object O on the storage service DH. S first

determines a k and n ≤ N such that 0 < k ≤ n < p. Recollect that k is the minimum

number of key-value pairs that should be known to a user before he/she can access

the object O and N is the maximum number of context key-value pairs available for

the object O. S then creates a random polynomial P ∈ F(x) of degree k by choosing

k − 1 random coefficients in F and a random constant term P (0). The constant term
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of the polynomial P is used as the object-specific secret by S, i.e., P (0) = MO. S then

computes the object-specific secret encryption key KO by using a cryptographically

secure hash function H, i.e., KO = H(MO). S then encrypts O using the key KO, i.e,

OKO = E(O,KO), and stores the encrypted object OKO on the storage service DH at

location URLO. S then prepares n random shares of MO = P (0) as dMO
1 = 〈s1, P (s1)〉,

dMO
2 = 〈s2, P (s2)〉, . . . , dMO

n = 〈sn, P (sn)〉, where each si is chosen at random. S

then creates a social puzzle ZO for controlling access to O by using the context CO of

O. Specifically, the puzzle ZO is formed using exactly n ≤ N question-answer pairs

{〈qi, ai〉} ⊆ CO and a puzzle specific key KZO , and is shown below:

ZO =



〈q1, H(a1, KZO), a1 ⊕ dMO
1 〉,

〈q2, H(a2, KZO), a2 ⊕ dMO
2 〉, . . . ,

〈qn, H(an, KZO), an ⊕ dMO
n 〉,

n, k,KZO , URLO


S then uploads ZO to the service provider SP .

• DisplayPuzzle (ZO): For each puzzle ZO, DisplayPuzzle is executed by the OSN

provider SP for all the users u in S’s social network, i.e., ∀u ∈ ST . The subroutine

first randomly picks an integer r : k ≤ r ≤ n. For the object O uploaded by S, SP

selects a permutation σ of numbers from 1 to r and displays qσ(1), qσ(2), . . . , qσ(r), KZO

to all users u ∈ ST .

• AnswerPuzzle (qσ(1), qσ(2), . . . , qσ(r), KZO): On receiving the puzzle questions qσ(1),

qσ(2), . . . , qσ(r), each user u ∈ ST , if she wishes to access the object O, responds with the

hash of the answers to the corresponding questions, i.e., hσ(1) = H(a′σ(1), KZO), hσ(2) =

H(a′σ(2), KZO), . . . , hσ(r) = H(a′σ(r), KZO). Obviously, if the user knows the correct

answer aσ(j) to a question qσ(j), then H(a′σ(j), KZO) = H(aσ(j), KZO).
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• Verify (u, hσ(1), hσ(2), . . . , hσ(r)): In response to a puzzle ZO and displayed questions

qσ(1), qσ(2), . . . , qσ(r), SP receives hσ(1) = H(a′σ(1), KZO), hσ(2) = H(a′σ(2), KZO), . . . , hσ(r) =

H(a′σ(r), KZO) from a user u ∈ ST . For each j (0 ≤ j ≤ r), SP verifies if hσ(j) =

H(aσ(j), KZO). If at least k such verifications are successful, then SP sends 〈σ(j), aσ(j)⊕

dMO

σ(j)〉 for each correctly answered question qσ(j) to u. In addition to this, SP also sends

URLO to u. Otherwise, if less than k verifications are successful, then SP does not

send anything and ends the protocol with the user u.

• Access (〈σ(j), aσ(j) ⊕ dMO

σ(j)〉, . . . , URLO ): On receiving URLO, the user u ∈ RO

downloads the encrypted object OKO from URLO. The user u further obtains the

k shares dMO

σ(j) by computing aσ(j) ⊕ (dMO

σ(j) ⊕ aσ(j)). Once k shares are obtained, u

reconstructs the object-specific secret MO by using Lagrange basis polynomials as

discussed in 2.2.2. Once the object-specific secret MO is reconstructed, u computes

KO = H(MO) and obtains the object O = D(OKO , KO), where D is the decryption

function of the symmetric cryptosystem.

3.2.2 Construction 2: Based on CP-ABE

Our second construction is shown in Fig. 3.2. As we have already summarized CP-ABE

in 2.2.3, here we only outline how we utilize CP-ABE to construct efficient social puzzles.

Before providing details, let us describe the access tree used in this construction. In

CP-ABE, an access control policy is encoded as an access tree where non-leaf nodes are

represented by threshold gates. Each threshold gate is described by its children and a thresh-

old value (threshold value is less than or equal to the number of children). The leaf nodes

describe attributes and have a threshold of one. A leaf node is satisfied if the attribute input

by the user matches the attribute assigned to the leaf node. A non-leaf node is satisfied

when at least a threshold of its children nodes are satisfied. An access tree is satisfied if and

only if the root node is satisfied. Further details can be found in [23]. We now present the

details of our second construction.
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Figure 3.2: Construction 2

As before, let’s assume that S wants to share an object O with all users in her social

network ST who know the context CO about that object. Let the context CO be defined

by a total of N question-answer pairs {〈q1, a1〉, 〈q2, a2〉, . . . , 〈qN , aN〉}. The sharer S chooses

a threshold k for the object O and creates an access tree structure τ . The access tree τ is

a monotonic tree structure of height 1, as shown in Fig. 3.3, with a root node and N leaf

nodes, where the attributes of each leaf node τq(i) are set to the values qi and ai. The sole

purpose of τ is to enable S to encrypt object O with context attributes (qi, ai). S encrypts

the object O using the CP-ABE Encrypt(PK, O, τ) routine to produce the ciphertext CT ,

as outlined in 2.2.3.

In order to effectively use CP-ABE in our proposal, a minor tweak is required. The

access tree τ in our proposal is first perturbed by replacing the answer attributes ai with
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the corresponding hash values H(ai) to produce the perturbed access tree τ ′, as illustrated in

Fig. 3.4. Then, S replaces the access tree τ encoded in the cipher text CT by the perturbed

access tree τ ′ to produce the ciphertext CT ′. As we will see later, this is done to prevent

the DH from learning the actual access tree τ containing the answers (required to know the

context CO). S then uploads τ ′, public key PK and master key MK to SP , and CT ′ to

DH. SP shares PK and MK with all users, including the ST .

Max. = N 
Threshold = k 

Max. = 1 
Threshold = 1 

Attr 1 = q1 

Attr 2 = a1 
 

Max. = 1 
Threshold = 1 

Attr 1 = q2 

Attr 2 = a2 
 

Max. = 1 
Threshold = 1 

Attr 1 = qN 

Attr 2 = aN 
 

….. 

Root node 

N leaf nodes 

Figure 3.3: Access tree structure τ for Construction 2

SP then displays the questions qi in τ ′ to users in ST . On viewing these questions,

users in ST can choose to respond with a set S′ containing the corresponding hashed answer

attributes. The SP matches the hashed answers in S′ (sent by some user in ST ) to the hashes

of answers in τ ′. If the number of matches satisfies the threshold ζO (= k), the SP replies

back with URLO that points to CT ′ stored in DH. After downloading CT ′, the receiving

user in ST attempts to (partially) reconstruct τ (from τ ′ in CT ′), by replacing at least k

hashed answer attributes H(ai) in τ ′ with their respective real answers ai. This reconstructed
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access tree is denoted by τ̂ . The receiver replaces τ ′ in the CT ′ obtained from the DH with

τ̂ to obtain ĈT (or reconstructed CT ).

Max. = N 
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Threshold = 1 
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….. 

Root node 

N leaf nodes 

Figure 3.4: Pertubed access tree structure τ ′

The receiver then runs the publicly known KeyGen(MK, S) algorithm with the real

answer attribute set S and master key MK to obtain the private key SK that identifies with

the set S. With ĈT and SK computed from the previous step, users can run Decrypt(ĈT ,

SK) subroutine to reveal the original shared object O. Below, we only describe the two

new algorithms in our construction 2, namely, Perturb and Reconstruct, because the CP-

ABE algorithms Setup, Encrypt, KeyGen and Decrypt are used without any changes.

Moreover, DisplayPuzzle, AnswerPuzzle and Verify operate in a similar fashion as the

first construction.

• Perturb (τ): It takes as input a monotonic tree τ of height 1 with N leaf nodes,

and each leaf node containing one question attribute qi and the corresponding answer

attribute ai. It replaces the ai in each leaf node with its cryptographically secure hash
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value H(ai). The resulting perturbed tree τ ′ is sent to SP and embedded in cipher

text CT ′ which is sent to the DH.

• Reconstruct (τ ′): On receiving the perturbed tree τ ′, this algorithm (partially) re-

constructs τ by correctly replacing at least k H(ai)s with their corresponding ai. This

reconstructed tree τ̂ then replaces τ ′ in cipher text CT ′, which can then be used for

decryption.

3.3 Security Analysis

3.3.1 Introduction

In this section, we analyze our constructions under semi-honest and malicious adversarial

scenarios. As the two constructions are similar, except the secret key reconstruction and

encryption/decryption part, we initially focus only on construction 1. Later, we outline

major differences from the security perspective with construction 2.

3.3.2 Adversarial Service Provider

For a puzzle ZO, first let us consider the semi-honest case where SP honestly executes

the protocol, but wants to reveal the object O. As SP knows URLO, she can download the

encrypted object OKO from the storage service DH. If the SP knows the context CO, i.e.,

knows at least ζO = k answers to the puzzle, she like any other user in RO can reconstruct

the encryption key KO and reveal the object O. But if SP does not know the context,

she will be unable to reconstruct the key KO (and thus unable to reveal the object O) due

to the information-theoretic security of the Shamir’s secret sharing scheme. Due to the

cryptographic security of the hash function H, the SP is unable to recover the individual

answers ai from the hash values H(ai, KZO) (both, the ones provided by the sharer in ZO and

the replies received from the receivers) and KZO . Moreover, as the shares dMO
i are randomly

generated, and unknown to the SP , she is unable to recover the individual answers ai from

the blinded values ai⊕ dMO
i . The SP does not receive any other information, either directly
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or indirectly due to protocol execution, from the participants which could be used to decrypt

the encrypted object OKO .

Next, let us consider a few scenarios where the SP behaves maliciously. As O is not

located on the SP , she cannot remove it. But, she can modify URLO in ZO to cause a

denial of service (DOS). Such DOS attacks can be prevented by signing the URLO in ZO

with the sharer’s private key, which can be verified by the recipients before downloading

the encrypted object OKO . The SP can also modify the questions qi and the puzzle-specific

key KZO resulting in a denial of service. For example, modifying KZO will just change the

hash values H(ai, KZO) provided by the receivers, and will give no advantage to the SP in

recovering ai from the corresponding hash values. Such unauthorized modifications by the

SP can be overcome by including the sharer’s signature for each of these components within

ZO.

3.3.3 Adversarial Storage Service

Similar to the SP , the DH cannot recover the object O from the encrypted object OKO

without the secret encryption key KO (or the object-specific secret MO). Moreover, the

security of Shamir’s secret sharing scheme will prevent the DH from reconstructing the

secret MO, and thus the encryption key KO, without the knowledge of the context CO.

However, a malicious DH can tamper, remove or modify OKO resulting in a DOS attack.

Unauthorized modification of the encrypted object can be detected by means of a signature

(generated using the sharer’s private key) that can be stored within the puzzle ZO.

3.3.4 Collusion Attacks

First, let us consider collusion between entities who do not know the context (e.g., SP ,

DH and users in ST −RO) and those who know it (e.g., users in RO). In this case, those who

know the context CO (at least ζO correct answers), the encryption key KO or the decrypted

object O can trivially share these with others through a covert communication channel. Such

a form of collusion is extremely difficult to protect against. Sharers can periodically modify
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the puzzle ZO and/or the encryption key KO (by re-encrypting the object) to partially

protect against such collusion attacks.

Next, let us consider collusion between users who do not know the context CO (i.e., users

in ST −RO) and a malicious service provider SP who also does not know the context. More

specifically, each user in ST − RO may not know the context CO completely, but they may

partially know it, i.e., less than ζO correct answers. Then, a malicious SP can collude with a

set of these users in ST −RO and let them know through a covert channel the responses that

verified correctly (despite the fact that each user would have less than ζO correct responses).

On receiving the verification, this set of users could collaboratively determine a list of at

least ζO correct answers, which can be then used to retrieve the object-specific secret MO,

and thus, the decryption key KO. We assume a semi-honest SP that follows the protocol

truthfully, and thus, our scheme is not secure against this extremely strong collusion scenario.

Nevertheless, our scheme is secure against collusion among users in ST − RO, provided the

service provider SP honestly executes the protocol. Our construction is also secure against

collusion between SP and DH, provided they collectively do not know the context CO and

they do not collude with any users.

The above analyses for non-colluding SP and DH also holds for construction 2, especially

in the semi-honest case. As the DH and SP only possess the perturbed access tree τ ′, the

security of the cryptographic hash function will prevent efficient reconstruction of the original

access tree τ without the knowledge of the context CO. Moreover, we rely on the security

guarantee of CP-ABE [23], which will prevent correct construction of the private key SK,

and thus decryption of the ciphertext CT , without knowledge of the context CO. Both SP

and DH can act maliciously and achieve denial of service by manipulating the perturbed tree

τ ′, public key PK, master key MK and the perturbed ciphertext CT ′. Nevertheless, DOS

attacks are beyond the scope of the current work. In the case when SP colludes with users in

ST −RO, Construction 2 suffers from the same weakness as construction 1. However, similar
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to construction 1, it is secure against collusion between the SP and the DH, provided they

both collectively do not know the context.
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CHAPTER 4
IMPLEMENTATION AND EVALUATION

4.1 Implementation

In this section, we outline implementation details of our constructions. We have imple-

mented both constructions as third-party Facebook applications hosted on Amazon EC2 [2].

It should be noted that for demonstration purposes our application is hosted on a third-

party provider such as Amazon EC2, rather than on an actual OSN provider. However,

such an access control service can also be easily adopted (and hosted) by a popular OSN

provider such as Facebook. Until then, Facebook users can take advantage of the proposed

access control mechanisms by means of our open-source third-party application which can be

downloaded [7] and hosted on a third-party provider of their choice. Due to lack of funding

and limitations of Amazon EC2 free tier, we are unable to offer public access to our hosted

prototype applications.

Common features: Both implementations are interfaced with a Facebook canvas appli-

cation. The sharer is required to grant permission to the application in order to post objects

on Facebook. For simplicity, currently in our implementations the service provider SP and

the storage service DH are located on the same server, but it can be easily extended to

have both of them on physically separate servers. In order to provide confidentiality and

authentication, all communications between users and our application on Amazon EC2 is

carried over HTTPS.

4.1.1 Details of Implementation 1

The first implementation works across platforms and uses mostly JavaScript and HTML

on the client end. All sharing and retrieving actions are performed in a JavaScript and cookie

enabled web browser. Neither the sharer, nor the receiver, needs to install any additional

supporting software. Our application enables users to use the access control functionality
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without leaving Facebook and offers a smooth and easy-to-follow interface. GibberishAES

[6] is used for JavaScript-based symmetric encryption. All hash values are computed using

SHA3 implementation of CryptoJS [5].

Sharing content: For sharing a new object, the application presents an HTML form

(Fig. 4.1) to the sharer for inputting the object to be shared, context questions and corre-

sponding answers. It requires the sharer to input the value of the threshold k and automat-

ically detects the total number of contexts N by counting the number of question-answer

pairs entered by the sharer. When the sharer submits this information, a JavaScript function

is invoked to perform a number of client-side operations. This function computes a random

secret MO, corresponding hash KO, and a puzzle specific key KZO . Then, the object is en-

crypted using AES encryption with key KO. Shamir’s secret sharing algorithm is executed

on MO, and the obtained shares are XOR encoded with the context answers entered in the

HTML form. The hash values of the answers concatenated with the puzzle-specific key KZO

are also computed. This completes the client-side computations for the sharer. The puzzle

ZO is then uploaded to the application server on Amazon EC2.

The server component of the application maintains a MySQL database for storing infor-

mation about all the puzzles. On receiving a new puzzle from a sharer, the server component

adds a new entry in the MySQL puzzle table with a unique puzzle identifier. This identifier

is then used to generate a hyperlink or URI which is posted on the sharer’s Facebook profile

(to the sharer’s social network). The sharer can also choose to impose an additional layer of

privacy control by means of Facebook’s privacy settings (Fig. 4.2).

Receiving content: Sharer’s friends (or receivers) who see the above post are expected

to click on the hyperlink, if they wish to access the shared data object. This leads the

receivers to an interface, where the server fetches the puzzle from the database and presents

them with a randomized set of questions from the puzzle (Fig. 4.3). An HTML form to

accept input from the receivers is also displayed. On receiving the answers to the questions

from the receiver, a JavaScript subroutine (at the receiver) writes all the answers to a local
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cookie file. Another JavaScript function overwrites the answer fields in the HTML form with

the corresponding hash values. These hashes are then sent to the server.

Figure 4.1: Impl. 1: HTML form with input boxes for message, associated contexts, corre-
sponding questions and threshold k

The server component of the application matches the hashed answers from the receiver

to the hashed contexts stored in the database. If the threshold is not satisfied, the server

displays an error message. If the threshold is satisfied, the server redirects the receiver to

the encrypted object. The receiver also receives values of the shares encoded (XOR’ed) with

the correct context answers. On receiving these encoded shares and the encrypted object,

the receiver first retrieves the actual answers from the cookie file. Then, the answers are

XORed back with the encoded shares to retrieve the original shares. The original random
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secret MO is then computed from the shares using Lagrange polynomials. After calculating

KO from MO, AES decryption is performed to reveal the encrypted object (Fig. 4.4).

Figure 4.2: Impl. 1: A sample post made on Facebook

Figure 4.3: Impl. 1: Receiver solving a puzzle
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Figure 4.4: Impl. 1: Encryption key is reconstructed from puzzle answers and message is
revealed

4.1.2 Details of Implementation 2

Our second implementation uses the publicly-available CP-ABE implementation. As

the CP-ABE toolkit is currently available only for the Linux platform, this implementation

is restricted only to those users (both sharers and receivers) who operate a Linux system

pre-installed with the CP-ABE toolkit. Moreover, as it is currently difficult to invoke CP-

ABE library functions directly from the browser, users may have to switch between the

browser and stand-alone components of the implementation in order to complete the access

control functionality. This may create discontinuity in user-interaction flow while using

the application. This could be addressed by developing a browser plugin that interacts
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with CP-ABE libraries from within the browser. Another issue that we encounter in this

implementation is that the encoding of the access tree τ within the ciphertext CT is not

known, thus preventing us from perturbing and reconstructing the access tree. To overcome

this problem, we currently do not remove the original access tree τ from the ciphertext CT

before storing it on the server. This action affects the surveillance resistance property (only

in the implementation), but not the core access control functionality. These implementation

shortcomings in our current version will be addressed in the future. Lastly, we compute all

hash values in this implementation using SHA1 (available with OpenSSL [17]). For GUI, we

use the Qt widget toolkit application framework [4].

Sharing content: In order to share a new object, the sharer executes a client-side Qt

application. This application takes as input the object to be shared, associated context

questions and corresponding answers, value for the number of contexts N , and value for the

threshold k (Fig. 4.5). The object is stored in a file named message.txt. The values of N

and k, the questions and the hashes of answers are written to another file details.txt. The

cpabe-setup function is called in the background to generate master key file master key and

public key file pub key. Then, the cpabe-enc process encrypts message.txt and replace it with

message.txt.cpabe. The cURL [3] library is invoked to upload details.txt, master key, pub key,

and message.txt.cpabe to the server component of the application running on the Amazon

EC2 server. If all files are uploaded successfully, the server application assigns the puzzle a

unique post (or puzzle) identifier. The server stores the hashes of all the context answers

(along with the post identifier) in a database and deletes these hashes from details.txt. A

reply is sent back to the client-side application containing the post identifier. The client-

side application prompts the sharer to copy the post identifier and pass it to a Facebook

canvas application (similar to the first construction). The Facebook application reads the

post identifier using JavaScript, generates a hyperlink similar to the first implementation,

and shares it on Facebook to the sharer’s social network.
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Figure 4.5: Impl. 2: Sequential interaction with sharer

Receiving content: Sharer’s friends (or receivers) who see the above hyperlink are

expected to click on it, if they wish to access the shared data object. This leads them to the

Facebook application, where the server displays the post identifier and prompts the receiver

to copy the post identifier and pass it to a client-side Qt application for receivers. Once

the Qt application reads the post identifier, it downloads the corresponding details.txt file

(with omitted hashed answers) from the server using the cURL library. The application

then reads details.txt and presents prospective receivers with the questions from it. After

the receiver answers the questions, the application computes the hash values of answers and

sends them back to the server for verification. If less than k hashed answers matches, an error

message will be returned. If verification succeeds, the server gives access to message.txt.cpabe,

master key, and pub key files. The Qt application downloads these three files using cURL.

The application inputs the earlier user entered answers to the cpabe-keygen function in order

to generate the decryption key file my priv key. The my priv key, master key, and pub key
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files are used to decrypt message.txt.cpabe by using the cpabe-dec function. Finally, the Qt

application displays the contents of message.txt to the receiver (Fig. 4.6).

Figure 4.6: Impl. 2: Receiver solving a puzzle and reading the message

4.2 Evaluation and Results

In this section, we present an evaluation of preliminary performance-related measure-

ments that we obtained by executing our applications in a controlled setting. By means

of these measurements, we obtained an initial estimate of the effectiveness and operating

overhead (execution delay) of our applications.

4.2.1 Experimental setup

For both implementations, we use a common PC hardware comprising of a quad core 2.5

GHz CPU, 1 GB RAM and a 802.11n WLAN interface operating at 60 Mbps. The system is

running a Ubuntu OS version 13.04. Additionally, performance of the first implementation

was assessed on a Nexus 7 tablet, and compared with the performance on the PC. Latest

versions of Firefox browser were used on both devices. The second implementation could not

be benchmarked on the tablet because of its Linux dependency, and unavailability of tablets
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capable of running native Linux applications. Experiments were performed for message

lengths of 100 characters, answers of 20 characters and questions of 50 characters long.

Measurements were taken for varying number (N) of contexts, while the threshold k is

set to 1. As CP-ABE does not support (1,1) threshold, observations start from N = 2.

Difference between return values of JavaScript getTime() method (which returns the number

of milliseconds since midnight of January 1, 1970) invoked before and after an execution,

was used to measure time taken for that execution. All measurements are averaged over two

independent observations. We do not include user interaction time in our measurements.

4.2.2 Implementation 1 vs. Implementation 2 on PC

Figure 4.7 and 4.8 shows the breakdown of the local processing delay and network delay

(including server-side processing) for the sharer and the receiver, respectively. The network

delay of Implementation 2 (I2) is worst as compared to Implementation 1 (I1). For each

upload by the sharer in I2, the cURL library is used to upload four different CP-ABE

related files (total ∼600 KB in size) to the server. The network delay observed for I2 (Figure

4.7) is both, due to this considerably large amount of data being transferred between the

client and the server, as well as, due to the additional overhead caused by the cURL library.

The instability in the measurements, which mostly shows an increased delay with increasing

context size, seems to be due to the unpredictability of the communication network speed.

Also, I2 has slightly higher local processing delay because of the greater computational

complexity of CP-ABE. The combined delay in I1 is extremely low for both sharer and

receiver, while for I2 it is noticeably high at the sharer and comparatively lower at the

receivers.
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Figure 4.7: Sharer’s Overhead: I1 vs. I2 on PC

Figure 4.8: Receiver’s Overhead: I1 vs. I2 on PC

4.2.3 PC vs. Tablet for Implementation 1

Figure 4.9 and 4.10 shows the breakdown of local processing delay and network delay for

sharer and receiver, respectively. We observe that local processing delay is lower on PC than

on tablet. This is due to faster JavaScript processing on PC, than on Nexus 7 with inferior
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CPU. As both devices feature similar WLAN radios, network delay is approximately same

on both devices.

Figure 4.9: Sharer’s Overhead: PC vs. Tablet for I1

Figure 4.10: Receiver’s Overhead: PC vs. Tablet for I1

4.2.4 Insights on the Evaluation

We verified that users can successfully share and receive data on Facebook using our

prototype applications. The performance of both implementations are promising compared
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to load times of most visited websites worldwide. Google, for example, has an average load

time of 688 msec as measured on Pingdom [15]. Our objective to validate the effectiveness

and efficiency of the proposed access control mechanisms was also affirmed by the Facebook-

compliant prototypes. With regard to user experience, it would be interesting to learn the

trade-offs between using traditional Facebook ACL and context-based access controls, in

terms of collective time and effort required by sharers and receivers. However, it is difficult

to measure and compare time spent by individuals on each post because of the subjective

parameters like user’s typing speed and size of target audience.
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CHAPTER 5
USER-STUDY AND USABILITY

5.1 Motivation

By means of the implemented Facebook-compliant prototypes, our goal was to validate

the effectiveness and efficiency of the proposed access control mechanisms. We observed

from our experimental evaluations that users can successfully and efficiently share data

on the Facebook OSN using our prototype applications. However, we had no evidence of

how intuitive the idea of context-based sharing is to OSN users and what features OSN

users expect in such an application. As with any online service, it is vital to understand

the related usability aspects of the proposed paradigm in order to improve its practical

feasibility, i.e., who, where and how such applications will be used. To evaluate application

usability, feedback gathering activities such as focus groups, surveys, user-experience studies

and ergonomic assessments can be conducted. The ISO standard 9241 Part 11 [1] provides

specific guidelines for evaluating applications involving human-computer interactions with

respect to the goals of effectiveness, efficiency and satisfaction. ISO 9241 outlines the three

potential ways in which the usability of a product could be measured:

1. Usability could be measured by assessing the product features required for usability

in a particular context. However, ISO 9241 only gives partial guidance. Of the many

potential design solutions compatible with ISO 9241, some will be more usable than

others.

2. Usability could be measured by modelling the interaction between a user carrying out

a task with a product. However, current analytic approaches do not give very precise

estimates of usability. As the interaction is a dynamic process in the human brain, it

cannot be studied directly.
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3. Usability could be measured by analyzing the effectiveness and efficiency which results

from use of the product in a particular context and measuring the satisfaction of the

users of the product. These are direct measures of the components of usability. If a

product is more usable in a particular context, usability measures will be better.

In order to understand and improve the usability of our applications, we conducted a prelim-

inary on-campus user-study by following the third approach to measure usability. Results

from the user-study are conveyed in this chapter.

5.2 Additional Details of the Application

For the sake of simplicity, in the user-study we only consider Construction 1. In the

Social Puzzle application for Facebook, receivers create a puzzle by entering the message and

building question-answer pairs based on context associated with the message. Optionally, a

picture may be attached to messages.

The user interface components of the Social Puzzle application were designed to ease

sharing and receiving content on Facebook. On the sharing page the main components are

the message box, optional photo uploader, context entry boxes, question entry boxes, and

threshold option. At any time, the user can press an “About” button to visit a page that

describes the working of Social Puzzle with the aid of a tutorial video [19]. The message

box component is similar to the sharing box provided by Facebook where the sharers type

the message they want to share. Each message can be up to 2048 characters long. The

optional photo uploader supports attaching of photos up to 4 MB in size. Sharer can decide

and enter up to 5 contexts answers associated to the message and photo, each up to 128

characters long. After the contexts are decided upon, sharer builds up questions paired to

each context. Each question can be up to 1024 characters long. All text input fields accept

special characters.
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5.3 About the User-Study

We performed a preliminary at-home/in-lab user study of the Social Puzzle application

involving 27 users who were enrolled in a security related course. This particular demog-

raphy allowed us to get feedback from individual who are aware of general privacy and

security concepts in computing. The user-study consisted of three parts: a general social

network related survey, a hands-on session of using the application, followed by a usability

survey. The general questionnaire was designed to capture users’ perception of privacy on

OSN, how it can be protected, and the motivation behind context-aware access control. The

hands-on session gave the participants an opportunity to use the application and discover

the benefits and shortcomings of sharing data based on contexts. The usability questionnaire

was designed to give critical feedback to the application/system designers in improving the

usability/user-experience. 4 participants took part only in the general survey, while remain-

ing 23 participants completed all portions of the study. The study took place over a week.

The average age of participants was 26 years.

Figure 5.1: Responses to “Approximately how many friends/followers in total do you have
on online social networks?”
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5.3.1 Need for Context-Aware Access Control

In the general survey, 24 out of 27 participants felt the need to share photos of an event

with only those people (friends) that were at that event or know about that event. 17

participants had more than 300 friends on Facebook (Figure 5.1) and 14 of them agree that

Social Puzzle application makes it easier to specify the privacy settings from post to post

compared to conventional methods of selecting privacy settings (Figure 5.2). Remaining 3

participants did not complete the usage questionnaire section. On the other hand, responses

are less positive from participants having lesser number of friends. Thus, it can be inferred

that participants with larger friend group felt the need of context-aware access control.

Figure 5.2: Responses to “Do you think this application makes it easier to specify the privacy
settings from post to post compared to conventional methods of selecting privacy settings?”

5.3.2 User Satisfaction

All 23 participants who completed the usage questionnaire reported that they were suc-

cessfully able to share a post and receive the same on a friend’s account. 16 participants

were confident that someone without knowledge of associated context would not be able to

access their post, while 7 participants felt otherwise. Using the application came naturally

to all participants, and all except one perceived the Social Puzzle application as suitable
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for regular usage. The learning curve was also reported to be on the lower side. It took 20

participants few second to learn how to use the application and few minutes for remaining

3 participants. All 23 participants agreed that Social Puzzle’s approach to privacy policies

will contribute to surveillance-resistant posts where even the service provider cannot see

the posts. Overall user satisfaction after using the context-based sharing application was

favorable, as depicted in Figure 5.3.

Figure 5.3: Responses to “How satisfied were you with the application?”; 1: Least Satisfied;
10: Fully Satisfied

5.4 Public User-Study

We are currently in the process of conducting a university-wide public user-study on

Social Puzzle application for Facebook to collect usage patterns, user opinion and feedback

on improvements from a larger and diverse group of participants. Although we obtained

crucial feedback from the participants of the preliminary user-study, they were biased away

from the general Facebook users’ population. The average Facebook user may not be as

aware or concerned of privacy issues as students from a security class. To represent the overall

Facebook demography, the public user-study imposes proportional quota on participation.
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We are selecting 20 students/staff/faculty participants from five colleges at Wichita State

University, and among them at most 6 participants from 18-24 and 25-34 years age groups

each and 8 participants from 35-54 age group to denote Facebook users’ population by the

end of 2013. Each category is equally divided between males and females. The estimated

number of participants for this study is 100.
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CHAPTER 6
CONCLUSIONS AND FUTURE WORK

In this work, we proposed and implemented two novel context-aware access control mech-

anisms which empowers users to regulate access to their shared data in OSN services. Instead

of controlling access to shared data based on users or user-attributes, the proposed mecha-

nisms focus on controlling access to data based on the knowledge of the context associated

with the data. By means of the proposed mechanisms, OSN users can not only enable fine-

grained access control and improve relevance of the shared data, but also protect it against

surveillance from curious service providers. We analyzed the security of the proposed mecha-

nisms under various passive and active adversarial scenarios. We verified the correctness and

performance of our implementations by means of empirical evaluations. We also performed

some initial usability study to validate the usefulness of our proposed context-aware access

control paradigm. We outline some potential improvements to the Social Puzzle paradigm

and application next. We will achieve this as part of our continuous effort to improve our

Social Puzzle application.

We are going to design and implement an automated client-side context suggestion tool

for sharers and receivers to further ease the process of sharing and receiving. Machine

learning techniques for context extraction [27] will enable enhanced information delivery

and provide guidance while sharing or receiving data using Social Puzzle.

Geolocation is a context often associated with object being shared on Facebook. Cur-

rently, Social Puzzle supports questions about geolocation, but in an inflexible mode. We

foresee a hierarchical model of geolocation where sharer can specify the accuracy needed to

satisfy a context. For example, sharer specifies location as California. Receivers answering

San Francisco satisfies the context, but receivers answering Canada do not.
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Support for sharing enriched data files such as videos and documents using Social Puzzle

will be a step forward in the event-oriented approach to context identification. Picture-based

puzzle questions will also provide a more intuitive way to create and solve puzzles.

Finally, we plan to create and dynamically update a relational model for storing synony-

mous contexts in data structures. When such relational sets are used for encryption, words

like cell, mobile or 0, zero become interchangeable contexts, thus improving user-friendliness.

This problem can be reduced to a problem in graph theory where we find all groups of con-

nected nodes (synonyms) in a graph. An efficient way to solve this problem is doing a “flood

fill” algorithm, which is essentially a recursive breadth-first search.
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